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Abstract

The theory of valuations was started in 1912 by the Hungarian mathe-
matician Josef Kürschák who formulated the valuation axioms as we are
used today. The main motivation was to provide a solid foundation for the
theory of p-adic fields as defined by Kurt Hensel. In the following decades
we can observe a quick development of valuation theory, triggered mainly
by the discovery that much of algebraic number theory could be better
understood by using valuation theoretic notions and methods. An out-
standing figure in this development was Helmut Hasse. Independent of
the application to number theory, there were essential contributions to
valuation theory given by Alexander Ostrowski, published 1934. About
the same time Wolfgang Krull gave a more general, universal definition
of valuation which turned out to be applicable also in many other mathe-
matical disciplines such as algebraic geometry or functional analysis, thus
opening a new era of valuation theory.

In the present article which is planned as the first part of more to
come, we report on the development of valuation theory until the ideas
of Krull about general valuations of arbitrary rank took roots. That is,
we cover the pre-Krull era. As our sources we use not only the published
articles but also the information contained in letters and other material
from that time, mostly but not exclusively from the legacy of Hasse at
the University library at Göttingen.

∗This copy contains some minor corrections of the published version.
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1 Introduction

The origin of this paper was the manuscript for my lecture delivered at the
Valuation Theory Conference in Saskatoon, August 1999.

For publication in the proceedings volume I had intended to enlarge that
manuscript such as to contain a survey of the complete history of valuation
theory until this day. The importance of valuation theory in various applications
is not questioned any more, and it would have been an exciting story to report
on the impact which valuation theoretic notions and results have had in those
applications. However, it soon turned out that for such a project I would have
needed more pages as were allowed here and, what is more important, I would
also have needed much more time for preparation.

Well, here is at least the first part of my intended “History of Valuation The-
ory”, the next part(s) to follow in due course. This first part covers the period
of valuation theory which starts with Kürschák’s defining paper [1912] and ends
about 1940, when the ideas of Krull about general valuations of arbitrary rank
took roots, opening a new era of valuation theory. The discussion of Krull’s
seminal paper [1932g] itself will be included in the second part, as well as the
application of Krull’s valuation theory to other fields of mathematics, including
real algebra, functional analysis, algebraic geometry and model theory. In other
words:

This first part covers pre-Krull valuation theory.
Let us make clear that “pre-Krull” is not meant to be understood in the sense
of time, i.e., not “pre-1932”. Rather, we mean those parts of valuation theory
which do not refer to Krull’s general concept of valuation of arbitrary rank and
are based solely on Kürschák’s notion of valuation, i.e., valuations of rank 1. 1

For a more detailed description of the content of this paper we refer to the
table of contents. The reader will notice that one important part of valuation
theory is not covered, namely the so-called non-archimedean analysis. Again,
the reason is lack of space and time. For non-archimedean analysis the reader
might consult Ullrich’s paper [1995]. For the rich contributions of Krasner to
valuation theory we refer to Ribenboim’s article “Il mondo Krasneriano” [1985b].

Valuation theory has become important through its applications in many
fields of mathematics. Accordingly the history of valuation theory has to take
into account its applications. In the pre-Krull period (in the sense as explained
above), it was the application to number theory which triggered much of the
development of valuation theory. In fact, valuation theory was created primarily
with the aim of understanding number theoretical concepts, namely Hensel’s p-
adic numbers for a prime number p . Although the formal definition of valuation
had been given by Kürschák [1912] it will appear that the ideas which governed
valuation theory in its first (pre-Krull) phase all came from Hensel. Thus Hensel
may be called the father of valuation theory. Well, perhaps better “grandfather”
because he never cared about the formal theory of valuations but only for his
p-adic number fields. In any case, he has to be remembered as the great figure
standing behind all of valuation theory (in the pre-Krull period).

1This explains the fact that although here we do not discuss Krull’s paper, we do discuss
several papers which appeared after Krull’s, i.e., after 1932. On the other hand, when in
Part II we shall discuss Krull’s paper [1932g], we shall have to consider a number of papers
published before Krull’s, belonging to strings of development leading to Krull’s notion of
general valuation, as for instance Hahn [1907a] and Baer [1927f] on ordered fields.
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We have inserted a whole section devoted to the application of valuations to
number theory. This exhibits the power of valuation theory and its role in the
development of number theory. The reader will notice that in this section the
name of Helmut Hasse will be dominant. Indeed, it was Hasse who successfully
introduced and applied valuation theoretic ideas into number theory. He always
propagated that the valuation theoretic point of view can be of help to better
understand the arithmetic structure of number fields. 2 Van der Waerden, a
witness of the times of the 1920s and 1930s, speaks of Hasse as “Hensel’s best
and great propagandist of p-adic methods” [1975a]. If today the knowledge of
valuations is considered a prerequisite to anyone who wishes to work in algebraic
number theory then, to a high degree, this is due to Hasse’s influence.

The application of valuation theory to algebraic geometry will be dealt with
later, in the second part of this project.

Besides of the original papers we have heavily used the information contained
in letters and other material from that time. In those times mathematical
information was usually exchanged by letters, mostly handwritten, before the
actual publication of papers. Such letters often contain valuable information
about the development of mathematical ideas. Also, they let us have a glimpse of
the personalities behind those ideas. To a large degree we have used the legacy of
Helmut Hasse contained in the University Library at Göttingen. Hasse often and
freely exchanged mathematical ideas and informations with his correspondence
partners; there are more than 6000 letters. Besides of the Göttingen library, we
have also used material from the archive of Trinity College (Cambridge), and
from the Ostrowski legacy which at present is in the hands of Professor Rita
Jeltsch-Fricker in Kassel.

Remark. The bibliography contains the papers which we have cited in this
article. We have sorted it by the year of publication, in order to give the reader
some idea of the progress in time, concerning the development of valuation
theory. But as we all know, the publication date of a result is usually somewhat
later than the actual date when it was discovered, or when it was communicated
to other mathematicians. Thus the ordering of our bibliography gives only a
rough picture of the actual development. Sometimes the letters which were
exchanged give more precise information; if so then we have mentioned it in the
text.

Acknowledgement. I would like to thank F.-V. Kuhlmann and Sudesh K.
Khanduja for carefully reading the manuscript, and for critical and thoughtful
comments.

2 The beginning

2.1 Kürschák

Valuations have been around in mathematics since ancient times. When Euclid
had established prime decomposition then this result permitted to code the
natural numbers by the exponents with which the various primes p occur in
these numbers; those exponents in fact represent the p-adic valuations used in
number theory. Similarly in the theory of functions: the order of a holomorphic

2Perhaps it is not superfluous to point out that this has nothing to do with what is called
“Methodenreinheit”.
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function at a given point P on a compact Riemann surface represents a valuation
on the respective function field, and the function is uniquely determined, up to
a constant factor, by its behavior at those valuations.

Valuations of this kind have been exploited heavily in number theory and
complex function theory during the 19th century. However, Valuation Theory
as a separate and systematic mathematical research, based on a set of axioms,
started in the 20th century only, in the year 1912 when the Hungarian math-
ematician Josef Kürschák (1864–1933) announced at the Cambridge Inter-
national Congress of Mathematicians the first abstract structure theorems on
valued fields [1912].

The paper itself, written in German, appeared one year later in Crelle’s
Journal [1913]. At the beginning of the paper we find the familiar four axioms
for a valuation:

‖a‖ > 0 if a 6= 0, and ‖0‖ = 0 (2.1)
‖1 + a‖ ≤ 1 + ‖a‖ (2.2)
‖ab‖ = ‖a‖ · ‖b‖ (2.3)

∃a : ‖a‖ 6= 0, 1 (2.4)

Here, a and b range over the elements of a given field K, and the values ‖a‖ are
supposed to be real numbers. Kürschak uses already the name “Bewertung”
which is still used today, and which is translated into English as “valuation”.
He tells us that he had chosen this name in order to indicate that it is meant
as a generalization of the notion of “absoluter Wert” (absolute value) which he
understood as the ordinary absolute value defined in the real or the complex
number field. 3

The main purpose of Kürschák’s paper was to present a proof of the following
theorem:

Every valued field K admits a valued field extension CK which is
algebraically closed and complete.

Here, “complete” refers to the given valuation and signifies that every Cauchy
sequence is convergent. Kürschák uses the German terminology “perfekt” for
“complete”. Kürschák’s terminology became widely used in the twenties and
early thirties but was later abandoned in favor of “komplett” or “vollständig”
in order to avoid misunderstandings with the English terminology. 4

Kürschák says explicitly that he was inspired by Hensel’s book on algebraic
numbers [1908]. His aim is to give a solid foundation of Hensel’s p-adic algebraic
numbers, in a similar way as Cantor had given for the real and complex numbers.
Thus we see that the main motivation to introduce valuation theory came from
algebraic number theory while the model for the axioms and for the method of
reasoning was taken from analysis. Kürschák’s paper may be viewed as one of
the first instances where “analytical algebra” or, as we prefer today, “topological
algebra” was deliberately started.

3In modern (Bourbaki) terminology, all Kürschák valuations are called “absolute values”,
and the word “valuation” refers to the more general notion as defined later by Krull. In this
article we use “valuation” in the sense of Kürschák.

4In English, the property “perfect” of a field signifies that the field does not have proper in-
separable algebraic extensions; in German this property is called “vollkommen”, as introduced
by Steinitz [1910].
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Today, we usually define the p-adic number field Qp as the completion of the
rational number field Q with respect to its p-adic valuation, and Cp as the com-
pletion of the algebraic closure of Qp, thereby using the fact that the valuation
of the complete field Qp extends uniquely to its algebraic closure. In so doing
we follow precisely Kürschák’s approach. Before Kürschák, Hensel had defined
p-adic algebraic numbers through their power series expansions with respect to
a prime element. This procedure was quite unusual since Hensel’s power series
do not converge in the usual sense, and hence do not represent “numbers” in
the sense as understood at the time, i.e., they are not complex numbers. Ac-
cordingly there was some widespread uneasiness about Hensel’s p-adic number
fields and there were doubts whether they really existed. Kürschák’s paper was
written to clear up this point.

As to the choice of his axioms (2.1)–(2.4), Kürschák refers to Hensel’s article
[1907] where Hensel, in the case of p-adic algebraic numbers, had already defined
some similar valuation function; the formal properties of that function are now
used by Kürschák as his axioms. 5

Kürschák’s proof of his main theorem proceeds in three steps:

Step 1. Construction of the completion K̂ of a valued field K. 6

Step 2. Extending the valuation from K̂ to its algebraic closure.

Step 3. Proving that the completion of an algebraically closed valued field is
algebraically closed again.

In Step 1 he proceeds by means of what he calls Cantor’s method, i.e.,
the elements of K̂ are defined to be classes of Cauchy sequences modulo null
sequences. “Cantor’s method” seems to have been well known at that time
already since Kürschák does not give any reference. 7

In Step 2, the existence of the algebraic closure of a field is taken from
Steinitz’ great Crelle paper [1910] which established the fundamentals of fields
and the structure of their extensions. In fact, Kürschák’s paper rests heavily on
the paper of Steinitz and can be regarded as a natural continuation thereof. 8

In his introduction he refers to Steinitz and says that he (Kürschák) will now
introduce into field theory a new notion, i.e., valuation. (“In dieser Abhandlung
soll in die Körpertheorie ein neuer Begriff eingeführt werden. . . ”)

In Step 3, the method of proof is copied from the method of Weierstraß in
[1891], where Weierstraß gave a new proof that the complex number field C

5Hensel’s definition was erroneous because of a missing minus sign in the exponent;
Kürschák corrects this politely by saying that he has replaced p by p−1.

6Concerning our notation: We do not follow necessarily the notation used by the authors of
the papers discussed here. Instead, we try to use a unified notation for the convenience of the
reader. In particular, K̂ is not the notation of Kürschák (he writes K′ for the completion and
calls it the “derived field” of K). Similarly, the notations Q, Qp, C etc. which are generally
used today, were not yet in use at the time of the papers discussed in our article.

7Compare Cantor’s paper [1883], in particular pp. 567 ff.
8Such a continuation of the Steinitz paper seems to have been in the spirit of Steinitz

himself. For, Steinitz says in the introduction of his paper [1910], that his article concerns
the foundations of field theory only. He announces further investigations concerning the
application of field theory to geometry, number theory and theory of functions. But those
further articles have never appeared, for reasons which are not known to us. We may speculate
that the reason is to be found in Kürschák’s publication which was followed by those of
Ostrowski.
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is algebraically closed. That theorem was called, in those times, the “funda-
mental theorem of algebra”. Accordingly, Kürschák now calls his theorem the
“fundamental theorem of valuation theory”. He points out that the arguments
of Weierstraß are valid for an arbitrary algebraically closed valued field instead
of the field of all algebraic numbers – but nevertheless he has to add an extra
discussion of inseparability in the case of characteristic p > 0 which, of course,
does not appear in Weierstraß’ paper.

Kürschák does not always give detailed proofs; instead he says:

Da meine Untersuchungen beinahe ausnahmlos nur selbstverständ-
liche Verallgemeinerungen bekannter Theorien sind, so scheint es
mir zu genügen, wenn ich in den nächsten Kapiteln die einzelnen
Definitionen und Sätze ausführlich darlege. Auf die Details der Be-
weise werde ich nur selten eingehen.

My investigations are, almost without exception, straightforward
generalizations of known theories, and hence it seems to be suffi-
cient that in the next chapters I present in detail the various defini-
tions and theorems only. The details of the proofs will be given only
occasionally.

One occasion for Kürschák to go into more detail of proof is in Step 2 when he
discusses the possibility of extending the valuation from a complete field K to its
algebraic closure K̃. Let α be algebraic of degree n over K and Nα its reduced
norm, i.e., ± the constant coefficient of the irreducible monic polynomial of α
over K. Then Kürschák gives the formula

‖α‖ = ‖Nα‖1/n (2.5)

which defines an extension of the given valuation of K to its algebraic closure
K̃. This formula had been given by Hensel in the case of the p-adic numbers.

The main point in the proof is to derive the triangle inequality (2.2) from the
definition (2.5). If the given valuation is non-archimedean then, as Kürschák
observes, the method developed by Hensel in his book [1908] for p-adic numbers
is applicable. Kürschák does not use the word “non-archimedean” which came
into use later only 9; but he says very clearly that Hensel’s methods work:

. . . wenn die Bewertung von der besonderen Beschaffenheit ist, daß
‖a+ b‖ nicht größer ist als die größere der Zahlen ‖a‖ und ‖b‖.
. . . if the valuation has the special property that ‖a+b‖ is not greater
than the greater of the numbers ‖a‖ and ‖b‖.

More precisely, Kürschák says (without proof) that the following lemma, which
today is called “Hensel’s Lemma”, is valid in every complete non-archimedean
valued field, and that Hensel’s proof applies:

Lemma: If f(x) = xn + an−1x
n−1 + · · · + a0 is irreducible, and if

‖a0‖ ≤ 1 then each coefficient ‖ai‖ ≤ 1 (0 ≤ i ≤ n− 1).

9The terminology “non-archimedean” and “archimedean” for valuations is introduced in
Ostrowski’s paper [1917]. Today the terminology “ultrametric” for “non-archimedean” is
widely used.
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Starting from the Lemma, Kürschák shows, the triangle inequality (2.2) is easily
obtained as follows: In the above Lemma, take f(x) ∈ K[x] to be the monic
irreducible polynomial for α; then a0 = ±Nα. The irreducible polynomial for
1 + α is f(x− 1) with the constant coefficient

±N(1 + α) = f(−1) = (−1)n + an−1(−1)n−1 + · · · − a1 + a0

Using the Lemma and the fact that the given valuation on K is non-archimedean
we see that

‖a0‖ = ‖Nα‖ ≤ 1 =⇒ ‖N(1 + α)‖ ≤ 1 .

This implies the triangle inequality (2.2) in the algebraic closure of the complete
field K.

But Kürschák is looking for a unified proof which simultaneously covers all
cases, archimedean and non-archimedean alike. He finds the appropriate method
in the thesis of Hadamard [1892]. Hadamard had considered only the case of
the complex field C as base field but Kürschák observes that his arguments are
valid in an arbitrary complete valued field K. Given a monic polynomial

f(x) = xn + an−1x
n−1 + · · ·+ a0

over the complete field K, Hadamard’s method permits to determine the radius
of convergence rf of the power series

Pf (x−1) =
xn

f(x)
= 1 + c1x

−1 + c2x
−2 + · · ·

in the variable x−1. If f(x) is irreducible over K then Kürschák is able to
conclude that

rf = ‖a0‖1/n = ‖Nα‖1/n (2.6)

where α is a root of f(x). Now, the triangle inequality (2.2) follows by comparing
the radii of convergence of Pf (x−1) and Pg(x−1) with g(x) = f(x− 1).

This discussion in Kürschák’s paper seems to be somewhat lengthy. Obvi-
ously, he could not yet know Ostrowski’s theorem [1918], which says that for
an archimedean valuation, the only complete fields are R (the reals) and C (the
complex numbers). In these two cases the problem of extending the valuation is
trivial, and so Kürschák’s paper could indeed have been considerably shortened
by concentrating on the non-archimedean case and using Hensel’s Lemma – as
is the usual procedure today. Nevertheless it seems interesting that a unified
proof, applicable in the archimedean as well as the non-archimedean case, does
exist, a fact which today seems to be forgotten. It would be of interest to sim-
plify Kürschák’s proof using what today is known from analysis in complete
valued fields, and thus give a simple unified treatment for the archimedean and
the non-archimedean case. Hensel’s Lemma can then be deduced from this.

Concerning step 3, Kürschák wonders whether this step would really be
necessary. Perhaps the algebraic closure of a complete field is complete again?
He doubts that this is the case for Qp but is not able to decide the question. But
already in the same year, in the next volume of Crelle’s Journal, the question
will be settled in a paper by Ostrowski (see section 2.2).

When Kürschák published his valuation theory paper in 1912 he was 48. As
far as we were able to find out, this was the last and only paper of Kürschák
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on valuation theory. 10 His list of publications comprises about 80 papers be-
tween the years 1887 and 1932, on a wide variety of subjects including analysis,
calculus of variations and elementary geometry. He held a position at the Tech-
nical University in Budapest, and he became an influential academic teacher,
recognizing and assisting mathematical talents. 11

We have no knowledge of how Kürschák became interested in the subject
of valuations. Had he been in contact with Kurt Hensel in Marburg? Or with
some other colleague who knew Hensel, or with Steinitz? In any case, his paper
appeared just at the right time, providing a solid base for the study of valued
fields which started soon after. It seems that the axiomatization of the theory
of Hensel’s p-adic fields was overdue at that time, after the work of Hensel and
Steinitz. Thus, if Kürschák had not written this paper then perhaps some other
mathematician would have done it at about the same time and in a similar
spirit. This of course does not diminish Kürschák’s merits. His paper, like
other publications of him, is very clearly written – certainly this contributed to
the quick and wide distribution of his notions and results.

In this connection it may be not without interest that about the same time,
A. Fraenkel had already presented another axiomatic foundation of Hensel’s
p-adic number fields [1912a]. At that time Fraenkel stayed in Marburg with
Hensel. His paper had appeared in Crelle’s Journal in the volume before
Kürschák’s. Neither Fraenkel nor Kürschák cites the other, and so both pa-
pers seem to have been planned and written independently from each other.
Fraenkel’s paper is completely forgotten today. Fraenkel in his memoirs [1967]
explains this in rather vague terms by saying that his axiomatization had been
purely formal whereas Kürschák’s takes into account the content of Hensel’s the-
ory (“inhaltliche Begründung”). It is not clear what Fraenkel may have meant
by this. In retrospective we see that Kürschák’s paper, in contrast to Fraenkel’s,
opened up a new branch of mathematics, i.e., valuation theory, which turned
out to be successfully applicable in many parts of mathematics. Let us quote a
remark by Ostrowski from [1917]:

Überhaupt kann, wie uns scheint, ein vollständiger Einblick in die
Natur dieser merkwürdigen Bildungen [der p-adischen Zahlen] nur
vom allgemeinen Standpunkt der Bewertungstheorie gewonnen wer-
den.

Anyway, in our opinion, a complete understanding of those curious
constructions [the p-adic numbers] can only be obtained from the
point of view of general valuation theory.

Ostrowski does not mention Fraenkel in this connection, but since both had
been in Marburg at that time it is well conceivable that they had discussed the
question of an adequate foundation of Hensel’s theory of p-adic numbers, in the

10In [1923e] he published a method to determine irreducibility of a polynomial over Qp by
means of Newton’s diagram method (which he calls the Puiseux diagram method). It is curious
that Kürschák, the founder of valuation theory, restricted his investigation to polynomials
with integer coefficients; he did not mention that the Newton diagram method can be applied
without any extra effort to polynomials over an arbitrary non-archimedean complete valued
field, as Ostrowski later [1934] observed.

11E.g., John von Neumann was one of his students. – I am indebted to Kálmán Györy for
providing me with biographical information about Kürschák. See also the books [1992] and
[1996a] on Mathematics in Hungary.
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light of the two papers by Fraenkel and by Kürschák. And the above remark
represents Ostrowski’s opinion on that question.

2.2 Ostrowski

After Kürschák had started the theory of valued fields it was Alexander Os-
trowski (1893 – 1986) who took over and developed it further to a considerable
degree.

Ostrowski was born in Kiev and had come to Marburg in 1911, at the age of
18, in order to study with Hensel. Abraham Fraenkel, who had been in Marburg
at that time, recalls in his memoirs [1967] that Ostrowski showed unusual talent
and originality (“eine ungewöhnliche Begabung und Originalität”).

From Fraenkel we also learn that Ostrowski had been advised by his pro-
fessor in Kiev to go to Marburg. At that time the dominant mathematician in
Kiev was D.A. Grave. 12 It seems remarkable to us that Grave sent his extraor-
dinarily gifted student to Marburg and not to Göttingen, although the latter
was worldwide known for its inspiring mathematical atmosphere, and Landau
in Göttingen had offered to accept him as a student. The reason for this advice
may have been that he (Grave) was well acquainted with the theory of Hensel’s
p-adic numbers and considered it to be something which would become impor-
tant in the future. In any case, we know that p-adics were taught in Kiev. 13

In Marburg, the home of p-adics, Kürschák’s paper was thoroughly stud-
ied and discussed. Soon the young Ostrowski found himself busily engaged in
developing valuation theory along the tracks set by Kürschák.

2.2.1 Solving Kürschák’s Question

In his first 14 paper [1913a], published in Crelle’s Journal, Ostrowski solved the
open question of Kürschák mentioned in the foregoing section, namely whether
the algebraic closure of a complete valued field is complete again.

Ostrowski proves that a separable 15 algebraic extension of a complete valued
field K is complete if and only if it is of finite degree over K. From this he
concludes that the algebraic closure K̃ of a complete field K is complete if and
only if K̃ is finite over K. This holds regardless of whether K̃ is separable over

12A biography on Grave is contained in “The MacTutor History of Mathematics archive”,
at the internet address http://www-groups.dcs.st-and.ac.uk/ history/.

13It is known that N. Chebotarëv, who was a contemporary of Ostrowski and had studied
in Kiev, was well acquainted with p-adic numbers. When Chebotarëv met Ostrowski 1925 in
Göttingen, the latter posed him a problem coming from complex analysis, and Chebotarëv
was able to solve it by means of p-adic numbers; see the article by Lenstra and Stevenhagen
[1996].

14Actually, Ostrowski had already published another mathematical article, on finite fields,
which had appeared (in Russian) in the S. B. Phys. Math. Ges. Kiew. See vol. 3 of Ostrowski’s
Collected Papers [1983].

15He does not use the word “separable” which was coined only later by van der Waerden.
Instead he uses “of the first kind” (von 1. Art) as introduced by Steinitz [1910]. Ostrowski then
defines “of the second kind” (von 2. Art) to mean “purely inseparable” in today’s terminology.
It seems somewhat curious that Steinitz himself, although he introduced the notion “of the
first kind”, did not introduce the terminology “of the second kind” (von 2. Art). This seems
to be due to Ostrowski. A purely inseparable extension field is called by Steinitz “root field”
(Wurzelkörper).
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K or not. 16 In particular it follows that the algebraic closure of Qp is not
complete, which answers the question of Kürschák.

Ostrowski could not know the Artin-Schreier theorem which was discovered
much later in [1927a] only. According to Artin-Schreier, the algebraic closure K̃
of a field K is almost never finite over K, the exceptions being the real closed
fields – and of course the trivial cases K̃ = K.

Hence Ostrowski’s result implies that the algebraic closure of a complete field
K is almost never complete, with the only exceptions when K is real closed –
and of course the trivial cases when K itself is algebraically closed.

Ostrowski was quite young when this paper appeared in 1913 (he was 20),
and it is perhaps due to this fact that the paper appears somewhat long-winded.
But Ostrowski continued to work on valuation theory. In his next papers he not
only simplified the proofs but also produced a number of further fundamental
results.

2.2.2 Revision: Non-archimedean Valuations

In his paper [1917], Ostrowski sets out to prove the results of his 1913 paper
anew and, he says, with proofs much more elementary.

From the start he considers non-archimedean valuations only. This is permit-
ted since in another paper [1918] he is able to classify the complete archimedean
valued fields. (See section 2.2.3.) Here we find the following results:

(1) A new and simple proof of the fact that any finite extension of a complete
field is complete again, this time including the case of inseparable extensions.
This proof has become standard today, and with the same arguments one usually
shows that any normed vector space of finite dimension over a complete field is
complete again. By the way, in this proof the non-archimedean property of the
valuation is not used, hence archimedean valuations are included.

(2) An addition to Kürschák’s result by showing that for a complete ground
field, the extension of the valuation to its algebraic closure is unique – a fact
which, Ostrowski says, is implicitly contained also in Kürschák’s construction
but his own proof is now much easier.

(3) A Lemma which later became known as “Krasner’s Lemma”. This is
a very useful version of Hensel’s Lemma and says the following: Let K be
complete with respect to a non-archimedean valuation, and let α be algebraic
and separable over K. Denote by µ the minimal distance of α to its conjugates
over K. Then:

Lemma: If L is any valued algebraic extension of K such that the
distance of α to L is < µ then α ∈ L.

It is true that Ostrowski states the contention for µ/2 instead of µ but from his
proof it is clear that indeed the lemma holds for µ because of the strong triangle
inequality which Ostrowski does not use in this instance. 17

16For, if K̃ is infinite over the complete field K then he shows that the separable closure
too is infinite over K. By the way, this implies that a separably closed complete field is
algebraically closed – a result which later was rediscovered by F. K. Schmidt; see section 4.2.

17Ostrowski seems to claim that under the hypothesis of the Lemma, α is the only one among
its K-conjugates whose distance to L is < µ; he uses the words “eine einzige”. Obviously
this uniqueness assertion is false in general, there are trivial counterexamples. In his proof
Ostrowski does not deal with this uniqueness, and when he applies the Lemma he does not
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We see: Although the Lemma had been stated and used by Ostrowski in
[1917] already, it has come to the attention of the mathematical community
much later only, under the name of “Krasner’s Lemma”. This is another instance
of a situation which we can observe in every corner of mathematics: The name
of a mathematical result or notion does not always reflect the historical origin.

(4) A simple proof, using the above Lemma, that every infinite separable
algebraic extension of a complete field is not complete. The same is proved
for inseparable extensions if the inseparability exponent is infinite. From this
Ostrowski concludes again his main result of his earlier paper [1913a]: that the
algebraic closure K̃ of a complete field K is complete if and only if K̃ is finite
over K.

2.2.3 Ostrowski’s Theorems

Although the paper [1918] appeared after [1917] it was completed already before
[1917]. It is dated April 1916. The paper contains two fundamental theorems.

In the first theorem, all possible valuations of the rational number field Q
are determined. Ostrowski finds that, up to equivalence, these are precisely
the known ones. Two valuations ‖ · ‖1 and ‖ · ‖2 of a field K are said to
be equivalent if one is a power of the other, i.e. ‖a‖2 = ‖a‖r1 for every a ∈ K,
where the exponent r does not depend on a. It is clear that equivalent valuations
generate the same metric topology of the field K and, hence, lead to isomorphic
completions. Usually, equivalent valuations will not be distinguished. More
precisely, an equivalence set of valuations will be called a prime of the field,
usually denoted by a symbol like p, and the corresponding completion will be
denoted by K̂p or simply Kp. 18

Hence, what Ostrowski proves in [1918] can be expressed by saying that every
prime p of the rational number field Q either corresponds to a prime number p
and thus belongs to the usual p-adic valuation of Hensel-Kürschák, or p = p∞
is an infinite prime and belongs to the ordinary absolute value.

Today this theorem belongs to the basics of a first course in valuation theory.
The usual proof presented today is due to E. Artin [1932f] who uses essentially
the same ideas as Ostrowski but is able to streamline the proof into 2 pages.
Perhaps it may be mentioned that Hasse was so delighted about Artin’s version
of Ostrowski’s proof that he included it into his book “Zahlentheorie” [1949] with
the comment: “Dieser schöne Beweis geht auf Artin zurück.” (This beautiful
proof is due to Artin.)

Actually, the above definition of a “prime” p in an arbitrary field K is given
by Ostrowski in the case of non-archimedean valuations only. In this case, he also
switches to the additive notation of valuations by defininig v(a) = − log ‖a‖. 19

use it. Hence we believe that this is not really a mathematical error, but it reflects a certain
linguistic slip of the author. In a later paper [1934] he corrects it and says that “eine einzige”
should be replaced by “eine solche”, which gives the formulation as we have stated it. – In
general, though, Ostrowski’s papers are very clear and sharp; in [1988] they are praised as
“true pearls in mathematical literature” (wahre Perlen im mathematischen Schrifttum).

18In the literature there are various other definitions of “primes” of a field, all of which are
equivalent. Also, instead of the terminology “prime”, other names are used too, e.g. “prime
divisors”, “prime spots”, “places” or “points” of a field. For the purpose of this report we will
take the definition of “prime” as given in the text. If the valuations are archimedean then the
corresponding prime p is called an “infinite” prime and denoted by a symbol like p∞.

19The minus sign is missing in his definition, and this is corrected in [1934].
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Of course it is a question of taste whether one wishes to include archimedean val-
uations or not among what one calls “primes”. As Hasse [1927], §2 has pointed
out, the experiences in class field theory strongly indicate that archimedean
valuations should be treated, as far as possible, on the same footing as non-
archimedean ones, and this is generally accepted today.

In any case, it seems worthwhile to state that Ostrowski was the first one
who formulated explicitly the notion of “prime” in any abstract field by means
of valuation theory. Below we shall see that later in his long paper [1934] he will
enlarge on this, studying the set of all those primes which he calls the “Riemann
surface” of the field.

The second main result in this paper consists of what today is simply called
“Ostrowski’s theorem” in valuation theory. It is concerned with archimedean
valuations and asserts that the only fields which are complete with respect to
an archimedean valuation are the fields R of real numbers and C of complex
numbers, up to isomorphisms as topological fields. The topological isomorphism
implies that the given valuation becomes equivalent to the ordinary absolute
value. As said already in section 2.1, this theorem permits a substantial simpli-
fication in Kürschák’s discussion of extending the valuation from a complete field
to an algebraic extension. For, in view of Ostrowski’s theorem it is now possible
to consider non-archimedean valuations only, and for these Hensel’s Lemma can
be used. Hence it will not be necessary any more to refer to Hadamard’s results
on the radius of convergence of certain power series. 20

One of the first readers of Ostrowski’s paper was Emmy Noether. In a
postcard to Ostrowski 21 she writes:

Ihre Funktionalgleichungen habe ich angefangen zu lesen, und sie
interessieren mich sehr. Kann man wohl den allgemeinsten Körper
charakterisieren, der einem Teiler des Körpers aller reellen Zahlen
isomorph ist ?. . .

I have started to read your functional equations 22 and I am very
interested in it. Is it perhaps possible to characterize the most gen-
eral field which is isomorphic to a subfield 23 of the field of all real
numbers ?

Emmy Noether does not only express her interest in Ostrowski’s work but imme-
diately poses the correct question: Which fields can be isomorphically embedded
into R? Her question was answered later in [1927a] by Artin-Schreier’s theory
of formally real fields. We have cited this postcard in order to put into evidence
that Emmy Noether has shown interest in the development of valuation theory

20Ostrowski points out that Hadamard’s investigations can be regarded as a generalization
of Bernoulli’s method to approximate the roots of an algebraic equation. Ostrowski’s proof,
he says, uses another generalization of the same method – but only in the case of quadratic
extensions which suffices for his theorem and therefore is much simpler.

21The postcard is not dated; it seems that it was written in early 1916, some months before
Ostrowski submitted his manuscript [1918] to the Acta Mathematica. – I am indebted to
Prof. Rita Jeltsch-Fricker to give me access to the legacy of Ostrowski where I found several
postcards from Emmy Noether.

22By “functional equations” she refers to the title of Ostrowski’s paper which reads: Über
einige Lösungen der Funktionalgleichung ϕ(x) · ϕ(y) = ϕ(xy). (On some solutions of the
functional equation . . . )

23She writes “Teiler” which usually translates with “divisor”. In the present context it
obviously means “subfield” in today’s terminology.
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right from the beginning, although she herself was never active in this direc-
tion. Later in 1930/31 she actively participated, together with Richard Brauer
and Helmut Hasse, in the proof of the Local-Global Principle for algebras; see
section 3.4.2.

2.3 Rychĺık and Hensel’s Lemma

It was the Czech mathematician Karel Rychĺık (1885–1968) who set out to
present explicitly such simplification as mentioned by Ostrowski and Kürschák,
for non-archimedean valuations only. His paper [1919] appeared in a Czech
journal, soon after Ostrowski’s paper [1918]. But since it was written in Czech
language it seems that it was not properly noticed by the mathematical com-
munity (though it was refereed in the Jahrbuch über die Fortschritte der Math-
ematik , vol. 47). Later in 1923 Rychĺık published essentially the same paper in
German language, in Crelle’s Journal [1923f]. 24 This paper certainly was read
and appreciated.

Rychĺık appears to have been strongly influenced by Hensel’s theory of p-adic
numbers, through Hensel’s various papers and particularly through Hensel’s
books [1908], [1913b] which he knew well. As a result of his studies he had
published, since 1914, some earlier papers already presenting Hensel’s ideas of
the foundation of algebraic number theory. Those papers were also in Czech
language. Of particular interest to us is the paper [1916a] where Rychĺık, in a
postscript, presented Kürschák’s construction for the p-adic fields Qp. 25 It is
apparent that Rychlik was not a newcomer in valuation theory when he wrote
the paper [1919], or its German version [1923f]. 26

In these papers [1919], [1923f] under discussion, Rychĺık cites Kürschák and
Ostrowski and their results mentioned above. For a complete field with a non-
archimedean valuation, he says, he is now going to present a simple proof for
the prolongation of the valuation to an algebraic extension. 27 He will present
in full detail the proof which Kürschák, by a sort of hand waving, had indicated
but not explicitly presented.

Seen from today, Rychĺık is taking the relevant results and proofs from
Hensel’s book [1908] and repeating them in the more general framework of an
arbitrary complete, non-archimedean valued field. This seems rather trivial to
us but we should keep in mind that at those times, valuation theory was quite

24Usually this paper is cited as having appeared in 1924. But volume 153 of Crelle’s Journal
consisted of two issues and the first issue, containing Rychĺık’s paper, appeared on Aug 27,
1923 already.

25More generally, Rychĺık covered also the Hensel g-adic rings Qg for an arbitrary integer
g > 1. In this case the ordinary, Kürschák’s, notion of valuation is not adequate; instead
he had to use what later was called a “pseudo-valuation”; this is a function which satisfies
all the conditions for a valuation except the multiplicative rule (2.3) which is to be replaced
by ‖ab‖ ≤ ‖a‖‖b‖ . Thus Rychĺık preceded Mahler [1936]-[1936c], who introduced the formal
notion of pseudo-valuation, by 20 years.

26I am indebted to Dr. Magdalena Hykšová, and also to Professor Radan Kučera, for trans-
lating part of the Czech papers of Rychĺık. Dr. Hykšová also informed me about many
interesting biographical details; she has published a paper [2001] on the life and work of
Rychĺık.

27I do not know who coined the word “prolongation” in this context; one could also say
“extension” of a valuation to an algebraic extension field. By the way, Rychĺık himself does not
use any of these words; instead he says: “We obtain a valuation of every algebraic extension
of the complete field K”. (Wir erhalten eine Bewertung jeder algebraischen Erweiterung des
perfekten Körpers K.)
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new and people were not yet used to valuation theoretic arguments. Moreover,
there was indeed some difference between Hensel’s arguments for p-adic fields
and those for general complete fields. Namely, the valuation of a p-adic field
is discrete in the sense that its value group is a discrete subgroup of the posi-
tive reals; this implies that the maximal ideal of the valuation ring is generated
by one element (“prime element”). The relevant approximation algorithm in
Hensel’s treatment proceeds sucessively with respect to the powers of a prime
element. But in general the valuation will not be discrete and hence there does
not exist a prime element. Therefore in Hensel’s arguments, the powers of the
prime element have to be replaced by the powers of some suitable element in the
maximal ideal. For us, this seems quite natural and straightforward. As said
above already, apparently this was not considered to be trivial in those times,
when abstract valuation theory had just been started.

Sometimes in the literature there appears what is called the “Hensel-Rychĺık
Lemma”. This terminology recalls that Hensel was the first to discover the
validity and importance of the Lemma in the case of p-adic fields and their
finite extensions, and that Rychĺık did verify its validity for arbitrary complete
non-archimedean valued fields. 28 Today, however, the name “Hensel’s Lemma”
has become standard, and the name “Hensel-Rychlik” is used sometimes only to
distinguish a certain version of Hensel’s Lemma from others. We see again, that
such names do not reflect the historical background but are assigned somewhat
arbitrarily by the mathematical community – as we have noticed already in the
foregoing section with “Krasner’s Lemma” which in fact is due to Ostrowski.

Now what does the statement say which is known as “Hensel-Rychĺık Lemma”?
We work in a non-archimedean complete valued field K. Let O be its val-

uation ring. Consider a polynomial f(x) ∈ O[x]. Suppose that f(x) splits
“approximately” into two factors, which means that there exist relatively prime
polynomials g0(x), h0(x) ∈ O[x] of positive degrees and a small ε > 0 such that

‖f(x)− g0(x)h0(x)‖ ≤ ε .

This condition is to be understood coefficient-wise, i.e., each coefficient of the
polynomial on the left hand side is of value ≤ ε. It is also assumed that the
degree of f(x) equals the sum of the degrees of g0(x) and h0(x) and, morever,
that the highest coefficient of f(x) is the product of the highest coefficients of
g0(x) and h0(x). 29 If ε is sufficiently small then it is claimed that f(x) splits
over O. For, if R = R(g0, h0) ∈ O denotes the resultant of g0 and h0 we have:

Hensel-Rychĺık Lemma: If ε < ‖R‖2 then f(x) splits over K.
More precisely, there are polynomials g(x), h(x) ∈ O[x] of the same
degrees as g0(x) and h0(x) respectively, such that

f(x) = g(x)h(x) ,
28We shall see below in section 5.1 that Ostrowski had verified this even earlier, before 1917.

But he did not publish this and therefore Rychĺık could not have knowledge of Ostrowski’s
manuscript.

29This last condition is not mentioned in Rychĺık’s paper – probably because it is not
mentioned in Hensel’s book. Perhaps Rychĺık had overlooked that Hensel, in his context,
normalizes his polynomials such that the highest coefficients should be a power of the given
prime element; then the condition is always satisfied. Rychĺık’s proof tacitly assumes that
the condition is satisfied. Without the condition, the contention of the Lemma would have to
be modified such that f admits a decomposition f = c · gh where c is a certain unit in the
valuation ring, and g, h satisfy the approximation properties as stated. – Rychĺık’s error in
the statement of the lemma was corrected by Ostrowski [1934].
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and that ‖g(x)− g0(x)‖ ≤ ε‖R‖−1 < ‖R‖, and similarly for h(x).

The latter relations say that the factors g(x) and h(x) admit g0(x), h0(x) as
approximations, arbitrarily close if ε is sufficiently small.

In particular it follows that f(x), under the hypothesis of this Lemma, is
reducible. From this it is easy and standard to deduce the Lemma of section 2.1,
page 7 for irreducible polynomials, which Kürschák had used to extend the
valuation to any algebraic extension of K.

In the special case when g0(x) = x − a0 is linear, the resultant of x − a0

and of h0(x) = f(x)− f(a0)
x− a0

is computed to be f ′(a0) where f ′(x) denotes the
derivative of f(x). One obtains from the above Lemma:

If there is a0 ∈ O such that ‖f(a0)‖ ≤ ε < ‖f ′(a0)‖2 then there
exists a root a ∈ O of f(x) with ‖a− a0‖ ≤ ε‖f ′(a0)‖−1 < ‖f ′(a0)‖.

Sometime this special case is called “Hensel-Rychĺık Lemma” – but in fact it is
mentioned explicitly in the Czech version [1919] of Rychĺık’s paper only, not in
the German version [1923f]. In the still more special case when ‖f ′(a0)‖ = 1 we
obtain what most of the time is now called “Hensel’s Lemma”:

If f(x) has a simple root a in the residue field K = O/M modulo
the maximal ideal M, then a can be lifted to a simple root a ∈ O of
f(x).

At this point we have to warn the reader that the name “Hensel’s Lemma”
is not used in a unique way. Different authors, or even the same author in
different publications, use the name “Hensel’s Lemma” for quite different state-
ments. One gets the impression that every author working in valuation theory
(or elsewhere) creates his own preferred version of Hensel’s Lemma. This reflects
the fact that the validity of Hensel’s Lemma implies very strong and important
structural properties which one would like to understand from various view-
points.

Most versions of Hensel’s Lemma are equivalent. A good overview of vari-
ous Hensel’s Lemmas (including Krasner’s Lemma which is due to Ostrowski) is
given in Ribenboim’s instructive article [1985]. But the reader should be aware
of the fact that in the literature there can be found numerous other variants
of Hensel’s Lemma, e.g., lifting of idempotents in algebras, or lifting of simple
points on varieties, etc. It would be desirable to investigate the historical de-
velopment of the ideas underlying the various versions of Hensel’s Lemma, not
only in valuation theory but in other branches of mathematics as well. 30

The name of Kurt Hensel will be remembered in mathematics for a long
time through the name of “Hensel’s Lemma”, whichever form it will obtain in
future developments. And, we may add, this is entirely appropriate in view
of the important mathematical notion of p-adic numbers with which Hensel
enriched the mathematical universe.

30The so-called Newton approximation algorithm from analysis can be viewed as a special
method to prove Hensel’s Lemma. Also, we find that Hensel’s Lemma had been stated and
proved by Gauß, as observed by Günther Frei (in a forthcoming publication on the history of
the theory of algebraic function fields).
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With the paper [1923f] Karel Rychĺık exits the scene of general valuation
theory. 31 We have not found any later publication by him on valuations,
although he was still active for quite a while on the foundation of divisor theory
in algebraic number fields. He continued to play a role in the development and
reorganisation of university teaching in his country. We read in [2000]:

Rychĺık was the first to introduce methods and concepts of “modern”
abstract algebra into this country – by means of the published treatises
as well as his university lectures.

Rychĺık was a professor at Czech Technical University but he delivered lectures
also at Charles University in Prague, as a private associate professor. See [2000]
where one can find more detailed biographical information about Rychlik.

3 Valuations in number theory

The papers by Ostrowski and Rychĺık discussed in section 2 can be viewed as
appendices to Kürschák’s opening paper, clearing up certain points which were
left open by Kürschák including the role of archimedean valuations. After that
there begins the period of expansion and application. This means that on the
one hand, valuation theory was systematically expanded to study the structure
of valued fields in more detail. On the other hand, it was more and more realized
that valuation theory can be profitably used in various applications.

Naturally, these two strings of development – expansion and application –
cannot be sharply separated. Sometimes the need for a certain application led
to expand the general structure theory of valuations; on the other hand, after
knowing more about the structure of valued fields it became apparent that this
knowledge could be applied profitably.

The foremost and first applications belong to number theory. This has good
historical reasons since the main motivation to create the notion of valuation
came from Hensel’s p-adic methods introduced in number theory.

Valuation theory has not only produced new methods which could be prof-
itably used in number theoretical research, but it has also led to a change of
viewpoint. For instance the transition from “local” to “global” became one of
the central questions in number theory. In this section we shall discuss the first
steps which started this development.

3.1 Hasse: The Local-Global Principle

3.1.1 The motivation

Consider the year 1920. In that year Helmut Hasse (1898–1979), a young
student of 22, decided to leave his home university of Göttingen in order to
go to Marburg and continue his studies with Hensel. The motivation for this
decision was Hensel’s book “Zahlentheorie” [1913b] where p-adic numbers are
presented as a basis for an introductory course to Number Theory. Hasse had

31There had been an earlier paper [1923d] in Crelle’s Journal where he gave an example of
a continuous but non-differentiable function defined in the p-adic field of Hensel, but this does
not concern us here.
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found this book in a second hand Göttingen bookshop. 32 In the foreword to
his Collected Papers [1975] he recalls:

Das Buch war mir vom ersten Augenblick an wegen seiner völlig
neuartigen Methoden besonders reizvoll und eines gründlichen Studi-
ums wert erschienen. . . Auf mich hatte es eine magische Anziehungs-
kraft ausgeübt, und so ging ich nach dem “kleinen” Marburg.

From the first moment, this book was particularly appealing to me
because of his completely new methods, and certainly it seemed to
be worth of detailed study. . . I felt strongly attracted to it, and hence
I went to the “small” Marburg.

Thus this elementary and, we may say, unpretentious booklet had instantly
prompted Hasse to dive deeper into p-adic number theory – which proved to
be decisive for his further work, and for the further development of algebraic
number theory at large.

Hensel’s book does not even mention Kürschák’s abstract notion of valua-
tion. 33 The p-adic number field Qp is introduced in the Hensel way by means of
p-adic power series. The valuation (additively written) of Qp appears as “order”
(Ordnungszahl) which is assigned to each p-adic number. Limits are introduced
without explicit mention of the valuation, and completeness of Qp is proved
directly. Hensel’s Lemma does not appear since the book does not discuss finite
extensions of Qp.

It may not be without interest to know that, in Hensel’s book, the style of
writing was not Hensel’s but for the most part Fraenkel’s. See Fraenkel’s report
[1967] where he says:

Es fiel Hensel nicht leicht, seine originellen Gedanken in einer für
den Druck geeigneten Form darzustellen, und dies war gerade meine
Stärke. Er bat mich also, aufgrund der Vorlesung und regelmäßiger
Gespräche über das Thema, das Buch niederzuschreiben, mit Aus-
nahme des letzten Kapitels.

Hensel had difficulties to put his original ideas into a form which was
suitable for printing, but that was my strong point. Therefore he
asked me to write down the text of the book, following the lectures
and our regular conversations about the subject, except the last
chapter. 34

Hasse registered at Marburg University in May 1920 and started his seventh
semester (fourth academic year). Already at the end of this month Hensel
suggested to him a subject for his doctoral thesis: quadratic forms over Q and
over Qp .

32It is possible to identify the date when Hasse had purchased the book, namely March
20, 1920. This date is written by Hasse’s own hand onto the title page of his copy of the
book, together with his name. (Hasse’s copy is now contained in my library, thanks to Martin
Kneser.)

33Compare the publication dates: Kürschák’s paper had appeared in 1912, and Hensel’s
book in 1913.

34Fraenkel’s help in editing the text is duly acknowledged in the foreword of Hensel’s book.
By the way, also the name of Ostrowski is mentioned; he had produced the index of Hensel’s
book.
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3.1.2 The Local-Global Principle

Already in May 1921, one year after his moving to Marburg, Hasse had com-
pleted his thesis where he introduced and proved the famous Local-Global Prin-
ciple for the representation of a rational number by a given quadratic form with
rational coefficients.

The problem is as follows. Let a ∈ Q, and f(x1, . . . , xn) be a quadratic
form over Q. To find necessary and sufficient conditions, in terms of p-adic
numbers, such that a is representable by f(x1, . . . , xn), i.e., that there exist
x1, . . . , xn ∈ Q such that a = f(x1, . . . , xn) . Hasse’s Local-Global Principle says
that a is representable by f(x1, . . . , xn) over Q if and only if it is representable
over the p-adic completions Qp for all primes p (including p∞). In other words:
the statement

∃x1, . . . ,∃xn : a = f(x1, . . . xn)

holds over Q if and only if it holds over Qp for all p. The point is that in the
complete fields Qp there are explicit arithmetic criteria available for a to be
representable by the quadratic form. If the number n of variables is > 4 then,
for p 6= p∞ every a ∈ Q is representable by f(x1, . . . , xn) in Qp

35, so that, by
the Local-Global Principle, only the representability in Qp∞ = R is relevant,
and this can easily be checked according to whether the quadratic form q is
definite or indefinite. If the number of variables is ≤ 4 then Hasse develops
explicit criteria, involving the quadratic residue symbol, for the representability
in Qp.

The case of binary quadratic forms (n = 2) had been discussed in chapter XII
of Hensel’s book [1913b]. 36 It seems that Hensel had not been satisfied with
the restriction to n = 2, and therefore he had given to his student Hasse the
task to generalize this at least for 3 or 4 variables. Finally Hasse was able to
deal with an arbitrary number of variables.

Hasse reports in the preface to his Collected Works [1975] that the Local-
Global Principle had been suggested to him by Hensel. He mentions a postcard
which Hensel had sent to him, and which he (Hasse) preserves as a valuable
keepsake. 37 There Hensel wrote:

Sehr geehrter Herr Hasse!. . . Ich habe immer die Idee, daß da eine
bestimmte Frage zu Grunde liegt. Wenn ich von einer analytischen
Funktion weiß, daß sie an allen Stellen rationalen Charakter hat, so
ist sie rational. Wenn ich bei einer Zahl dasselbe weiß, daß sie für
den Bereich jeder Primzahl p und für p∞ p-adisch ist, so weiß ich
noch nicht, ob sie eine rationale Zahl ist. Wie wäre das zu ergänzen?

35This result has led to Artin’s conjecture for forms of arbitrary degree over Qp, not only
quadratic forms: Every such form of degree d with n > d2 variables should admit a non-trivial
zero in Qp. It seems that Artin himself never pronounced this conjecture in writing (see the
preface to Artin’s Collected Papers, written by S. Lang and J. Tate in 1965). Nevertheless
it attracted great attention among number theorists. After a number of partial results, the
conjecture was “almost” proved by Ax and Kochen in [1965], in the sense that for given
degree, Artin’s conjecture holds for all but finitely many prime numbers p. Their proof was
remarkable since it was the first instance where valuation theory was combined with model
theory. But soon thereafter Terjanian [1966] gave counter examples to the original conjecture
of Artin.

36This is the chapter which had been edited by Hensel himself and not by Fraenkel.
37The postcard is dated Dec 2, 1920. It is now contained in the Hasse legacy at Göttingen.
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Dear Mr. Hasse!. . . I am always harboring the idea that there is a
particular question at the bottom of these things. If I know of an
analytic function that it is of rational type at each point, then it is
a rational function. If I know the same of a number, that it is p-adic
for each prime number p and for p∞, then I do not yet know that it
is rational. How would this have to be amended?

Hensel’s question was not precisely formulated because he did not specify what
he meant by “number”. If “number” means “algebraic number” then his ques-
tion can be answered affirmatively if the notion of a number a “to be p-adic” is
interpreted such that there exists an isomorphism of the field Q(a) into Qp. This
is a consequence of Frobenius’ density results on the splitting of primes in an
algebraic number field. 38 But that must have been known to Hensel. It seems
that Hensel had vaguely something else in mind, where “number” and “to be p-
adic” would have to be interpreted differently. 39 In any case, Hensel’s question
stimulated Hasse to find his Local-Global Principle. He writes in [1975]:

Es war die Frage am Schluß dieser Mitteilung [auf der Henselschen
Postkarte] die mir die Augen geöffnet hat. . . Aus diesem Kern wuchs
mir dann rasch. . . das Lokal-Global-Prinzip für alle Darstellungs-
und Äquivalenzbeziehungen bei quadratischen Formen mit rationalen
und dann allgemeiner auch mit algebraischen Koeffizienten. So ver-
danke ich die Entdeckung dieses Prinzips, wie so vieles andere, mei-
nem verehrten Lehrer und späteren väterlichen Freunde Kurt Hensel.

It was the question at the end of this message [on Hensel’s postcard ]
which opened my eyes. . . From this seed there grew quickly . . . the
Local-Global Principle for all representation- and equivalence rela-
tions for quadratic forms with rational and also with algebraic co-
efficients. Thus I owe the discovery of this principle, like so many
other things, to my respected teacher and later my paternal friend,
Kurt Hensel.

After his thesis, Hasse published in quick succession six other important
papers (one jointly with Hensel) elaborating on the subject.

In the first of those papers [1923a] he developed a Local-Global Principle
for the equivalence of quadratic forms over Q . This deals with the following
question: Two quadratic forms f1(x1, . . . xn) and f2(x1, . . . xn) with the same
number n of variables, are called “equivalent” if one can be transformed into the
other by means of a non-singular linear transformation of the variables. Here,
the coefficients of the quadratic forms are supposed to be contained in a given
base field, and the entries of the n× n transformation matrix should also be in
that field. In the situation of Hasse’s paper, the base field may be either Q or
the completion Qp with respect to any prime p of Q.

Given two quadratic forms with coefficients in Q , Hasse proved that they
are equivalent over Q if and only if they are equivalent over Qp for every prime

38Later, Frobenius’ results were sharpened by Chebotarev’s density theorem. We refer to
§ 24 of Hasse’s class field report [1930].

39One is reminded of the similar words which Hensel had used 1905 in Meran when he
presented his “proof” of the transcendency of the number e by means of p-adic methods.
See the exposition by Peter Ullrich in [1998d]. Although Hensel’s “proof” turned out to be
erroneous, the broad idea of it was vindicated by Bézivin and Robba [1989].
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p (including p = ∞). If we denote equivalence with the symbol ∼ then this
means that the statement

f1(x1, . . . xn) ∼ f2(x1, . . . xn) .

holds over Q if and only if it holds over Qp for all p. Here again, the point
is that in Qp there are explicit arithmetic criteria available for two quadratic
forms to be equivalent.

This subject had been studied earlier by Minkowski in [1890]; therefore
Hasse’s theorem is sometimes called the “Hasse-Minkowski theorem.” How-
ever, it should be kept in mind that Minkowski did not work in the p-adic
completions and accordingly he did not formulate a Local-Global Principle for
those. Hasse in [1923a] cites Minkowski [1890] but he does not use Minkowski’s
result because, he says, Minkowski relies on his systematic theory of quadratic
forms over the ring of integers Z which he (Hasse) does not need and which also
seems inadequate for the present purpose since the problem is of rational and
not integral nature. Instead, Hasse introduces new local invariants which are
sufficient to characterize a quadratic form over Qp up to equivalence. Besides
of the number of variables n and the discriminant d 6= 0 (modulo squares) he
introduces what today is called the “Hasse invariant” of a quadratic form. If
the form f is transformed into diagonal form

f(x1, . . . , xn) =
∑

1≤i≤n

aix
2
i with ai ∈ Q×p

(which is always possible) then the Hasse invariant is given by

cp(f) =
∏
i≤j

(
ai, aj
p

)

where
(
a,b
p

)
denotes the quadratic Hilbert symbol for p which takes the value

+1 or −1 according to whether a is a norm from Qp(
√
b) or not.

In today’s terminology we usually prefer to talk about “quadratic vector
spaces” rather than quadratic forms, and then the notion of equivalence of
quadratic forms corresponds to the notion of isomorphism of quadratic spaces. 40

Thus the above Local-Global Principle can also be stated in the following form:

Two quadratic spaces V and W over Q are isomorphic if and only
if all their localizations Vp = V ⊗Q Qp and Wp = W ⊗Q Qp are
isomorphic. 41

The Hasse invariants cp(f) appear now as invariants of the localized quadratic
vector spaces V and therefore should be denoted by cp(V ).

40The idea to consider quadratic spaces instead of quadratic forms is due to Witt [1937].
In his introduction Witt refers explicitly to Hasse’s papers on quadratic forms.

41By the way, Hasse’s first Local-Global Principle in [1923] can also be formulated in terms of
quadratic spaces. For, the representability of a number a by a quadratic form f(x1, . . . , xn) is
equivalent with the non-trivial representability of 0 by the quadratic form f ′(x1, . . . , xn+1) =
f(x1, . . . xn)− ax2

n+1, which means that the quadratic space V ′ belonging to f ′ is isotropic.
Hence the Local-Global Principle of [1923] can be expressed as follows: A quadratic space
over Q is isotropic if and only if all its localizations are isotropic.
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In his next paper [1924a] Hasse deals with a Local-Global Principle for sym-
metric matrices over Q. Thereafter he takes the important and non-trivial step
to generalize all these Local-Global Principles from the base field Q to an arbi-
trary algebraic number field K of finite degree and its primes p . This is done in
[1924b], [1924c], after having dealt with preparatory theorems on the quadratic
residue symbol in number fields in [1923b] and [1923c]. 42

We want to emphasize that the above mentioned Hasse papers are of a
different type from those of Kürschák, Ostrowski and Rychĺık which we discussed
in the foregoing sections. The latter are dealing with fundamentals, intending
to provide a solid foundation for general valuation theory. But Hasse’s first
papers do not care about foundations. Studying those papers we find that
Hasse does not even mention there the abstract notion of valuation. Of course,
he investigates the completions Kp of a number field K with respect to its
primes p defined by valuations (including the infinite primes p∞). But he takes
the complete fields Kp for granted, regardless of whether they are constructed
via p-adic power series (as did Hensel) or by Cantor’s method (as did Kürschák).
In other words: Hasse applied valuation theory, whereas Kürschák, Ostrowski
and Rychĺık had started to build the proper foundation for it.

In view of these papers of Hasse, the theory of Hensel’s p-adic fields (i.e.,
the completions of algebraic number fields at the various primes defined by
valuations) became firmly and successfully established as a useful and powerful
tool in number theory. Today this is not questioned; local fields and their
structure play a dominant role. But before Hasse, this was not so obvious; there
were still prominent mathematicians who considered valuation theory as not too
interesting or at least superfluous for number theory. Hasse reports in [1975] that
Richard Courant in 1920 had voiced the opinion that Hensel’s book on p-adic
numbers represented a fruitless side track only (“ein unfruchtbarer Seitenweg”).
It may safely be assumed that this was not only Courant’s private opinion but
was shared by a number of other people in his mathematical neighborhood, in
Göttingen and elsewhere. 43

Let us briefly mention that Hasse’s Local-Global Principle has turned out
to be of importance far beyond the application to quadratic forms over number
fields. For once, the Local-Global Principle was proved to hold also in various
other situations in number theory, e.g., in the structure theory of central simple
algebras (see section 3.4.2), and in the investigation of the embedding problem.
Also in more general situations, for fields other than number fields, the Local-
Global Principle has proved to be a powerful tool. Consider any multi-valued
field, i.e., a field K equipped with a set V of valuations. Given any field theoretic
statement A over K, one can ask whether the following is true:

A holds over K if and only if A holds over the completion Kp for all
primes p ∈ V .

42We refer the reader to the self-contained treatment by O’Meara [1963]. There Hasse’s
theory of quadratic forms over number fields (and more) is presented ab ovo along Hasse’s
lines, preceded by an introduction to valuation theory à la Kürschák.

43In later years Courant seems to have had revised this opinion, obviously impressed by
Hasse’s work not only on quadratic forms but also on other problems in number theory where
valuation theory was applied. We conclude this from a letter of F.K. Schmidt to Hasse dated
Oct 3, 1934 in which F.K. Schmidt reports on a conversation of Courant with Abraham
Flexner, the founder of the Institute of Advanced Study in Princeton.
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If this is true then we say that A admits the Local-Global Principle over the
multi-valued field K.

Such a Local-Global Principle has been established, meanwhile, in quite
a number of cases also outside of number theory, e.g., in the so-called field
arithmetic, and in the study of algebraic function fields over number fields. And
even if, for a particular statement, the Local-Global Principle is not valid, the
investigation of the obstruction to its validity often yields valuable information.

It is not possible in this article to follow up the development of the valuation
theoretic Local-Global Principle in full detail. This will be the topic of a separate
publication, and it is an exciting story. Here, let it suffice to observe that all this
started in the years 1921-22, when Hasse proved the Local-Global Principles for
quadratic forms, first over Q and then over an arbitrary algebraic number field
of finite degree.

And we should not forget Hensel whose suggestion, although in rather vague
terms, led Hasse to the formulation of his Local-Global Principles.

3.2 Multiplicative structure

3.2.1 The cradle of local class field theory

In order to obtain his Local-Global Principles for quadratic forms over a number
field K, Hasse had to study and use Hilbert’s quadratic reciprocity law in K.
Following up an idea of Hensel in the case K = Q [1913b], he interpreted the
quadratic Hilbert norm symbol

(
a,b
p

)
in an arbitrary number field K in terms of

the completion Kp – where p denotes a prime of K belonging to an archimedean
or non-archimedean valuation, and a, b ∈ K×p . As said above already, the local

definition is to put
(
a,b
p

)
= 1 or −1 according to whether a is a norm from

Kp(
√
b) or not.

In the older literature the terminology was “norm residue symbol” instead
of “norm symbol”, and

(
a,b
p

)
was defined for p-integers a, b ∈ K only. And

the definition was that
(
a,b
p

)
= 1 if for any power pr, with arbitrarily large

exponent, a is congruent modulo pr to a norm from K(
√
b). It had been Hensel

who observed that such congruence conditions for infinitely many powers of p
can be viewed, in the limit, as one single condition in the completion Kp.

Quite generally, observations of this kind have brought about an enormous
conceptual simplification whose consequences, up to the present day, cannot be
overestimated. The investigation of congruence properties for varying prime
power modules pr can be replaced by the investigation of valuation theoretic
properties of the completion Kp.

Hasse confirmed Hensel’s idea that the locally defined symbol is quite suited
to develop a criterion for the local representability of a number by a quadratic
form. And he discovered that Hilbert’s product formula∏

p

(
a, b

p

)
= 1 (a, b ∈ K×) (3.1)

provides a tool to make the transition from local to global – in conjunction with
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the well known ordinary product formula for the valuations themselves:∏
p

‖a‖p = 1 (a ∈ K×) . (3.2)

Here, p ranges over all primes of K and ‖ · ‖p is the corresponding valuation in
suitable normalization.

One of the essential properties of the Hilbert symbol
(
a,b
p

)
which had to be

verified is the “Vertauschungssatz”(
a, b

p

)
=
(
b, a

p

)−1

. 44 (3.3)

If p does not divide 2 (including the case when p is archimedean) then this
is well known and straightforward. The only true difficulty arises in the case
when p|2, i.e., when p may be wildly ramified in Kp(

√
b). In the older, classical

literature one tried to avoid this case by using Hilbert’s product formula (3.1) in
order to shift the problem to the tamely ramified primes. But then the explicit
evaluation of

(
a,b
p

)
was not possible in general, only for those a, b which satisfy

certain restrictions. This was insufficient for Hasse’s purpose. Finally in [1923c]
he was able to show in purely local terms that(

a, b

p

)
= (−1)L(a,b) (3.4)

where L(a, b) is a bilinear, non-degenerate form on the Z/2-vector spaceK×p /K
×2
p

of square classes in K×p . And, what is essential, his construction showed that
L(a, b) is symmetric which yields the Vertauschungssatz (3.3).

This was of course well known in the case K = Q, p = 2 where the
square classes of Q2 are represented by the numbers 2x0(−1)x15x2 with x =
(x0, x1, x2) ∈ (Z/2)3. In this case L(a, b) = x0y2 + x1y1 + x2y0 if the vectors
x, y represent a and b respectively. But in the case of an arbitrary number field
K and an arbitrary prime p dividing 2, this was not so easy for young Hasse.
Today we would deduce (3.4) immediately from local class field theory. But we
have to take into consideration that in 1921, local class field theory did not yet
exist.

In fact, parallel to his work on the quadratic norm symbol, Hasse became
interested, again on the suggestion of Hensel, in the similar problem for the
m-th power norm symbol for an arbitrary positive integer m. His first paper
[1923b] on this is written jointly with Hensel. After many years of work and
quite a number of papers on this topic, Hasse’s results led him finally to discover
local class field theory in [1930a]. Here we cannot go into details and follow up
the string of development which finally led to the establishment of local class
field theory and its connection to global class field theory. But we would like to
state that all this started in 1923 with Hasse’s papers on the norm symbols in
local fields. At that time Hasse was Privatdozent at the University of Kiel.

Thus Kiel in the year 1923 became the cradle of local class field theory.
44Since the quadratic norm symbol has the value 1 or −1, it is equal to its inverse. Hence

we could have omitted the exponent −1 on the right hand side. Nevertheless we have included
the exponent −1 since this becomes necessary for the norm symbols referring to an arbitrary
positive integer; the m-th norm symbol assumes its values in the group of m-th roots of unity.
The general norm symbol is antisymmetric; only in case of degree 2 this is the same as being
symmetric.
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3.2.2 Hensel: The basis theorem

The problem of whether an element a ∈ K×p is a norm from a given finite
extension is of multiplicative nature. In order to deal with this problem it was
necessary for Hasse to use the fundamental basis theorem for the multiplicative
group K×p which Kurt Hensel had given already in [1916]. The general problem
which Hensel dealt with can be described as follows.

Consider first the well known situation in the field R of real numbers. In
this case, the multiplicative group R× admits −1 and e as basis elements in the
sense that every a ∈ R× can be written uniquely in the form

a = (−1)k · eα where
{
k ∈ Z/2
α = log(|a|) ∈ R (3.5)

Here, eα is defined, as usual, by the exponential series

exp(α) = 1 + α+
α2

2!
+
α3

3!
+ · · · (3.6)

and e = exp(1). Formula (3.5) gives the structure theorem

R× ≈ Z/2× R (3.7)

where on the right hand side R means the additive group of real numbers.
The important feature of this isomorphism is that the multiplication in R× is
converted to addition in the groups Z/2 and R; this is essentially given by the
exponential function exp : R→ R×>0 and its inverse, the logarithm.

Now, Hensel asked whether a similar result holds in the case of a local num-
ber field Kp with respect to a non-archimedean prime p. Is the multiplicative
group K×p naturally isomorphic to some additive group which is canonically
determined by the field? He had treated this question for the rational p-adic
fields Qp already in his number theory book [1913b]. One year later in [1914],
Hensel started to deal with the case of an arbitrary local field Kp which is a
finite extension of Qp.

The main difficulty in the non-archimedean case is that the exponential series
(3.6) does not converge everywhere, it is convergent for vp(α) > 1

p−1 only. 45

This condition defines an ideal of the valuation ring of Kp, say A. On A the
exponential function satisfies the functional equation

exp(α+ β) = exp(α) exp(β)

and defines an isomorphism

exp : A ≈ 1 +A

whose inverse is given by the p-adic logarithm which is defined through the
power series expansion

log(β) = (β − 1)− (β − 1)2

2
+

(β − 1)3

3
∓ · · · (3.8)

45In this context vp denotes the additively written valuation of Kp, normalized in such a
way that vp(p) = 1. In this normalization a prime element π ∈ Kp has the value vp(π) = 1

e
where e is the ramification degree of Kp over Qp.
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The logarithmic series converges not only for β ∈ 1 +A but also for β ∈ 1 +M,
where M denotes the maximal ideal of the valuation ring. U1 := 1 +M is the
multiplicative group of all those elements β ∈ Kp which satisfy β ≡ 1 mod p,
called the 1-units of Kp. On U1 we have

log(αβ) = log(α) + log(β) .

However, on U1 the logarithm function is in general not injective. For, there
may be p-power roots of unity in Kp. It is injective on 1 + A where, as said
above already, log is the inverse function of exp.

Hensel in his paper [1914] considers first the case when the ramification
degree e < p − 1. In this case A = M and hence 1 + A = U1. Hence every
element in U1 is of the form exp(α) with α ∈ M. But the structure of K×p
modulo U1 is well known and easy to establish: a basis is given by the elements
π and ω where π is a prime element of Kp and ω a primitive w-th root of unity
where w is the number of roots of unity in Kp. 46 Hensel concludes that every
a ∈ K×p has a unique representation of the form 47

a = πnωk exp(α) where

 n ∈ Z
k ∈ Z/w
α ∈M

The valuation ring of Kp is a free Zp-module of rank

r = [Kp : Qp]

and hence every of its non-zero ideals is so too. In particular it followsM≈ Zrp .
Using the continuous isomorphism exp :M→ U1 we see that U1 ≈ Zrp too (as
Zp-modules). Hence there exist r basis elements η1, . . . , ηr ∈ U1 such that every
a ∈ Kp admits a unique representation of the form

a = πnωkηα1
1 · · · ηαr

r where

 n ∈ Z
k ∈ Z/w
αi ∈ Zp

(3.9)

This gives
K×p ≈ Z× Z/w × Zrp . (3.10)

These formulas are the p-adic analogues to (3.5) and (3.7) in the real case.
In [1914] Hensel could prove them in the case e < p− 1 only. Hensel deals with
the general case in the second part of [1914] and in [1915]. In modern terms,
his argument can be summarized as follows:

Consider the p-adic logarithm function log : U1 → M. The kernel consists
of the p-power roots of unity of Kp, say, µps for some integer s. The image I is
a Zp-module containing A and, hence, free of rank r. Therefore there exists a
section I → U1 of the logarithm function, and this defines an extension of the
exponential function exp to I as a domain of definition. This extension is not
canonical; anyhow it follows that U1 = µps × exp(I) ≈ Z/ps × Zrp. The total
number of roots of unity in Kp is w = (q − 1)ps.

46If e < p − 1, the field Kp does not contain proper p-power roots of unity and therefore
w = q − 1, the number of non-zero elements in the residue field of Kp.

47Hensel writes eα instead of exp(α) but this may be misleading since exp(1) is not defined
and hence eα is not the exponentiation by α of the number exp(1).
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In this way Hensel had proved that the formulas (3.9) and (3.10) are valid
in general, for an arbitrary local non-archimedean number field Kp.

But this proof does not give an effective method to produce the basis el-
ements ηi of (3.9). One has to choose a Zp-basis ξ1, . . . , ξr of I and put
ηi = exp(ξi). This is not constructive since the module I, the image of the log-
arithm function, is in general not known explicitly. Moreover, the analytically
defined exponential function produces the ηi as possibly transcendental num-
bers whose arithmetic properties are not easily established. Therefore Hensel
looked for a better construction of the basis elements.

He found this in still another paper [1916]. There he presented an effective
construction of the basis elements ηi which is adapted to the natural filtration
U1 ⊃ U2 ⊃ U3 ⊃ · · · , where Uν consists of those η ∈ Kp for which η ≡ 1
mod pν . This construction was used later in the work of Hasse and others to
study the local norms in the context of class field theory.

With this explicit construction of η1, . . . , ηr, the basis theorem (3.9) is to be
regarded as one of Hensel’s important contributions to number theory.

The ensuing structure theorem (3.10) deserves its place in general valuation
theory, independent of its application to number theory. Note that the local
number fields Kp can be abstractly characterized, independent from their origin
as completions of number fields of finite degree. Namely, these fields are the
locally compact valued fields of characteristic 0. 48

Sometimes the opinion is voiced that Kurt Hensel did not prove deep the-
orems on local fields, and that his main contribution to Number Theory was
his idea that p-adic numbers exist and should be studied; the main credit for
putting his ideas to work should go to Hasse and other students of Hensel. Well,
Hensel’s proof of the basis theorem is evidence that this view is not correct.
But certainly it was Hasse who used the basis theorem in its full power in the
discussion of the local Hilbert symbol, in particular in the wildly ramified case,
in connection with explicit reciprocity and class field theory.

Remark: Perhaps we should point out that the basis theorem, with a finite
basis, does not hold in the analogous case of power series fields with finite
coefficient fields. This seems to be one of the reasons why in the latter case, the
theory of those fields has not yet been proven to be decidable, whereas in the
case of local number fields this question is settled by the work of Ax-Kochen
and Ershov. 49

3.3 Remarks on p-adic analysis

In the foregoing section we had occasion to mention functions which were ana-
lytic in the p-adic sense: the exponential function and the logarithm. There are
other p-adically analytic functions which were successfully employed in number
theory. There have been a number of attempts to develop a systematic theory
of analytic functions in the context of non-archimedean valuation theory, anal-
ogous to the theory of complex valued analytic functions. This development,
including Tate’s theory of rigid analysis, is an indispensable part of the history
of valuation theory.

However, for the reasons stated in the introduction it was not possible to
include it into this manuscript. Let it suffice to say that the first paper in this

48See e.g., Pontryagin’s book [1957], or Warner [1989b].
49See e.g. our Lecture Notes [1984].
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direction was the thesis of Schöbe [1930d], a doctorand of Hasse in Halle. For
more information we refer the reader to the treatment by Ullrich [1995] and the
literature cited there. In addition, the reader might consult [1985b] concerning
the contributions of Marc Krasner.

Also, we would like to point out that by means of p-adic analysis several
proofs of transcendency have been given. The first was by Kurt Mahler in [1932i]
when he proved that the value of the p-adic exponential function exp(α) is tran-
scendental for any algebraic α in the domain of convergence of the p-adic expo-
nential series (3.6). Later in [1935a] he proved the p-adic analogue of Gelfand’s
result: the quotient of p-adic logarithms log(α)

log(β) , if irrational, is transcendental
for algebraic p-adic numbers α, β which are in the domain of convergence of the
logarithmic series (3.8). There followed a long series of p-adic transcendental
theorems whose survey indeed would require a separate article.

Hensel’s idea to prove the transcendency of the real number e by p-adic
analytic methods [1905a], which contained an error, has been vindicated to
some extent by Bézivin and Robba [1989]. For a historic review we refer to
Ullrich’s paper [1998d] and the literature cited there.

3.4 Valuations on skew fields

During the late 1920’s and early 1930’s there was growing awareness that the
theory of non-commutative algebras could be used to obtain essential informa-
tion about the arithmetic structure of commutative number fields. This view
was forcibly and repeatedly brought forward by Emmy Noether; see e.g., her
report at the Zürich International Congress of Mathematicians [1932] and the
literature cited there.

The story started with the appearance of Dickson’s book [1923g] “Algebras
and their Arithmetics” in which the author did the first steps towards an arith-
metic theory of maximal orders in an algebra over number fields. 50 This book
gained increasing interest among the German algebraists 51, in particular since
Speiser had arranged a German translation [1927c].

Emil Artin presented a complete and exhaustive theory of the arithmetic of
maximal orders of semisimple algebras over number fields in his papers [1928a],
[1928b], [1928c]. 52 He cited Dickson as a source of inspiration but his theory
went far beyond, describing such a maximal order and its groupoid of ideals (in
the sense of Brandt), in a similar way as Noether had done in the commutative
case for what are now called Dedekind rings. 53

Shortly afterwards Hasse [1931] gave a new treatment, and this time on a
valuation theoretic basis. In the same way as a Dedekind ring can be treated

50The book also contained the first text book treatment of the Wedderburn structure the-
orems for semisimple algebras.

51By this I mean e.g., Emil Artin, Helmut Hasse, Emmy Noether, Andreas Speiser, Bartel
van der Waerden and the people around them. Perhaps it is not superfluous to state that
the word “German” in this connection is not meant to have implications in the direction of
political doctrines. (Artin was Austrian, Speiser was Swiss, van der Waerden was Dutch.)

52Artin had divided his article into three separate papers, appearing successively in the
same volume 5 of Hamburger Abhandlungen.

53However Artin did not work on an axiomatic basis like Noether for Dedekind rings (she
called them “Fünf-Axiome-Ringe” (five axioms rings)). In later years one of the Ph.D. stu-
dents of Artin, Karl Henke, presented an axiomatic description [1935] modeled after Noether’s
axiomatic treatment of Dedekind rings.
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by means of its localizations with respect to the valuations belonging to its
prime ideals, Hasse showed that in the non-commutative case, the arithmetic of
a maximal order can be similarly described by its localizations with respect to
the primes of the center. Moreover, by including the infinite primes belonging
to the archimedean valuations, Hasse was able to proceed much further towards
non-commutative foundation of commutative number theory – following the
desideratum of Emmy Noether.

Thus once more Hasse showed that valuation theory provides for useful and
adequate methods to deal with questions of higher algebraic number theory.
This was well acknowledged by his colleagues. 54 As an example let us cite
Emmy Noether, in a postcard to Hasse of June 25, 1930:

Ihre hyperkomplexe p-adik hat mir sehr viel Freude gemacht. . .

Your hypercomplex p-adics has given me much pleasure. . .

And Artin in a letter of Nov 27, 1930:

. . . Ich danke Ihnen auch für die Übersendung der Korrekturen Ihrer
Arbeit über hyperkomplexe Arithmetik. Dadurch ist wirklich alles
sehr einfach geworden. . .

. . . Also, I would like to thank you for sending the proof sheets of your
paper on hypercomplex arithmetics. With this, everything really has
become very simple. . .

Let us describe Hasse’s theorems, at least for local fields, in some more detail.

3.4.1 Hasse’s theorems

Let K be an algebraic number field and A a central simple algebra over K. For
any prime p of K let Kp be the corresponding completion and Ap = A⊗K Kp

the localization of A. This is a central simple algebra over Kp and so, by
Wedderburn’s theorem, Ap is a full matrix algebra over a central division algebra
Dp over Kp. Hence, as a first step Hasse considers valuations of division algebras
Dp over local fields. Suppose that p is non-archimedean. The following theorems
are proved in [1931]:

1. The canonical valuation of Kp admits a unique extension to a
valuation of Dp.

Here, a valuation of the skew field Dp is defined by Kürschák’s axioms (2.1)–
(2.4) in the same way as for commutative fields. The formula (2.5) for the
extensions is also valid in the non-commutative case; but usually one replaces
the norm by the so-called reduced norm for Dp|Kp. The proof of 1. is quite the
same as in the case of a commutative extension field, using Hensel’s Lemma.

The ramification degree e and the residue degree f of Dp|Kp are defined as
in the commutative case. Then:

2. The ramification degree e and the residue degree f of Dp|Kp are
both equal to the index m of Dp, so that [Dp : Kp] = ef = m2.

54As mentioned in the introduction already, van der Waerden [1975a] speaks of Hasse as
“Hensel’s best and great propagandist of p-adic methods”. Hasse, he said, came often to
Göttingen and so van der Waerden was inspired by Hasse, as well as by Ostrowski, while
dealing with valuations during the write up of the first volume of his book “Moderne Algebra”.
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The surprising thing is that, on the one hand, statement 1. is valid for division
algebras in the same way as for commutative field extensions, whereas state-
ment 2. shows a completely different behavior of valuations of division algebras
when compared to commutative field extensions. Namely, ramification degree
and residue field degree are both determined by the degree m2 of Dp. This has
important consequences.

Let π be a prime element and ω a primitive q − 1-th root of Kp (where q is
the number of elements in the residue field). Let Φm(X) denote an irreducible
polynomial of degree m which divides Xqm−1 − 1 (such divisor does exist since
there is an unramified extension of Kp of degree m). Then:

3. Dp = Kp(u, α) is generated by two elements u and α with the
defining relations:

Φm(α) = 0 , um = π , u−1αu = αq
r

where r is some integer prime to m, uniquely determined by Dp

modulo m.

In particular it is seen that Dp is a cyclic algebra. Moreover, Dp is uniquely
determined by the indexm and the number r modulom. The quotient jp(Dp) :=
r
m modulo 1 is called the Hasse invariant of the skew field Dp.

This theorem then leads to the determination of the Brauer group Br(Kp) of
all central division algebras over Kp or, equivalently, of the similarity classes of
central simple algebras over Kp. Using the above theorems, Hasse could prove
that

Br(Kp) ≈ Q/Z (3.11)

and this isomorphism is obtained by assigning to each division algebra Dp|Kp

its Hasse invariant.
If Kp is a local field for an infinite (archimedean) prime then Kp = R or

Kp = C. In the first case there is only one non-trivial skew field with center R,
namely the quaternion field H. To this is assigned the Hasse invariant jp(H) = 1

2 ,
and so Br(R) ≈ 1

2Z/Z is of order 2. For the complex field we have Br(Kp) = 0.
Remark. Hasse’s paper [1931] was the first one where valuations of division

algebras have been systematically constructed and investigated, on the basis of
Kürschák’s axioms. This started a long series of investigations of valuations
of arbitrary division algebras over a valued field, not necessarily over a local
number field. We refer to the excellent report by A. W. Wadsworth [2002].

3.4.2 Consequences

Hasse’s theorems have important implications for local class field theory. Ob-
serve that just one year earlier the main theorems on local class field theory had
been presented by Hasse [1930a] and F. K. Schmidt [1930b] as a consequence of
global class field theory. 55 But from the very first discovery of local class field
theory, Hasse had looked for a foundation of local class field theory on purely
local terms, independent from global class field theory. Emmy Noether shared
this opinion; let us cite from the postcard (mentioned above already) of Noether
to Hasse of June 25, 1930, when Hasse had sent her the manuscript of [1931]:

55Hasse’s [1930a] had been received by the editors on March 16, 1929 while [1931] was
received on June 18, 1930.
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. . . Aus der Klassenkörpertheorie im Kleinen folgt: Ist Z zyklisch n-
ten Grades über einem p-adischen Grundkörper K, so gibt es in K
mindestens ein Element a 6= 0, derart daß erst an Norm eines Z-
Elementes wird. Können Sie das direkt beweisen ? Dann könnte man
aus Ihren Schiefkörperergebnissen umgekehrt Klassenkörpertheorie
im Kleinen begründen. . .

From local class field theory follows: If Z is cyclic of degree n over a
p-adic base field K then there exists at least one element a 6= 0 in K
such that only the an is a norm of a Z-element. Can you prove this
directly ? If so then one could deduce from your skew field results
backwards the local class field theory. . .

In fact, it is easy and straightforward to answer Noether’s question positively,
using Hasse’s result 3. on skew fields. On the other hand, it seems that Emmy
Noether had jumped too early to the conclusion that this alone already provides
a foundation for the whole body of local class field theory. The inclusion of
arbitrary abelian field extensions instead of cyclic ones required some more work.
Later, Noether admitted this in her Zürich address [1932]. After referring to
Hasse’s canonical definition of his norm symbol (which he could manage because
of the theorems above) she mentions

. . . eine hyperkomplexe Begründung der Klassenkörpertheorie im Klei-
nen, auf derselben Grundlage beruhend, die neuerdings Chevalley
gegeben hat, wobei aber noch neue algebraische Sätze über Faktoren-
systeme zu entwickeln waren.

. . . a hypercomplex foundation of local class field theory, based on the
same principles, which has recently been given by Chevalley, where
however, in addition, new algebraic theorems on factor systems had
to be developed.

The “new algebraic theorems on factor sets” can be found in Chevalley’s Crelle
paper [1933e]. From today’s viewpoint, these “theorems” belong to the standard
prerequisites of Galois cohomology but in those times cohomology theory had
not yet been established on an abstract level.

Based on his local results, Hasse was able in a subsequent paper [1932e] to
determine the Brauer group Br(K) also of a global number field K, by means
of valuation theoretic notions. Let p range over all primes of K and I denote
the direct sum of all local groups of Hasse invariants, i.e.,

I =
∑

p finite

Q/Z⊕
∑

p real

1
2

Z/Z .

Then we have a natural map j : Br(K) → I, assigning to each central simple
algebra A over K the vector of the Hasse invariants of its local components.
More precisely, let Ap = A⊗K Kp, and let Dp be the division algebra which is
similar to Ap, so that Ap is a full matrix algebra over Dp. Then jp(A) is defined
to be the Hasse invariant jp(Dp). And j(A) ∈ I is the vector consisting of the
components jp(A).

In addition, there is the natural map s : I→ Q/Z by adding the components
of every vector of I.
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Then the main theorems of [1932e] can be expressed by saying that the fol-
lowing sequence is exact:

0→ Br(K)
j−→ I

s−→ Q/Z→ 0 (3.12)

The exactness at the term Br(K) means that the map j is injective. This
fact is the famous Local-Global Principle for central simple algebras. It
had been first proved in a joint paper of Hasse with Richard Brauer and Emmy
Noether [1932c], and it was based on class field theory. 56 The exactness at the
term I says that the local invariants of a central simple algebra A over K satisfy
the relation ∑

p

jp(A) ≡ 0 mod 1 (3.13)

and that this is the only relation between the local Hasse invariants.
Many years later, Artin and Tate presented in their Seminar Notes [1952a]

an axiomatic foundation of class field theory. Their axioms were given in the
language of cohomology which by then was well developed. There are two main
axioms. Their Axiom I is essentially the cohomological version of the exactness
in (3.12) at the term Br(K). And their Axiom II is essentially coming from the
exactness at I. Thus the work of Hasse, Brauer and Noether which led to the
exact sequence (3.12), had become the very base for the development of class
field theory in an axiomatic framework. And this had been achieved by following
the ideas of Kürschák and Hensel about valuations and their localizations.

3.5 Artin-Whaples: Axioms for Global Number Theory

As we have seen, the introduction of valuation theory into number theory has
brought about drastic changes of view point and enormous advances. There
arose the question whether this could be explained somehow. What are the
special valuation theoretic properties which characterize number fields in con-
trast to other fields ?

If K is a field and p a prime of K then we denote by ‖ · ‖p a real valued
valuation belonging to p. Suppose that K has the following properties:

I. For any a ∈ K×, there are only finitely many primes p of K such
that ‖a‖p 6= 1.

II. Every prime of K is either archimedean or discrete with finite
residue field. 57

Then, if K is of characteristic 0, it follows that K is an algebraic number field
of finite degree. If K is of characteristic p > 0 then K is a finitely generated
algebraic function field of one variable over a finite field – if it is assumed that
K admits at least one prime to avoid trivialities.

Today these fields are called “global fields”. Thus global fields can be char-
acterized by the valuation theoretic properties I. and and II. The proof is quite
easy.

56Another proof was given later by Zorn [1933d], based on analytic number theory as de-
veloped in the thesis of Käte Hey [1929]; both had been Ph.D. students of Artin in Hamburg.

57Both cases can be subsumed under the unified condition that the completion Kp is locally
compact with respect to the topology induced by the valuation.
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The above characterization of global fields was included in Hasse’s textbook
“Zahlentheorie” [1949]. That book had been completed in 1938 already but
due to external circumstances it could appear in 1949 only. Thus its contents
represent more or less the state of the art in 1938, at least in its first edition. In
the second edition (which appeared in 1963) Hasse added a proof of the theorem
of Artin-Whaples which yields a stronger and much more striking result.

Emil Artin had announced this theorem in an address delivered on April 23,
1943 to the Chicago meeting of the American Mathematical Society. The pub-
lished version, jointly with his student George Whaples appeared in [1945].
Their main result can be regarded in some sense to be the final justification of
valuation theory in its application to number theory.

Artin considers a field K equipped with a non-empty set of primes S, which
may or may not be the set of all primes of K. His axioms are:

I.′ Axiom I. holds for primes which are contained in S, i.e., for any
a ∈ K× there are only finitely many p ∈ S such that ‖a‖p 6= 1.

II.′ Axiom II. holds for at least one prime p ∈ S, i.e., p is archimedean
or discrete with finite residue field.

III.′ In addition, the valuations ‖ · ‖p for p ∈ S satisfy the product
formula

∏
p∈S
‖a‖p = 1 (a ∈ K×) . (3.14)

If these axioms are satisfied then again, K is either an algebraic number field
of finite degree, or a finitely generated algebraic function field of one variable
over a finite field of constants.

Moreover, the set S indeed consists of all primes of K, and the selected
valuations ‖·‖p are uniquely determined up to a substitution of the form ‖·‖p 7→
‖ · ‖rp where the exponent r is independent of p. 58

In view of this theorem it is possible, in principle, to derive all theorems of
number theory from the Artin-Whaples valuation theoretic axioms. In fact, the
authors do this for two of the fundamental theorems of number theory, namely
Dirichlet’s unit theorem and the finiteness of class number. The reader is struck
not only by the economy but also by the beauty of those proofs.

We observe that not only algebraic number fields appear in Artin-Whaples’
theorem but also algebraic function fields with finite field of constants. This
reflects a long standing observation, going back to Dedekind and Gauss, on the
analogy between algebraic number theory and the theory of algebraic functions
with finite base field. 59

The authors also discuss a somewhat more general setting, in which K con-
tains a base field k for S, which is to say that all primes p ∈ S are trivial on
k. In this case it is required that at least one p ∈ S is discrete, and its residue

58Later [1946] the authors showed that Axiom I.′ could be omitted if the product formula
III.′ is understood to imply that for every a ∈ K× the product (3.14) was absolutely conver-
gent with the limit 1. But the result remains the same.

59See our manuscript [1998b], and also a forthcoming manuscript of Günther Frei concerning
Gauss’ contributions to this question. See also Ullrich’s manuscript [1999a].
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field is of finite degree over the base field k. 60 But k is not necessarily finite.
In this more general case, the product formula (3.14) implies that K is a field
of algebraic functions of one variable over k, and that S consists of all primes
of K over k.

4 Building the foundations

In the foregoing section 3 we have reported about the impact of valuation theory
to number theory during the 1920’s and 1930’s. Because of those striking results
there was growing interest to develop general valuation theory beyond the first
steps which we discussed in section 2. The motivation for this direction of
research was to create an arsenal of new notions and methods which could be
profitably applied to situations other than number fields, e.g., function fields of
one or more variables, fields of power series and of Dirichlet series, functional
analysis, but also to number fields of infinite degree – and more.

4.1 Dedekind-Hilbert theory

Let L|K be a finite Galois field extension whose base field K carries a prime
p corresponding to a non-archimedean valuation. Let us fix one prime P of L
which is an extension of p. The Dedekind-Hilbert theory establishes a connection
of the structure of the Galois group G and the structure of P as an extension
of p. This manifests itself by a decreasing sequence of subgroups

G ⊃ Z ⊃ T ⊃ V = V1 ⊃ · · ·Vi ⊃ Vi+1 ⊃ · · · ⊃ 1

whose members are defined by valuation theoretic conditions with respect to P.
Here, Z, T and V are the decomposition group (Zerlegungsgruppe), the inertia
group (Trägheitsgruppe) and the ramification group (Verzweigungsgruppe) of
P. These three groups are the “basic local groups” of P whereas the Vi are the
“higher ramification groups”. 61 Usually one puts V0 = T and V−1 = Z. The
groups T, V and the Vi are normal in Z.

The ramification groups reflect the decomposition type of the prime p of the
base field in the extension L|K.

Hilbert [1894] had developed the theory of these ramification groups in case
K and k are number fields of finite degree. 62 Since then one often speaks
of “Hilbert theory”. Deuring [1931a] however says “Dedekind-Hilbert theory”.
Indeed, Dedekind had already arrived much earlier at the same theory, but re-
stricted to the basic local groups Z, T, V , without the higher ramfication groups
Vi. However he had published this only after Hilbert in [1894a]. 63 Here, let us
follow Deuring and use “Dedekind-Hilbert theory”. This seems particularly ad-
equate in this context since in general valuation theory, the higher ramification
groups (which are due to Hilbert) do not play a dominant role, and often cannot
be defined in a satisfying way; thus our discussion will be mostly concerned with
the basic local groups (which are due to Dedekind).

60This is equivalent to saying that the completion Kp is locally linearly compact over k.
61Hilbert [1894] called them the “mehrfach überstrichene Verzweigungsgruppen.”
62More precisely, Hilbert assumed that k = Q. But it is understood that from this, the case

of an arbitrary number field of finite degree is immediate.
63See also the literature mentioned by Ore in Dedekind’s Gesammelte mathematische

Werke, vol.2 p.48.
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Hilbert had included this theory in his “Zahlbericht” [1897]. Hence we may
safely assume that the Dedekind-Hilbert ramification theory was well known
among the number theorists during that time and did not need any explanation
or motivation.

4.1.1 Krull, Deuring

In the years 1930-1931 there appeared two papers almost simultaneously, which
generalized Dedekind-Hilbert theory to an arbitrary finite Galois field extension
L|K and to an arbitrary non-archimedean prime p of K, including the case when
p is non-discrete: Wolfgang Krull [1930c] and Max Deuring [1931a].

Each of the two authors mentions the other paper in his foreword and states
that his paper was written independently. The mere fact that two authors
worked on the same subject at the same time, may indicate a widespread feeling
of the necessity to have Dedekind-Hilbert theory available in the framework of
general valuation theory. Deuring was a student of Emmy Noether 64 and
Krull too was close to the circle around her. 65 We know that Emmy Noether
always freely discussed her ideas with whoever was listening to her; hence it is
conceivable that both, Deuring and Krull, were stimulated by her to deal with
this problem.

Both authors came to similar conclusions. It turned out that the theorems
in the general case are essentially the same as in the classical case considered
by Dedekind and Hilbert, at least for the basic local groups Z, T, V – with some
natural modifications though. In today’s terminology the following was proved.

1. All primes P′ of L which extend the given prime p of K are
conjugate to P under the Galois group G. More precisely, those
P′ are in 1 − 1 correspondence with the cosets of G modulo the
decomposition group Z. Consequently, the index (G : Z) equals the
number r of different primes of L extending p.

This is precisely as in the classical case of number fields.
In the following let K and L denote the residue fields of p and of P respec-

tively and f = [L : K] the residue degree. Let fsep denote its separable part,
i.e., fsep = [Lsep : K] . Similarly fins = [L : Lsep] denotes the inseparable part
of f .

2. Lsep is a Galois field extension of K. Each σ ∈ Z induces
an automorphism of L|K, and this defines an isomorphism of the
factor group Z/T with the full Galois group of L|K. Consequently
(Z : T ) = fsep.

In the classical case Z/T is cyclic. This reflects the fact that in the classical
case K is finite and hence admits only cyclic extensions.

In the following let Γ and ∆ denote the value groups of the valuations be-
longing to p and P, so that Γ ⊂ ∆. The factor group ∆/Γ is a torsion group; its
order e = (∆ : Γ) is the ramification degree of P over p. Let e′ denote the part

64Deuring’s paper [1931a] was not yet his doctoral thesis. It was written before Deuring got
his Ph.D.

65Krull held a position as associate professor in Erlangen at the time when he wrote this
paper.
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of e which is relatively prime to the residue characteristic p, thus e′ = (∆′ : Γ)
where ∆′ denotes the group of those elements in ∆ whose order modulo Γ is
prime to p . Similarly ep = (∆ : ∆′) is the p-part of e. 66

3. For σ ∈ T and a ∈ L× let χσ(a) be the residue class of aσ−1.
This induces a character χσ ∈ Hom(∆′/Γ, L

×
), and σ 7→ χσ de-

fines an isomorphism of T/V with the full character group of ∆′/Γ.
Consequently T/V is abelian and (T : V ) = e′.

In the classical case T/V is cyclic. This reflects the fact that in the classical
case P is discrete which implies ∆ ≈ Z, hence every proper factor group of ∆
is cyclic. Both Krull and Deuring found it remarkable that in the general case
T/V is not necessarily cyclic, and they produced examples.

4. The ramification group V is a p-group and hence solvable. Its
order |V | is a multiple of ep · fins. 67

In the classical case, |V | = ep.
Both Krull and Deuring state that |V | may be a proper multiple of ep · fins.

But they did not introduce the quotient

δ =
|V |

ep · fins
=
|Z|
e · f

(which is a p-power) as an invariant which was worthwhile to study. It was later
called by Ostrowski the defect of P over p. 68 Thus we have finally

[L : K] = δ · e · f · r (4.1)

where r is (as above) the number of different primes P′ which extend p. 69

Deuring gave also a definition of higher ramification groups but it seems that
these, except in the discrete case where they were introduced by Hilbert, did
not play a significant role in future developments. (But see below in section
4.1.2 about Herbrand’s work.)

Remark. Deuring’s paper contains a new proof of the fact that a prime p
of K can be extended to any algebraic extension L of K. Of course, this had
been proved in the very first paper on valuation theory by Kürschák [1913],
with the formula (2.5) giving explicitly the value of an algebraic element over
K. Deuring’s proof does not use the valuation function but rather the valuation
ring O belonging to the prime p. Deuring first observed that O is a maximal
subring of K. 70 Conversely, every maximal subring of K belongs to a prime of
K. Now, given an algebraic extension L|K, Deuring considers a subring OL ⊂ L

66If the residue field is of characteristic 0 then ∆′ = ∆, e′ = e, ep = 1, V = 1.
67In view of this it seems to be adequate, and is often done nowadays, to view fins as part

of the ramification degree and, accordingly, call fsep the residue degree.
68See section 5.
69Sometimes in the literature, the defect is denoted by d instead of δ (although the letter

d is often reserved for the discriminant). Also, the number r may be denoted by g (although
the letter g is often reserved for the genus). With this notation, if n denotes the field degree,
formula (4.1) acquires the cute form n = d · e · f · g .

70This depends on the fact that the value group is of rank 1. For arbitrary Krull valuations
this is not true.
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which is maximal with the property that OL ∩K = O ; 71 then he showed that
OL is a maximal subring of L, hence belongs to a prime P of L extending p. In
this proof we see clearly the influence of Emmy Noether who preferred the ring-
theoretic viewpoint. The extreme simplicity and elegance of this proof stands
against the fact that it is not constructive – contrary to Kürschák’s proof. It
should be mentioned, however, that the method of Deuring’s proof is the same
which today is used in the existence proof for arbitrary Krull valuations which
are centered at a given prime ideal of a given ring.

Deuring does this existence proof for arbitrary algebraic extensions L|K
including those of infinite degree. Accordingly, statement 1. also covers infinite
Galois extensions. It seems to us that in the other statements too he would
have liked to include infinite extensions but somehow hesitated to do so. Note
that Krull’s paper [1928] on the profinite topology of infinite Galois groups had
appeared not long ago, and so Deuring may have thought that some readers
of his article would not yet be acquainted with compact topological groups as
Galois groups. But it is surprising that Krull too considered finite extension
only; after all, he had shown the way how to handle infinite Galois extensions
in the first place. Moreover, Krull did not discuss higher ramification groups
which is the only instance where the generalization of Dedekind-Hilbert theory
to infinite Galois extensions is not straightforward.

4.1.2 Herbrand

Soon later Jacques Herbrand filled this gap in [1932b], [1933f]. 72 He fully
realized that in number theory one would have to consider infinite extensions
too. His method is quite natural, namely he considers infinite extensions as
limits of finite ones.

He restricts his discussion to infinite extensions of number fields. In this case
the value groups of the non-archimedean valuations, although not necessarily
discrete, have rational rank 1. There was one difficulty, however, which is con-
nected with the enumeration of the higher ramification groups Vi. Consider the
case where the value group Γ is discrete. If L|K is of finite degree then ∆ is dis-
crete too. Let π denote a prime element for P and normalize the corresponding
additive valuation such that vP(π) = 1. Then the i-th ramification group Vi
consists by definition of those σ ∈ V for which vP(πσ−1− 1) ≥ i. Now let M |K
be a Galois subextension of L|K with Galois group H which is a factor group
of G. It is true that the image of Vi in H is some higher ramification group for
M |K but in general it is not the i-th one.

Herbrand had given in [1931b] a method how to change the enumeration of
the ramification groups such as to become coherent with the projection of G
onto its factor groups H. Today we would describe it by the Hasse-Herbrand
function

ϕ(t) =
∫ t

0

dx

(V0 : Vx)

where Vx is defined for real x ≥ −1 to be Vi when i is the smallest integer ≥ x.
(Here, x ∈ R, x ≥ −1.) This function ϕ(t) is piecewise linear, monotonous and

71The existence of such OL would today be proved by Zorn’s Lemma; at the time of Deur-
ing’s paper he used the equivalent theorem that every set can be well ordered.

72These papers were published posthumously, with a preface of Emmy Noether. In August
1931 Jacques Herbrand had died in a fatal accident in the mountains.
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continuous; let ψ(u) denote its inverse function. Then put

Vt = V ϕ(t) , hence V u = Vψ(u) .

This is called the “upper enumeration” of the ramification groups; note that
u ∈ R is not necessarily an integer. With this notation, Herbrand’s theorem
now says the following. Consider the situation as described above, i.e., H is
a factor group of G, the Galois group of a Galois subextension M |K of L|K.
Then:

The image of V u ⊂ G in the factor group H is the u-th ramification
group (in upper enumeration) of M |K.

Thus Herbrand’s upper enumeration of the ramification groups is coherent with
respect to projections G→ H. Hence, for an infinite Galois extension L|K Her-
brand can define the V u as the projective limit of the corresponding ramification
groups (upper enumeration) of the finite factor groups of G.

This method works for any discrete valued field K with perfect residue field,
and any Galois extension L|K, finite or infinite. 73

Remark: As we know today, the full power of the Dedekind-Hilbert theory
unfolds itself only if infinite Galois extensions are taken into consideration. For
instance, we may take for L the separable algebraic closure of K. In that case
G = GK is the absolute Galois group of the field K. For an algebraic number
field K of finite degree it has been shown by Neukirch [1969] that the whole
arithmetic structure of K, which manifests itself by the primes p of K and
their interconnections, is already coded in the absolute Galois group GK and
the structure of its basic local groups belonging to the various primes. Similar
result in [1969a] for the Galois group of the maximal solvable extension. In this
connection we would also like to mention the work of Florian Pop who proved
similar statements for arbitrary finitely generated infinite fields, not necessarily
algebraic. For a survey see [1997].

The origin of all this newer development can be seen in the papers by Krull,
Deuring and Herbrand of 1931–1933.

4.2 F. K. Schmidt: Uniqueness theorem for complete fields

We have mentioned above Neukirch’s result about the determination of an al-
gebraic number field K of finite degree by its absolute Galois group GK . There
are two main ingredients (among others) in Neukirch’s proof: One is Dedekind-
Hilbert theory of ramification for infinite algebraic extensions as discussed above.
The other is the uniqueness theorem of F. K. Schmidt in [1933] which says:

Uniqueness theorem. Let K be a complete valued field and sup-
pose that K is not algebraically closed. Then the valuation of K is
unique in the sense that it is the only valuation (up to equivalence) in
which K is complete. For any other valuation of K (not equivalent
to the given one) its completion is algebraically closed.

The paper carries the title “Mehrfach perfekte Körper” (multi-complete fields)
which means “fields which are complete with respect to more than one valua-
tion”. This title is somewhat misleading because F. K. Schmidt’s theorem says

73I. Zhukov [1998e] has given a modified method which in certain cases also works if the
residue field is not perfect.

38



that a complete field is never multi-complete except in the trivial case when K
is algebraically closed. 74 However the title can be understood from the original
aim of F.K. Schmidt’s work.

Let us cite from letters of F. K. Schmidt to Hasse. In early 1930 F. K. Schmidt
(who held a position of Privatdozent in Erlangen) had visited Hasse (who at
that time was full professor in Halle). After his return to Erlangen F. K. Schmidt
wrote on Feb 14, 1930 to Hasse:

Was ich Ihnen über die Fragen, die wir in Halle erörterten, schreiben
wollte, betrifft zweierlei: Einmal handelt es sich um den Satz : Ist
der Körper K hinsichtlich der diskreten Bewertung v perfekt, so ist v

1. die einzige diskrete Bewertung von K ,
2. die einzige Bewertung von K hinsichtlich der K perfekt ist. . .

Regarding the questions which we discussed in Halle, I wanted to
write you two things: For one, there is the theorem: If a field K is
complete with respect to a discrete valuation v then v is

1. the only discrete valuation of K ,
2. the only valuation of K with respect to which K is complete. . .

Here, “only” is meant to be “only up to equivalence”.
From this letter it appears that F.K. Schmidt started this work on the sug-

gestion of Hasse. In any case, this work was done parallel to his joint work with
Hasse, determining the structure of complete discrete valued fields 75, and in
this connection it was of course of high interest to know whether a field could
be complete with respect to two different valuations.

At the end of the letter, after sketching his proof of the above statements 1.
and 2., F.K. Schmidt says:

Ich möchte mir nun noch überlegen, ob ein Körper hinsichtlich zweier
verschiedener Bewertungen, die dann natürlich nicht diskret sind,
perfekt sein kann, und falls das möglich ist, die Beschaffenheit eines
solchen Körpers kennzeichnen.

Next I wish to investigate whether a field could be complete with re-
spect to two different valuations, which of course cannot be discrete.
And if this is possible then I want to characterize the structure of
such field.

We conclude that F.K. Schmidt apparently did not have a conjecture what to
expect for non-discret valuations and, indeed, he was looking for a characteriza-
tion of those fields which are complete with respect to two different valuations,
expecting possibly non-trivial instances of this situation – as the title of the
paper suggests.

Already one month later, on March 29, 1930, F.K. Schmidt writes that
he has solved the problem; he states his theorem as given above and sends a
corresponding manuscript to Hasse. 76

74An algebraically closed field whose cardinality is sufficiently large is always multi-complete.
75See section 4.3. This topic was the second of the two things which F. K. Schmidt wanted

to discuss in his letter to Hasse.
76It took more than 2 years until F. K. Schmidt submitted the final version for publica-

tion. From the correspondence it appears that he was frequently changing and rewriting his
manuscript until finally it was in a form which satisfied his sense of elegance.

39



The main part of F. K. Schmidt’s proof is based on Hensel’s Lemma, hence
is valid for arbitrary Henselian fields. The completeness property is used only
in the proof of the following lemma:

If a complete field K is separably closed then it is algebraically closed. 77

Indeed, for a ∈ K× consider the separable polynomials xp − cx − a where p is
the characteristic and the parameter c ∈ K×. If c converges to 0 then the roots
of xp − cx− a converge to the p-th root of a and therefore a1/p ∈ K.

All the other arguments in F. K. Schmidt’s proof are valid for arbitrary
Henselian fields. Thus his proof in [1933] yields the following theorem:

The above uniqueness theorem remains valid if “complete” is replaced
by “Henselian”, and “algebraically closed” by “separably closed”. 78

However, F. K. Schmidt does not use the notion of Henselian field; this notion
appeared only in Ostrowski’s paper [1934] under the name of “relatively com-
plete” field (see section 5).

We have mentioned the uniqueness for Henselian fields because it was stated
and proved by Kaplansky and Schilling in [1942]. They reduced it to the unique-
ness theorem for complete fields, citing F. K. Schmidt’s paper [1933] – apparently
without noticing that F. K. Schmidt’s proof itself yields the result for Henselian
fields too. 79

4.2.1 The Approximation Theorem

Today, the proof of F. K. Schmidt’s uniqueness theorem is usually presented with
the help of the following

Approximation Theorem. Let K be a field and let p1, . . . , pr be
different primes of K, with valuations ‖ · ‖1, . . . , ‖ · ‖r respectively.
Given any elements a1, . . . , ar ∈ K there exists x ∈ K which ap-
proximates each ai arbitrarily close with respect to pi . This means
that

‖x− ai‖i < εi (1 ≤ i ≤ r)

for arbitrary prescribed numbers εi ∈ R.

In order to deduce the uniqueness theorem from this, consider a fieldK which
is Henselian with respect to two different primes p1 and p2. One has to prove that
K is separably closed, i.e., that every separable polynomial splits completely
over K. Consider two monic separable polynomials f1(X), f2(X) of the same
degree, say n. From the approximation theorem we conclude that there exists a
monic polynomial g(X) of degree n which approximates f1(X) with respect to
p1 and f2(X) with respect to p2, coefficientwise and arbitrarily close. Now from
Hensel’s Lemma (for p1) it follows that after sufficiently close p1-approximation,

77As mentioned in section 2.2.1 this result had been already obtained by Ostrowski in his
first paper [1913a]. F. K. Schmidt uses the same argument as did Ostrowski.

78According to F. K. Schmidt’s proof, this theorem includes the case of a field with an
archimedean valuation, if in such case the property “Henselian” is interpreted as being iso-
morphic to a real closed or algebraically closed subfield of C.

79Kaplansky and Schilling consider non-archimedean valuations only but F. K. Schmidt’s
theorem includes archimedean valuations too, as pointed out above already.
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g(X) has the same splitting behavior over K as does f1(X). Similarly for p2,
and so g(X) has also the same splitting behavior as f2(X). We conclude that
every two monic separable polynomials f1(X), f2(X) ∈ K[X] of the same degree
have the same splitting behavior over K. But certainly there do exist, for any
degree n, separable monic polynomials f(X) which split completely. One has
to choose n different elements ai ∈ K and put f(X) =

∏
1≤i≤n(X − ai).

However, F. K. Schmidt did not use the general approximation theorem, per-
haps because he was not aware of its validity. Instead, he gave an ad hoc con-
struction for the approximating polynomial g(X) to be able to conclude as we
have done above.

Remark. According to our knowledge, the first instance where the ap-
proximation theorem had been formulated and proved, including archimedean
primes, was the Artin-Whaples paper [1945]. Hasse reproduced the proof in
the second edition of his textbook “Zahlentheorie”. In the first edition, which
had been completed in 1938 already, he proves the approximation theorem for
algebraic number fields and algebraic function fields only. More precisely: He
first verifies the theorem for Q and for the rational function field k(X) over
a field, and then proves: If the approximation theorem holds for K and its
primes p1, . . . , pr then it holds for any finite algebraic extension field L of K
with respect to the finitely many primes of L which are extending some pi.

From F. K. Schmidt’s arguments in [1933] a proof of the approximation the-
orem can be extracted for two primes, i.e., r = 2. This is essentially the start
of Artin-Whaples’ induction proof for arbitrary r.

If only non-archimedean primes are concerned, the theorem was formulated
and proved by Ostrowski in [1934] already. If one follows Ostrowski’s argument
carefully then one can see that his proof remains valid if archimedean primes
are included. But he did not formulate his result in this generality.

Even before Ostrowski’s paper was published, Krull in [1930c] had given
a proof. Ostrowski cites Krull but observes that Krull formulated only two
special cases. This is true but it is clear that from those special cases the
general theorem of Ostrowski follows immediately.

Deuring in [1931a] did not formulate the approximation theorem in general,
but his arguments implicitly contain a proof in the situation which he considers:
namely for a finite Galois extension L|K and the finitely many primes P of L
which extend a given non-archimedean prime p of K.

According to Ostrowski’s words, his manuscript for [1934] had been essen-
tially completed in 1916 already, much earlier than the papers by Krull, Deuring,
F. K. Schmidt and Artin-Whaples.

The essential arguments in all those proofs are similar. So, who should be
credited to have been the first one for proving the approximation theorem ?

One should also recall that in the case of the rational number field, the
approximation theorem is essentially equivalent to what is called the “Chinese
remainder theorem” which has been known to Sun-Tz̆i in the 3rd century.

Perhaps it is best to keep the name “Artin-Whaples’ approximation theo-
rem” which Hasse has used.
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4.3 Structure of complete discrete fields.

4.3.1 The approach of Hasse and F. K. Schmidt

Let us start with a free translation of the first sentences of the paper [1933c] by
Hasse and F. K. Schmidt.

In modern algebra one can observe two lines of thought. The first one is
the tendency towards axiomatization and generalization, in order to understand
the mathematical phenomena as being part of a general theory which depends
on a few simple, far reaching hypotheses only. The second one is the desire
to characterize the structures which are formed by those abstract axioms and
notions, thus returning from the general to the possible special cases. The first
is often called the abstract or formal point of view while the second can be
described as the concrete viewpoint in the framework of modern algebra.

The present paper belongs to the second of those ideas. The authors start
from the general notion of complete valued field in the sense of Kürschák, which
had evolved from Hensel’s investigations of p-adic numbers. Now they are going
to characterize all possible complete valued fields, at least in the case of discrete
valuations.

From these words it appears that the authors regarded their work as being
fundamental, and as part of the general development of what at that time was
called “modern algebra”. The introduction is very elaborate, spanning over
14 pages. The whole paper has 60 pages. 80 Its aim is to present an explicit
description of all complete discrete valued fields K.

But it was not the last word on the subject. Three years later there appeared
the papers by Teichmüller and Witt [1936d], [1937a], [1937b] which contained
great simplifications. Other simplifications were given by Mac Lane [1939]. To-
day the paper of Hasse and F. K. Schmidt is almost forgotten, being superseded
by those of Witt, Teichmüller and Mac Lane. In particular the so-called Witt
vector calculus has obtained universal significance. The Hasse-F. K. Schmidt
paper had served as a starter for this development.

There are two cases to be considered: First, the equal characteristic case,
where the characteristic of the complete field K equals the characteristic of its
residue field K, and secondly the unequal characteristic case, where char(K) = 0
and char(K) = p > 0. Hasse-F. K. Schmidt and also Teichmüller try to deal with
both cases simultaneously, as far as possible. But here, for better understanding,
let us discuss these two cases separately. We begin with equal characteristic case.

The cooperation of Hasse and F. K. Schmidt for the paper [1933c] started
in early February 1930 when, as reported in section 4.2 already, F. K. Schmidt
visited Hasse in Halle. On that occasion Hasse told him that he was working on
the classification of complete discrete valued fields. After his return to Erlangen
F. K. Schmidt asked Hasse, in a letter of Feb 14, 1930, to send him more details.
Hasse did so and on Feb 23, F. K. Schmidt thanked him for his “beautiful proof”
(schönen Beweis).

Apparently Hasse’s proof concerned only the equal characteristic case. For
F. K. Schmidt, in his reply of Feb 23, refers to this case only. In addition he

80This length is partly caused by the fact that the authors include a detailed explanation of
the fundamental notions of general valuation theory, starting from Kürschák. By the way, the
editing of the text of the paper was done by F. K. Schmidt. This is unusual since Hasse usually
was very careful in the wording of his papers and, accordingly, mostly undertook himself the
writing and editing of joint papers.
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observes:

Bei der Lektüre fiel mir sogleich auf, daß der wesentliche Teil Ihres
Satzes von der Voraussetzung, die Bewertung sei diskret, ganz un-
abhängig ist.

On the first reading I observed that the essential part of your theo-
rem is independent of the hypothesis that the valuation is discrete.

And he proceeded to formulate the statement which he (F. K. Schmidt) thought
he was able to prove:

If the complete field K and its residue field K have the same char-
acteristic then K contains a subfield K which represents the residue
field K – irrespective of whether the valuation is discrete or not.

In today’s terminology:

Let O denote the valuation ring of K. Then the residue map O → K

admits a section K
≈−→ K ⊂ O.

F. K. Schmidt adds that in order to prove this statement for arbitrary, not nec-
essarily discrete valuations, one has to modify Hasse’s arguments in the case of
inseparabilities but otherwise Hasse’s proof can be used word for word. We do
not know Hasse’s proof but the above seems to indicate that Hasse considered
only the case of residue fields of characteristic zero where there are no insepa-
rabilities. Or, maybe in characteristic p he considered finite residue fields only
which of course would be the most interesting case for number theory.

Also we do not know what F. K. Schmidt had in mind when he mentioned
“modifications in case of inseparabilities”. It seems to us that he mentioned
this somewhat in haste but later, in the course of time, he realized that dealing
with inseparabilities was more intricate than he originally had thought. For, in
a later letter dated March 29, 1930, he mentions briefly that there has appeared
a new difficulty which however he hopes to overcome.

Let us review the situation: The residue field K is said to be separably
generated if there exists a transcendence basis T = (ti) such that K is separable
algebraic over Fp(T ). If this is the case then a section K → O can be constructed
as follows: For each element ti of the transcendence basis choose an arbitrary
foreimage ti ∈ O and let T = (ti); then the assignment T 7→ T defines an
isomorphism Fp(T ) ≈−→ Fp(T ), hence a section Fp(T )→ O. Because of Hensel’s
Lemma this has a unique prolongation to a section K → O. For, every a ∈ K
is a zero of a monic separable polynomial f(X) ∈ Fp(T )[X]; let f(X) denote
the image of that polynomial in Fp(T )[X]. By Hensel’s Lemma there exists a
unique foreimage a ∈ O of a such that f(a) = 0. The assignment a 7→ a (for
a ∈ K) then yields a section K → O.

We see: If the residue field K is separably generated then indeed, there exists
a section K → O of the residue map O → K, and this does not depend on the
structure of the value group.

Concerning the extra hypothesis about K being separably generated, we
read in the Hasse-F. K. Schmidt paper [1933c]:

. . . Das ist im charakteristikgleichen Fall zuerst von dem Älteren von
uns [Hasse] erkannt worden, daran anschließend allgemein von dem
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Jüngeren [Schmidt], wobei sich überdies die Möglichkeit ergab, die
diskrete Bewertung von K durch eine beliebige Exponentenbewertung
zu ersetzen, hinsichtlich der nur K perfekt sein muß.

. . . In the case of equal characteristic, this has been discovered first
by the elder of us [Hasse], subsequently in general by the younger
[Schmidt], whereby it turned out to be possible to replace the dis-
crete valuation of K by an arbitrary non-archimedean valuation,
with the only condition that K is complete.

This seems to indicate that indeed, Hasse in his letter to F. K. Schmidt had
discussed the equal characteristic case only, as we have suspected above already.
Moreover we see that F. K. Schmidt now has taken back his former assertion in
his letter of Feb 23 to Hasse, and that he has realized that this method works
only for separably generated residue fields . Under this extra hypothesis it works
not only for discrete valuations, but generally.

But perhaps every field is separably generated? Certainly this is true in char-
acteristic 0; in this case the method of Hasse-F. K. Schmidt is quite satisfactory.
In the following discussion let us assume that the characteristic is p > 0.

If the field is finitely generated (over its prime field) then F. K. Schmidt
himself had proved in [1931c] that there exists a separating basis of transcen-
dency. 81 But for arbitrary fields this seemed at first to be doubtful. In the
next letters after Feb 23, 1930 this problem is not mentioned. Only in a later
letter, of Sep 14, 1930, F. K. Schmidt returns to this question. In the meantime
he had met Hasse in Königsberg at the meeting of the DMV. 82 They had done
a walk together at the beach of the Baltic sea and discussed their joint paper
in progress. Now, after F. K. Schmidt’s return to Erlangen, he writes:

Nun muß ich Ihnen leider doch hinsichtlich der Franzschen Vermu-
tung in der Theorie der unvollkommenen Körper etwas sehr Schmerz-
liches schreiben. . . Ich kann nämlich nun durch ein Beispiel zeigen,
daß die Franzsche Vermutung tatsächlich bereits bei endlichem Trans-
zendenzgrad nicht zutrifft. Genauer: ich kann einen Körper K von
Primzahlcharakteristik p angeben mit folgenden Eigenschaften:
1. K ist von endlichem Transzendenzgrad n über seinem vollkom-
menem Kern k . 2. Ist t1, . . . tn irgendeine Transzendenzbasis von
K|k, so ist stets K|k(x1, . . . , xn) von zweiter Art, wie man auch die
Transzendenzbasis wählen mag.

Unfortunately I have to write you something painful with respect to
the conjecture of Franz . . . For, I am now able to show by an example
that the conjecture of Franz does not hold even for finite degree of
transcendency. More precisely: I can construct a field K of prime
characteristic p with the following properties:
1. K is of finite transcendence degree over its perfect kernel k. 2. If
t1, . . . tn is any transcendence basis of K|k then K|k(x1, . . . , xn) is

81Actually, he proved it for transcendence degree 1 only but his proof can be modified for
arbitrary finite transcendence degree. See, e.g., van der Waerden’s textbook [1930e].

82DMV = Deutsche Mathematiker Vereinigung (German Mathematical Society). The an-
nual DMV-meeting in Königsberg was scheduled in the first week of September, 1930. At that
meeting, F. K. Schmidt gave a talk on his results about his uniqueness theorem for complete
fields; see section 4.2. Hasse’s talk was about the arithmetic in skew fields; see section 3.4.1.
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always of the second kind, regardless of how one chooses the tran-
scendence basis. 83

From this and other parts of the letter it appears that:

− Franz 84 had written a manuscript in which he conjectured that any field
of finite transcendence degree is separably generated,

− Hasse had told this to F. K. Schmidt in Königsberg,

− F. K. Schmidt had generalized this on the spot to arbitrary transcendence
degree,

− after having returned to Erlangen F. K. Schmidt found an error in Franz’
as well as in his own argument,

− and he got a counter example to Franz’ conjecture.

But for the residue field of a discrete complete valued field, F. K. Schmidt appar-
ently found a way to overcome that difficulty. In the published paper [1933c] a
method is presented to construct a section K ≈−→ K ⊂ O, regardless of whether
K is separably generated or not. Consequently, if π is a prime element of K
then it follows that K = K((π)), the power series ring over K. This leads to the
following theorem of the Hasse-F. K. Schmidt paper [1933c]. 85

Structure Theorem (equal characteristic case). Every com-
plete discrete valued field K with char(K) = char(K) is isomorphic
to the power series field K((X)) over its residue field K.

F. K. Schmidt’s construction is somewhat elaborate and not easy to check.
Indeed, it seems that nobody (including his co-author Hasse) did check the
details at the time, and his proof was generally accepted. The first who really
worked on the proof and checked the details seems to have been Mac Lane. In
[1939] he pointed out an error in the proof. (This error concerned both the equal
and the unequal characteristic case). Mac Lane politely speaks of an “unproven
lemma”, and he gives a new proof of the Structure Theorem (in both cases),
not depending on that lemma. We shall discuss Mac Lane’s proof in section

83F. K. Schmidt still uses the old terminology “first kind” and “second kind”. In the pub-
lished paper [1933c] already the new terminology “separable” and “inseparable” is used.

84Wolfgang Franz was a student of Hasse. He obtained his Ph.D. 1930 at the University of
Halle. The subject of his thesis [1931d] was about Hilbertian fields, i.e., fields in which Hilbert’s
irreducibility theorem holds. One of Franz’ results was that a separably generated function
field of one or several variables over a base field, is Hilbertian. This explains Franz’ interest in
separably generated fields. The thesis of Franz initiated a new direction of research, namely
the investigation of the Hilbert property of fields in connection with valuation theory. (For
a survey see e.g., Jarden’s book [1986] on Field Arithmetic.) – Franz edited the “Marburger
Vorlesungen” of Hasse on class field theory [1933g]. Later he left number theory and algebra,
and started to work in topology.

85If the residue field K is finite then the following theorem, as well as the corresponding
structure theorem in the unequal characteristic case, is contained in the Groningen thesis of
van Dantzig [1931e] already. This is acknowledged in a footnote of the Hasse-F. K. Schmidt
paper [1933c]. There the authors say that the essential difficulties which appear in their paper
do not yet show up if the residue field is finite. Indeed, from today’s viewpoint the structure
theorems of Hasse-F. K. Schmidt are almost immediate in case of finite residue field. But it
should be mentioned that the thesis of van Dantzig contained much more than this, it was
the first attempt of a systematic development of topological algebra.
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4.3.4 below. Here, let us mention only that the error occurred in the handling
of inseparabilities of the residue field; this concerns precisely the difficulty which
F. K. Schmidt had mentioned in his letters to Hasse.

The “unproven lemma” turned out to be false but a certain weaker result
was already sufficient to carry through the construction of F. K. Schmidt. Mac
Lane planned to write a joint paper with F. K. Schmidt, proving that weaker
result and thus correcting the error in [1933c]. Their paper was to appear in
the Mathematische Zeitschrift. 86 But due to the outbreak of world war II their
contact was cut off, and so Mac Lane single-handedly wrote a brief report in
[1941], naming F. K. Schmidt as co-author and stating the correct lemma which
when used in [1933c] saves F. K. Schmidt’s construction. Today this note as well
as F. K. Schmidt’s construction is forgotten since, as said above, it is superseded
by the results of Witt and Teichmüller, and later those of Mac Lane.

The difficulties which F. K. Schmidt faced while struggling with the details of
his proof can be measured by the time needed for completion of the manuscript.
The authors had started their work on this topic in February 1930, and in
November that year F. K. Schmidt sent to Hasse the first version. But some time
later he decided to write a new version. There followed a series of exchanges
back and forth of this manuscript. In October 1931 F. K. Schmidt sent the first
part of another version to Hasse who had wished to include the paper into
the Crelle volume dedicated to Kurt Hensel. But it was too late for inclusion
since the Hensel dedication volume was scheduled to appear in December 1931
already. 87 The published version carries the date of receipt as April 24, 1932.
But even after that date there were substantial changes done. In a letter dated
July 11, 1932 F. K. Schmidt announced that now the whole paper has to be
rewritten. And even on April 4, 1933 F. K. Schmidt inquired whether it is still
possible to make some changes in the manuscript. Finally, in an undated letter
(written in May or June 1933) F. K. Schmidt gave instructions for the last and
final changes while Hasse was reading the galley proofs of the manuscript.

4.3.2 The Teichmüller character

We are now going to describe Teichmüller’s beautiful construction in [1936d]
which superseded the Hasse-F. K. Schmidt construction.

Consider first the case when the residue field K is perfect. Its characteristic
is a prime number p . Given an element α in the residue field K, Teichmüller
chooses, for n = 0, 1, 2, . . ., an arbitrary representative an of αp

−n

. Then each
ap

n

n is a representative of the given α. Teichmüller [1936d] observed that

χ(α) := lim
n→∞

ap
n

n (4.2)

exists and is independent of the choice of the an. (Here he used the fact that

86They had discussed this plan when F. K. Schmidt visited the United States in 1939 as
a representative of the Springer Verlag, in connection with the American plans to establish
Mathematical Reviews. See [1979a]. – It is to be assumed that Mac Lane and F. K. Schmidt
had met earlier between 1931 and 1933, when Mac Lane studied in Göttingen.

87It seems that F. K. Schmidt was not unhappy with this outcome because he wished to
make still other changes. Hasse, on the other hand, had in the meantime (November 9, 1931)
succeeded, together with R. Brauer and E. Noether, to prove the Local-Global Principle for
algebras, and so he put that new manuscript into the Hensel dedication volume instead.
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the valuation is discrete.) It is seen that

χ(α · β) = χ(α) · χ(β) . (4.3)

The multiplicative map χ : K → O is called the Teichmüller character ; its
image R = χ(K) is the Teichmüller representative set for the residue map. It
is the only representative set for which Rp = R.

This construction works in both cases, the equal characteristic case and the
unequal characteristic case. In the equal characteristic case we have besides of
(4.3) the corresponding formula for the addition:

χ(α+ β) = χ(α) + χ(β) . (4.4)

Therefore R is a field and χ : K ≈−→ R is a section.
The beauty of this construction is not only its simplicity but also that it is

canonical.
If K is not perfect then Teichmüller uses the theory of p-bases of K which

he had introduced in a recent paper in another context [1936e]. Choose a p-
basis M of K and a foreimage M ⊂ O ; then consider the union of the fields
K(Mp−n

) , (n = 0, 1, 2, . . .). Its completion L is a discrete valued complete field
whose residue field L is the perfect hull of K. This then allows to reduce the
problem to the case of perfect residue fields. More precisely: The Teichmüller
character χ : L→ L maps M into M and K into K.

In [1937b] Teichmüller gives a more detailed (and in some points corrected)
version of this construction. Note that the construction of this section K → K
is not canonical but depends on the choice of the foreimage M of a p-basis of
K. Nevertheless it is quite simple and straightforward when compared with the
Hasse-F. K. Schmidt construction [1933c], even when the latter is taken in its
corrected form [1941].

4.3.3 Witt vectors

Next we consider the unequal characteristic case, which means that char(K) = 0
and char(K) = p > 0. In this situation K is called unramified if p is a prime
element of K. The main result of Hasse-F. K. Schmidt for unramified fields is
as follows:

Structure Theorem (unequal characteristic case) An unrami-
fied, complete discrete field K of characteristic 0 and residue char-
acteristic p > 0 is uniquely determined by its residue field K (up to
isomorphism). For any given field in characteristic p there exists an
unramified, complete discrete field whose residue field is isomorphic
to the given one.

Again, the proof given by Hasse-F. K. Schmidt in [1933c] is quite elaborate and
not easy to check. The error which Mac Lane had pointed out in [1939] and
corrected in [1941], concerns the unequal characteristic case too.

We now discuss the papers [1936e] and [1937] by Teichmüller and by Witt
which greatly simplified the situation.

Similar as in the equal characteristic case, suppose first that K is perfect,
so that the Teichmüller character χ : K → O is defined as in (4.2), with the
multiplicative property (4.3). (Recall that O denotes the valuation ring of K.)
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Again let R = χ(K). Since we are discussing the unramified case, p is a prime
element of K and therefore every element a ∈ O admits a unique expansion into
a series

a = a′0 + a′1p+ a′2p
2 + · · · with a′n ∈ R .

Since R = Rp there are an ∈ R with a′n = ap
n

n . We obtain an expansion of the
form

a = a0 + ap1p+ ap
2

2 p
2 + · · · with an ∈ R . (4.5)

Let an correspond to αn ∈ K via the Teichmüller character, i.e., an = χ(αn).
We see that a is uniquely determined by the vector

W (a) = (α0, α1, α2, . . .) (4.6)

with components αn in the residue field K.
There arises the question how the components of W (a±b) are computed from

the components of W (a) and W (b). And similar for W (a·b). Teichmüller [1936e]
and also H. L. Schmid [1937c] had discovered that this computation proceeds via
certain polynomials with coefficients in Z, not depending on the residue field K
but only on p, its characteristic.

At this point the discovery of Witt becomes crucial. He could show that those
polynomials can be obtained by a universal algorithm which is easy to describe
and easy to work with. Thus Witt gave an explicit, canonical construction of a
complete discrete valuation ring W (K) of characteristic 0, based on the given
field K of characteristic p, and he showed that O ≈W (K). 88

In my opinion, in order to give a brief description of the algorithms of Witt
vectors, the best way to do so is to cite his words which he himself used in his
seminal paper [1937a]. We do this in a free English translation:

For a vector
x = (x0, x1, x2, . . .)

with countably many components xn we introduce ghost components 89

x(n) = xp
n

0 + p xp
n−1

1 + · · ·+ pnxn .

Inversely, xn can be expressed as a polynomial in x(0), x(1), . . . , x(n) with ratio-
nal coefficients, and therefore the vector x is already determined by its ghost
components. We define Addition, Subtraction and Multiplication of two vectors
via the ghost components:

(x±· y)(n) = x(n) ±· y
(n) (n = 0, 1, 2, . . .).

Satz 1. (x±· y)n is a polynomial in x0, x1, . . . , xn, y0, y1, . . . , yn with integer co-
efficients .

In view of his “Satz 1” Witt observes that one can substitute for the in-
determinates x0, x1, . . . , y0, y1, . . . elements of an arbitrary ring A and obtain
a new ring W (A), the ring of Witt vectors over A. In particular for A = K
we obtain W (K). Witt proves this to be a complete discrete valuation ring of
characteristic 0, with p as prime element. Witt shows further that the map
a 7→ W (a) defined by (4.5), (4.6) is an isomorphism of the valuation ring O of
K with W (K). Thus:

88Perhaps it is not superfluous to point out that the ring W (K) of Witt vectors has nothing
to do with what is called the “Witt ring” of the field K which is defined in the theory of
quadratic forms.

89Witt says “Nebenkomponenten”.
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Witt’s Theorem: Every unramified complete discrete valuation
ring O of characteristic 0 with perfect residue field K of character-
istic p > 0 is isomorphic to the Witt vector ring W (K).

Hence the quotient field K of O is isomorphic to the quotient field QW (K) of
W (K). We see that QW (K) plays the same role in the unequal characteristic
case, as the power series field K((X)) does in the equal characteristic case.

If the residue field K is not perfect then W (K) is not a valuation ring. But
Teichmüller in [1937b] was able to prove the structure theorem also in this case,
with the help of a construction using a p-basis of K, similarly as in the equal
characteristic case.

Finally, if K is ramified (in the unequal characteristic case) then it is shown
that QW (K) is canonically contained in K, and that K is a finite algebraic,
purely ramified extension of QW (K), and that it can be generated by a root
of an Eisenstein equation. This is routinely derived from what we have seen
above.

Remark 1. The calculus of Witt vectors has implications throughout math-
ematics, not only in the construction of complete discrete valuation rings. In
fact, it was first discovered by Witt in connection to another problem, namely
the generalization of the Artin-Schreier theory to cyclic field extensions of char-
acteristic p and degree pn. This is explained in Witt’s paper [1937a]. Later,
Witt generalized his vector calculus such as to become truly universal, i.e., not
referring to one particular prime number p. Instead of considering the powers
p0, p1, p2, . . . of one prime number p, he considers those of all prime numbers
and their products, which is to say the natural numbers 1, 2, 3, . . .. The ghost
components of a vector

x = (x1, x2, x3, . . .)

are now defined to be
x(n) =

∑
d|n

d · xn/dd .

This is a truly universal calculus, and the Witt vectors in the sense of his original
paper [1937a] represent, in a way, only a certain part (not a subring!) of the
universal Witt vectors. See, e.g., Witt’s article which is published posthumously
in his Collected Works [1998f] and the essay of Harder therein. Certainly, the
discovery of Witt vectors is to be rated as one of the highlights of mathematics
in the 20th century – independent of the application to valuation theory which
we have discussed here.

Remark 2. Both the papers of Witt [1937] and of Teichmüller [1937b] were
published in the same issue of Crelle’s Journal, namely Heft 3, Band 176 . 90

This whole issue consists of 8 papers by Witt, Teichmüller, H. L. Schmid and
Hasse. The latter, as the editor of Crelle’s Journal, had opened this issue for the
Göttinger Arbeitsgemeinschaft (workshop) in which, as we can see, remarkable
results had been achieved. 91

90At that time, a volume of Crelle’s Journal consisted of 4 issues (4 Hefte).
91The names of the members of the Arbeitsgemeinschaft in the years 1935/36 are mentioned

in [1936d]. The two most outstanding members (besides of Hasse) were Teichmüller and Witt.
In a letter of Hasse to Albert dated Feb 2, 1935, Hasse mentioned “Dr. Witt, our best man
here”. About Teichmüller he wrote to Davenport on Feb 3, 1936, that he (Hasse) was working
with Teichmüller on cyclic fields of degree p. And he added: “His paper on the Wachs-Raum
is as queer as the whole chap.”
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4.3.4 Mac Lane

Saunders Mac Lane (1909–) studied from 1931 to 1933 in Göttingen where
he came in contact with “modern” mathematics and algebra. His Ph.D. thesis
was written under the supervision of Bernays, on a topic from mathematical
logic. 92 Here we are concerned with his contributions to valuation theory.
Kaplansky tells us in [1979a] that Mac Lane’s interest in valuation theory can
be traced quite directly to the influence of Oystein Ore at Yale, where Mac
Lane had studied in 1929/1930 and to where he returned in 1933/1934 after his
Göttingen interlude.

Already in section 4.3.1 we have mentioned the paper [1939] of Mac Lane
where it was pointed out that the Hasse-F. K. Schmidt paper [1933c] contained
an error, and where a new, correct proof of the Structure Theorem of Hasse-
F. K. Schmidt was presented. But why was it necessary in the year 1939 to give
a new proof ? After all, a beautiful new proof had already been given in 1937
by Teichmüller and Witt, as reported in the foregoing sections 4.3.2 and 4.3.3.

Mac Lane mentions that Witt [1937a] uses a “sophisticated vector analysis
construction”; he wants to avoid Witt vectors and prove the Structure Theorem
by more elementary means. He does not attempt, however, to avoid the use
of the Teichmüller character; it is only the Witt vectors which he wishes to
circumvent. Hence Mac Lane discusses the unequal characteristic case only,
since the equal characteristic case had been solved by Teichmüller without Witt
vectors, as reported in section 4.3.2.

Mac Lane’s new idea is to divide the proof into two steps: first the exis-
tence proof, i.e., the construction of a discrete valued unramified complete field
of characteristic 0 with a given residue field of characteristic p ; second, the
uniqueness proof, i.e., the construction of an isomorphism between two such
fields with the same residue field. The separation of these two steps shows, Mac
Lane says, “that the previous constructions [he means those by Witt] have been
needlessly involved and can be replaced by an elementary stepwise construction”.

The existence part is easily dealt with: the given field of characteristic p
which is to become the residue field, is an extension of the prime field Fp of
characteristic p which in turn is the residue field of Qp. Therefore one has to
verify the following general

Relative Existence Theorem. Let k be a non-archimedean com-
plete valued field with residue field k, and let K be an extension
field of k. Then there exists a complete unramified extension K of k
whose residue field is the given K.

By Zorn’s Lemma 93 it suffices to discuss the case when K = k(α) is a simple
extension. If α is algebraic over k let f(X) be the monic irreducible polynomial
for α over k, and let f(X) ∈ k[X] be a monic foreimage of f(X). Then f(X)
is irreducible over k. If a is a root of f(X) then the field K = k(a) solves the
problem; the valuation of k extends uniquely to K and K is complete by the
very first results of Kürschák and Ostrowski. Moreover, K|k is unramified since
[K : k] = [K : k]. This holds regardless of whether f(X) is separable or not. On

92Biographical information about Mac Lane, who became one of the leading mathematicians
in the United States, can be found in his “Selected Papers” [1979b].

93Mac Lane does not yet use Zorn’s Lemma of [1935b]; he refers to “known” methods using
well orderings.
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the other hand, if α is transcendental over k then consider the rational function
field k(x) in an indeterminate x over k, with its functional valuation. (For this
see page 58.) The completion K of k(x) then solves the problem.

We see that this existence part holds not only for discrete valuations; the
arguments are valid quite generally and they do not give any problem with
respect to inseparabilities of the residue field. And they were well known even
at the time of Mac Lane. Thus the main point of Mac Lane’s paper is the second
part about uniqueness. Here he shows the following:

Relative Uniqueness Theorem. Let k be a complete valued field
and assume that the valuation is discrete. Let K and K ′ be two
complete unramified extensions of k. Suppose that there exists a k-
isomorphism of the residue fields K → K

′
. Then this can be lifted

to a k-isomorphism K → K ′ – provided K is separable over k.

Here, the essential new notion was that of “separable” field extension with-
out the assumption that K is algebraic over k. Mac Lane had discovered that for
an arbitrary field extension K|k of characteristic p , the adequate notion of “sep-
arable” is not the one used by Hasse and F. K. Schmidt (which was “separably
generated”) but it should be defined as “k-linear disjoint to k

1/p
”. Equiva-

lently, this means that p-independent elements of k (in the sense of Teichmüller
[1936e]) remain p-independent in K. Mac Lane in [1939a] was the first one to
study this notion systematically and pointing out its usefulness in dealing with
field extensions of characteristic p . If there exists a separating transcendence
basis then K|k is separable in the above sense, but the converse is not generally
true. Every field in characteristic p is separable over its prime field Fp – and
this, as Mac Lane points out, is the fact which allows to deduce the “absolute”
uniqueness theorem which says that an unramified complete field is uniquely
determined by its residue field.

If the residue field K is perfect then the proof of the relative uniqueness
theorem is almost immediate when the Teichmüller character χ : K → K is
used. For, choose a basis of transcendency T of K|k, and put T = χ(T ).
Similarly, after identifying K = K

′
by means of the given isomorphism, put

T ′ = χ′(T ) where χ′ : K → K ′ is the Teichmüller character for K ′. Then the
map T 7→ T ′ yields an isomorphism of k(T ) onto k(T ′) as valued fields. Since
K is perfect, every t ∈ T has a unique p-th power in K, hence χ(T

1/p
) = T 1/p

is well defined in K; similarly χ′(T
1/p

) = T ′1/p in K ′. In this way the above
isomorphism extends uniquely to an isomorphism k(T 1/p)→ k(T ′1/p). Similarly
for k(T 1/p2), k(T 1/p3), . . ., then to the union of these fields, and then to its
completion. Further extensions involve only separably algebraic extensions of
the residue field and hence can be dealt with by Hensel’s Lemma.

If the residue field K is not perfect then Mac Lane uses the Teichmüller
construction for imperfect residue fields as given in [1936d].

The above discussion shows that the main merit of Mac Lane’s paper is not
so much a new proof of the Witt-Teichmüller theorem about complete discrete
valued fields in the unequal characteristic case. 94 The specific and highly
interesting description of those fields by means of the Witt vector calculus is
completely lost in Mac Lane’s setup. In our opinion, the main point of Mac

94Mac Lane calls this “the p-adic case”.
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Lane’s paper is the discovery of the new notion of “separable field extension”
which indeed became an important tool in field theory in characteristic p. It
is not only applicable in the proof of Mac Lane’s Uniqueness Theorem but it
has proved to be useful in many other situations, e.g., in algebraic geometry
of characteristic p. In this respect Mac Lane’s paper [1939] and the follow up
[1939a] are indeed to be called a “classic”, as does Kaplansky in [1979a].

Moreover, Mac Lane’s method of describing the structure of discrete com-
plete valuation rings has since served as a model for further similar descriptions
in topological algebra where Witt vectors cannot be used. See, e.g., Cohen’s pa-
per [1946a] on the structure of complete regular rings, as well as Samuel [1953],
Geddes [1954], and also [1959].

Let us note a minor but curious observation. In his paper [1939] Mac Lane
mentions that the Hasse-F. K. Schmidt paper [1933c] contains an error and he
sets out to give a new, correct proof. The proof is correct but a certain more
general statement is not. Consider the situation of the relative uniqueness theo-
rem. If the residue field K admits a separating basis of transcendency then, Mac
Lane claims, the conclusion of that theorem holds even without the hypothesis
that the valuation of k is discrete. Certainly this is not generally true in view
of the existence of immediate extensions of complete fields with non-discrete
valuations. In a subsequent paper [1940] he corrects this error, mentioning that
his student I. Kaplansky had called his attention to the counter examples. We
note that Mac Lane’s error is of the same type as F. K. Schmidt’s in his letter
to Hasse of Feb 23, 1930 ! (See section 4.3.1.)

5 Ostrowski’s second contribution

We will now discuss Ostroswki’s great paper “Untersuchungen zur arithmeti-
schen Theorie der Körper” [1934]. This paper has 136 pages; it almost looks
like a monograph on valuation theory. It seems to be written as a follow up to
Ostrowski’s first papers [1913a],[1917], [1918]. Indeed, Ostrowski tells us in the
introduction that a substantial part of its contents was already finished in the
years 1915-1917. This was even earlier than Rychĺık’s [1919]. And we shall see
that the Ostrowski paper contains very important and seminal ideas.

I do not know why Ostrowski waited more than 14 years with the publication
of these results. The author says it was because of the adversity of the times and
the great length of the manuscript (“die Ungunst der Verhältnisse und wegen
des großen Umfangs von 110 Manuskriptseiten”). Perhaps, we may guess, his
interest had partly shifted to other problems in mathematics, for within those
14 years he published about 70 other papers of which only a few can be said to
have been influenced by valuation theory, and only one had a closer connection
to valuation theory proper, namely [1933a] on Dirichlet series.

Ostrowski’s former valuation theory papers were written and published dur-
ing the years of the first world war 1914–1918. We are told by Jeltsch-Fricker 95

in [1988] that those years were very special for Ostrowski who, as said above,
studied in Marburg (Germany) at that time. Since he was a Russian citizen
and Russia was at war with Germany, he was confined to internment. On the
intervention of Kurt Hensel however, he was granted certain privileges, among
them the use of the university library at Marburg. In later years Ostrowski

95She had been assistant to Ostrowski in Basel.
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said that this outcome had been reasonably satisfactory for him and he did not
consider the four years of the war as wasted, for:

The isolation enabled him to concentrate fully on his investigations.
He read through mathematical journals, in his own words, from cover
to cover, occupied himself with the study of foreign languages, music
and valuation theory (almost completely on his own). 96

We see that valuation theory is explicitly mentioned. On the other hand,
it is also mentioned that he had learned a lot more by reading mathematical
journals from cover to cover 97, and hence he may have discovered that his
interests were not confined to valuation theory. In fact, after the war was ended
and he was free again to move around in Germany, he left Marburg and went to
Göttingen. 98 There he was absorbed with quite different activities. He obtained
his Ph.D. in the year 1920 with E. Landau and D. Hilbert. The title of his thesis
was “Über Dirichletsche Reihen und algebraische Differentialgleichungen.” 99

We suspect that by 1932 Ostrowski realized that valuation theory had de-
veloped considerably in the meantime, and that a number of published results
(e.g., by Deuring and by Krull) were contained as special cases in his old, un-
published manuscript. But perhaps it was his work on Dirichlet series [1933a]
which had prompted him to dive into valuation theory again; in that paper he
had used some facts about Newton diagrams for polynomials over Henselian
fields. Moreover, there had appeared Krull’s fundamental paper [1932g] which
contained much of the basic ideas of Ostrowski concerning what he calls the
abstract “Riemann surface” of a field. In any case he decided to finally publish
his old manuscript, enriched with certain new ideas concerning the abstract Rie-
mann surface which he dates to April–July 1932. He submitted the manuscript
for publication to the “Mathematische Annalen” in 1932, and it was published
in 1934.

“Ostrowski’s Theorem” in [1917] (see section 2.2.3) had stated that every
archimedean valued field is isomorphic, as a topological field, to a subfield of
the complex number field C. (See section 2.2.3.) In view of this result, his new
paper [1934] is devoted exclusively to non-archimedean valuations. Instead of
valuations he also speaks of prime divisors of a field K – a notion which, as we
have seen above, he had already introduced in his earlier paper [1918]. He uses
valuations in the additive form; thus a prime divisor p of the field K is given by

96Cited from Jeltsch-Fricker [1988].
97It is reported that Ostrowski had a phenomenal memory capacity. In later years, when he

was studying in Göttingen, he was used by his fellow students as a living encyclopedia. If one
wanted to know details about when and where a particular mathematical problem had been
discussed and who had done it, one could ask Ostrowski and would obtain the correct answer,
including the volume number and perhaps also the page number of the respective articles.

98There is a postcard, dated June 12, 1918, from Emmy Noether in Göttingen to Ostrowski
in Marburg, expressing her delight that he will soon move to Göttingen. The question arises
whether Ostrowski had shown his valuation theoretic manuscript of [1934], which he said to
have been essentially completed in 1917 already, to Emmy Noether. But there is no evidence
of this, and we believe he rather did not . Otherwise she would probably have told her student
Deuring about it, 12 years later when Deuring wrote his paper [1931a] (see section 4.1.1).
After all, Deuring’s results were contained in Ostrowski’s (see section 5.2). But Deuring does
not cite Ostrowski’s manuscript, and so we believe that he did not know about it.

99This was connected with one of Hilbert’s problems of 1900, and hence stirred much inter-
est.

53



a map v : K → R ∪+∞ such that

v(a) < +∞ if a 6= 0, and v(0) = +∞ (5.1)
v(a+ b) ≥ min(v(a), v(b)) (5.2)
v(ab) = v(a) + v(b) (5.3)

∃a : v(a) 6= 0,+∞ (5.4)

Ostrowski calls v(a) the “order” (Ordnungszahl) of a at the prime p. Through
this notation and terminology he refers to the analogies from the theory of
complex functions and Riemann surfaces – a viewpoint which penetrates the
whole of Ostrowski’s theory in this paper. It seems that Ostrowski was guided
to a large extent by his experiences with the handling of Dirichlet series in
his former papers. In fact, the first example of valued fields which Ostrowski
presents here are fields of Dirichlet series.

According to the definitions, the valuation v is uniquely determined by its
prime divisor p up to equivalence, which means up to a real positive factor.

Ostrowski’s paper consists of three parts. Each part is rich in interesting
results, and we discuss them in three separate sections.

5.1 Part I. Henselian fields.

After the basic definitions and facts of valuation theory, Ostrowski introduces
what today is called a “Henselian field”, i.e., a valued field K in which Hensel’s
Lemma holds. In this connection it is irrelevant which of the various equivalent
forms of Hensel’s Lemma is used in the definition. Ostrowski uses the following:

Fundamental Lemma: Consider a polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a0

whose coeffcients belong to the valuation ring of the prime p of K.
Assume that

f(x) ≡ anxn+· · ·+am+1x
m+1+xm mod p with n > m > 0

where the congruence is to be understood coefficient-wise modulo the
maximal ideal of the valuation ring. Then f(x) is reducible in K.

If this Fundamental Lemma holds for a valued field K then Ostrowski calls the
field “relatively complete” (relativ perfekt). Today the terminology is “Henselian”.
For the convenience of the reader we prefer to use today’s terminology; thus
we will always say “Henselian” when Ostrowski says “relatively complete”. 100

Apart from the terminology, Ostrowski treats these fields in the same way as we
would do today. He clearly sees that the important algebraic property of com-
plete valued fields is not their completeness but the validity of Hensel’s Lemma,
and he creates his theory accordingly.
100We do not know when and by whom the name “Henselian field” had been coined; probably

it was much later. Schilling in his book [1950] still uses the terminology of Ostrowski. Azumaya
[1951] introduces the notion of “Henselian ring” in the context of local rings, but he does not
tell whether this terminology had been used before for valuation rings or valued fields.
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Ostrowski shows that every valued fieldK admits a HenselizationKh, unique
up to isomorphism, and he proves the standard and well known properties of it.
He does this in several steps.

Step 1. It is proved that the completion K̂ is Henselian, which is to say
that the above mentioned Fundamental Lemma holds in K̂. Ostrowski remarks
that this is a special case of the more general reducibility theorem in Rychĺık’s
paper [1923f], but since he does not go for the full Hensel-Rychĺık Lemma the
proof of the Fundamental Lemma is particularly simple.

Step 2. It is proved that for any Henselian field, its valuation can be
extended uniquely to the algebraic closure. Thus Ostrowski repeats a third
time what Kürschák [1912] and Rychĺık [1923f] had already proved. But the
emphasis here is that the result depends on the Henselian property only, and
completeness is not required. Of course, this could have been seen immediately
from the proof given by Kürschák, or that by Rychĺık – provided the notion
of “Henselian field” would have been established. But neither Kürschák nor
Rychĺık had conceived that notion, and it was Ostrowski who introduced it.

At the same time, the important fact is proved that any algebraic extension
L|K, finite or infinite, of a Henselian field K is Henselian again. (Recall that
for extensions of infinite degree, this not true if one replaces “Henselian” by
“complete”; this had been shown by Ostrowski in his first paper [1913a] in
reply to Kürschák’s question.) Moreover, given any valued field L then the
intersection of two valued Henselian subfields of L is Henselian again.

Step 3. Now, for an arbitrary valued field K, Ostrowski constructs its
Henselization Kh as the separable-algebraic closure of K within the completion
K̂. It is proved that Kh, if defined in this way, is Henselian and, moreover, that
every Henselian field extension of K contains a K-isomorphic image of Kh.

Step 4. At the same time, Ostrowski connects this notion with Galois
theory, as follows. He presents a description of the prolongations of the valuation
v of K to an arbitrary algebraic extension L of K, finite or not, in the following
manner. Those prolongations are all given by the K-isomorphisms 101 of L
into the algebraic closure of the completion K̂, observing that the image is
uniquely valued by Steps 1 and 2. If L|K is a Galois extension 102 then it
follows, after fixing one prolongation w of v to L, that all other prolongations
are obtained from w by the automorphisms of the Galois group. In fact, the
other prolongations correspond to the cosets of the Galois group G modulo the
decomposition subgroup Z, consisting of those automorphisms which leave w
fixed. And the fixed field of Z in L is precisely the intersection Kh ∩ L – more
precisely, it is isomorphic to it as valued field. Thus, Kh∩L is the decomposition
field of v in L (unique up to conjugates over K).

Taking L = Ks to be the separable algebraic closure, it follows that Kh is the
decomposition field of v in Ks. This explains the terminology of Ostrowski who
does not speak of “Henselization” but calls Kh the “reduced universal decom-
position field”. The word “reduced” refers to the fact that Kh is separable over
K, and “universal” means that for any Galois extension L|K the intersection
Kh ∩ L is the decomposition field.
101Ostrowski uses the word “permutation” instead of “isomorphism”, thereby following the

old terminology of Dedekind.
102Ostrowski also considers what he calls a “normal extension”, which is a Galois extension

followed by some purely inseparable extension.
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All this is quite the standard procedure today. 103 We have mentioned it
in such detail because it seems remarkable that these ideas can be found in
Ostrowski’s paper [1934] which, according to the author, had been written in
its essential parts in 1915 already. The main development of valuation theory
before Ostrowski’s [1934] was influenced by the applications to number fields, in
which case an important role was played by the completion because it permitted
to use analytic arguments in the pursuit of arithmetical problems – for instance,
the use of exponential and logarithmic function, of the exponentiation with p-
adic integer exponents etc. Thus from the arithmetic viewpoint, there was more
interest, in those years, in the analytic properties of valued fields which implies
working with completions, rather than with Henselizations. The Henselization
is the proper notion if one concentrates on the algebraic properties of valuations.

With this background, the essential ideas of Ostrowski’s paper were perhaps
not adequately appreciated by the mathematical public of that time, at least not
by those coming from number theory. In fact, in the Zentralblatt review about
Ostrowski’s paper, F. K. Schmidt did not even mention the notion of Henselian
(or relatively complete) field and says about Part I: “Seine Ergebnisse sind
im wesentlichen bekannt.”. This indicates that his attention was fixed on the
completion which he was used to, and he did not appreciate the importance of
the new notion of Henselization. 104

In view of this we find Ostrowski’s algebraic theory of Henselizations re-
markable indeed.

In later times the notion of Henselization turned out to be even more im-
portant in the theory of general Krull valuations. In that case the completion is
not necessarily Henselian and hence not useful for discussing the prolongation
of valuations. Thus Ostrowski, although his paper is concerned with valuations
of rank 1 only, prepares the way for the discussion of higher rank valuations too
by creating the notion of Henselization and pointing out its importance.

This Part I contains the Approximation Theorem for finitely many non-
archimedean primes of a field K. We have discussed this theorem in section
4.2.1. Ostrowski speaks of “independence” (Unabhängigkeit) of finitely many
primes in a field.

5.1.1 Newton diagrams

In some of his arguments, Ostrowski uses the method of Newton diagram of a
polynomial over a valued field K. He says:

If the field K is Henselian then the sides of the Newton diagram correspond
to the irreducible factors of the polynomial.

This last statement can be used as the definition of Hensel fields.
The use of the graphic Newton diagram method is not really necessary but it

is lucid and the arguments become brief. Ostrowski takes the main statements
about Newton diagrams for granted; he does not even give the definition of the
Newton diagram of a polynomial and cites his earlier paper [1933a]. Although
there he discusses complete fields only, it is clear from the context that the theory
of Newton diagrams of [1933a] applies in the same way to arbitrary Henselian
fields in his present paper. It seems that this is the main aim of Ostrowski when
103Except perhaps that in Step 1 one would today avoid the completion altogether by showing

directly that the “reduced universal decomposition field” (see Step 4) is Henselian.
104The review appeared in vol. 5 of the Zentralblatt.
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he discusses Newton diagrams in his paper. He wishes to put into evidence that
these can be useful over arbitrary Henselian fields. 105

5.2 Part II: Ramification and defect

And he sets out to show this in the second part of [1934]. There he discusses
an algebraic extension L of a valued field K. One of his main results, striking
because of its generality, is the following relation, valid for an arbitrary algebraic
extension field L of finite degree n. There are only finitely many extensions of
the given valuation of K to L; let r denote their number. For the i-th extension
let ei denote the corresponding ramification index and fi the residue degree.
With this notation, Ostrowski proves the important degree relation

n =
∑

1≤i≤r

δieifi (5.5)

where δi denotes the “defect” of the i-th extension. In the case of classical
algebraic number theory, where the non-archimedean valuations are defined by
prime ideals of Dedekind rings and algebraic extensions are separable, the rela-
tion (5.5) was well known at the time (with trivial defects δi = 1) through the
work of Dedekind, Hilbert, Weber and, later, Emmy Noether. In the general
case it was known that n ≥

∑
i eifi (as far as this question had been studied).

The achievement of Ostrowski was that he could define the defect δi as a local
invariant (i.e., depending only on the local extension Lhi |Kh of the respective
Henselizations) and show that it is always a power of the characteristic exponent
p of the residue field.

For Galois extensions, all the prerequisites of defining the defect and deriving
the formula (5.5) were contained already in the papers by Deuring [1931a] and
Krull [1930c], as we had pointed out already in section (4.1.1). But neither of
them took the step to introduce the defect as an invariant which is worthwhile
to investigate. Perhaps this can be explained by the fact that in the classical
cases in number theory the defect is always trivial and, hence, the appearance
of a non-trivial defect was considered to be some pathological situation which
was of no particular interest.

But not for Ostrowski. He goes to great length to investigate the structure
of the defect; in particular to give criteria for δi = 1, in which case the extension
Lhi |Kh is defectless. Today, Ostrowski’s notion of defect and its generalizations
have become important in questions of algebraic geometry; see, e.g., Kuhlmann’s
thesis [1989a], and also his paper [2000a].

Ostrowski derives in detail a generalization of a good part of the Dedekind-
Hilbert ramification theory: he defines and studies decomposition field, inertia
field, ramification field etc. and their corresponding automorphism groups. But
Galois theory does not play a dominant role in this paper; mostly the author
prefers to consider fields instead of their Galois groups. 106 The reason for this
is that he wishes to include, in a natural way, the inseparable field extensions
which cannot be handled by Galois theory. Nevertheless he cites the recent
105 Newton diagrams, in the framework of valuation theory, had also been studied by Rella

[1927d] .
106He even avoids the use of Sylow’s theorem from group theory and, instead, uses a trick

(“Kunstgriff ”) on algebraic equations, attributed to Foncéneux.
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papers by Krull [1930c], Deuring [1931a], and Herbrand [1932b] where similar
questions are discussed in a different way, relying on Galois theory and ideal
theory. (See section 4.1.) As to ideal theory, Ostrowski says explicitly:

Wir haben vom Idealbegriff keinen Gebrauch gemacht, da es viel-
leicht einer der Hauptvorzüge der hier dargestellten Theorie ist, daß
durch sie der Idealbegriff eliminierbar wird.

We have not made use of the notion of ideal since it is perhaps the
main advantage of the theory as presented here, that the notion of
ideal can be avoided.

Indeed, valuation theory had been created by Kürschák, following Hensel’s ideas,
in order to have a directly applicable tool to measure field elements with respect
to their size or their divisibility properties, and in this respect to be free from
ring or ideal theory.

5.3 Part III: The general valuation problem

5.3.1 Pseudo-Cauchy sequences

In this part, Ostrowski first considers the problem of extending a valuation
of a field K to a purely transcendental field extension K(x). To this end he
develops his theory of pseudo-Cauchy sequences 107 a1, a2, a3, . . . with ai ∈ K;
the defining property is that finally (i.e., for all sufficiently large n) we have
either

‖an+1 − an‖ < ‖an − an−1‖ (5.6)

or an+1 = an . (Here, Ostrowski switches to the multiplicative form of valuations
in the sense of Kürschák.)

If an is a pseudo-Cauchy sequence inK, or in some valued algebraic extension
of K, and 0 6= f(x) ∈ K(x) then f(an) is also a pseudo-Cauchy sequence.
Moreover, limn→∞ ‖f(an)‖ exists and is called the limit value (Grenzbewertung)
of f(x) with respect to the pseudo-Cauchy sequence an. If this limit value does
not vanish for all non-zero polynomials then Ostrowski puts

‖f(x)‖ = lim
n→∞

‖f(an)‖

and obtains a valuation of K(x) extending the given valuation in K. In this
situation x is called a pseudo limit of the sequence an. Moreover, Ostrowski
shows:

Every extension of the valuation of K to K(x) is obtained in this
way by a suitable pseudo-Cauchy sequence in the valued algebraic
closure of K, so that x becomes a pseudo limit of the sequence.

This is a remarkable result indeed. The question of how the valuation of K
extends to a purely transcendental extension is quite natural and certainly had
been asked by a number of people. Traditionally there had been the solution

‖f(x)‖ = ‖c0 + c1x+ · · ·+ cnx
n‖ = max(‖c0‖, . . . , ‖cn‖)

107Ostrowski uses the terminology “pseudo convergent” instead of “pseudo-Cauchy”. This
reflects the terminology in analysis of that time. What today is called “Cauchy sequence” in
analysis, was at that time often called “convergent sequence” (meaning convergent in some
larger space). Alternatively, the terminology “fundamental sequence” was used, following
G. Cantor [1883], p.567.
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which is called the “functional valuation” of the rational number field, with
respect to the given valuation of the base field K. More generally, there was
known the solution

‖f(x)‖ = max(‖c0‖, ‖c1‖µ, . . . , . . . , ‖cn‖µn)

if µ is any given positive real number; this is called by Ostrowski the extension
“by an invariable element”. These solutions are now contained as special cases
in Ostrowski’s construction, namely, if the pseudo-Cauchy sequence an is “of
second kind” which means that finally ‖an+1‖ < ‖an‖; we then have µ =
limn→∞ ‖an‖.

Ostrowski investigates in some detail how the various properties of the
pseudo-Cauchy sequence influences the properties of the extended valuation.
Of particular interest is the case when both the residue field and the value
group are preserved, i.e., when K(x) becomes an immediate extension of K. If
K is algebraically closed then this is the case if x is a “proper” pseudo limit of
the sequence an. This is defined by the condition that the distance δ of x to K is
not assumed, i.e., to every b ∈ K there exists c ∈ K such that ‖x−c‖ < ‖x−b‖.
Equivalently, ‖an − c‖ < ‖an − b‖ for sufficiently large n.

The notion of pseudo-Cauchy sequence and its use for extending valuations
to the transcendental extension K(x) was a completely new idea which perhaps
originated in Ostrowski’s work on fields of Dirichlet series [1933a]. Anyhow,
this aspect of valuation theory went far beyond what was known and studied
in classical algebraic number theory where discrete valuations dominated. The
introduction and study of pseudo-Cauchy sequences and their pseudo limits is
to be viewed as a milestone in general valuation theory. It opened the path to
the more detailed study of Krull valuations of which the well known Harvard
thesis of Irving Kaplansky [1942] was to be the first instance.

5.3.2 Remarks on valuations of rational function fields

The problem of determining all possible extensions of a valuation from K to the
rational function field K(x) had been studied already by F. K. Schmidt. In a
letter to Hasse dated March 7, 1930 he investigated all unramified extensions of
the valuation to K(x). In doing so he answered a question put to him by Hasse.
He came to the conclusion that, if the residue field K is algebraically closed
then every unramified extension of the valuation is a functional extension with
respect to a suitable generator of K(x), and conversely. Of particular interest is
a postscript to his letter where he drops the hypothesis that K is algebraically
closed but assumed that the valuation is discrete. He wrote:

Nach Abschluß dieses Briefes bemerke ich, daß ich die Prozesse, die
zu jeder möglichen diskreten Fortsetzung führen, vollständig überse-
hen kann. Außer den in vorstehenden Überlegungen explizit oder
implizit enthaltenen kommt noch ein wesentlich neuer Typus hinzu,
bei dem der Restklassenkörper der Fortsetzung unendliche algebrais-
che Erweiterung von K ist. Falls Sie diese vollständige Übersicht
interessiert, so schreibe ich Ihnen gerne darüber.

After writing this letter I discover that I am able to completely de-
scribe all processes which lead to all possible discrete prolongations.
Besides of those which are contained explicitly oder implicitly in the
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above considerations, there appears a new type, in which the residue
field is an infinite algebraic extension of K. If you are interested in
this complete description then I will be glad to write you about this.

Unfortunately this topic appears neither in later letters of F. K. Schmidt nor
in his publications. So we will never know presicsely what F. K. Schmidt had
discovered. But from those remarks it does not seem impossible that he had
already the full solution which later was given by Mac Lane in his paper [1936f].

That paper of Mac Lane appeared two years after Ostrowski’s [1934]. Mac
Lane cites Ostrowski but, he says, his description is different. However, although
formally it is indeed different, it is not difficult to subsume Mac Lane’s results
under those of Ostrowski. Let us briefly report about [1936f]:

Let us write the valuations additively. The given valuation on K is de-
noted by v. Suppose v is extended to a valuation w of K(x). Then w can be
approximated as follows:

Let µ = w(x). First consider the valuation v1 on K[x] defined for polyno-
mials f(x) =

∑
0≤i≤n aix

i by

v1(f(x)) = min
0≤i≤n

(v(ai) + iµ) .

This is the valuation with x as an “invariable element” in the terminology of
Ostrowski, as mentioned earlier already. Due to the non-archimedean triangle
inequality we have

v1(f(x)) ≤ w(f(x)) (5.7)

for every polynomial f(x) ∈ K[x]. This v1 is called the first approximation to
w. We have either v1 = w, or there is a polynomial ϕ(x) such that

v1(ϕ(x)) < w(ϕ(x)).

Suppose that ϕ(x) is monic of smallest degree with this property; in particular
ϕ(x) is irreducible. Put µ1 = w(ϕ(x)). Every polynomial f(x) ∈ K[x] admits a
unique expansion of the form

f(x) =
∑

0≤i≤n

ai(x)ϕ(x)i

with ai(x) ∈ K[x] and deg ai(x) < degϕ(x). Then put

v2(f(x)) = min
0≤i≤n

(v1(ai(x)) + iµ1) .

This is a valuation of K[x], called the second approximation of w. Now we have

v1(f(x)) ≤ v2(f(x)) ≤ w(f(x)) . (5.8)

If v2 6= w then we can repeat this process, thus arriving at a sequence v1 ≤ v2 ≤
v3 ≤ · · · ≤ w of valuations of K[x]. Then we have the following alternatives.
Either vk = w for some k; in this case w is called a k-fold augmented valua-
tion. 108 Or we have that v∞ = limk→∞ vk is a valuation of K[x]. Moreover, if
the original valuation v of K is discrete then Mac Lane shows that v∞ = w.
108Mac Lane [1936f] speaks of “values” instead of “valuations”.
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This leads to a constructive description of all possible valuations of K(x) if
the original valuation is discrete; Mac Lane carefully describes the properties of
those polynomials ϕ(x) which appear in the successive approximations; he calls
them “key polynomials”. If the valuation w is not of augmented type then the
value group of w is commensurable with the value group of v, and the residue
field of K(x) with respect to w is the union of the increasing sequence of the
residue fields of the approximants vk, each of which is a finite extension of K.

We see that F. K. Schmidt’s observations, as mentioned in his 1930 letter to
Hasse, are quite in accordance with these results of Mac Lane.

The motivation of Mac Lane for this investigation was to obtain a systematic
explanation of various irreducibility criteria for polynomials, like the Eisenstein
criterium; such irreducibility criteria had been given e.g., by Kürschák [1923e],
Ore [1927e], Rella [1927d]. For details we refer to Mac Lane’s paper [1938]
which, as Kaplansky [1979a] points out, stands as definitive to this day.

We also remark that the said limit construction of valuations w of K(x) is
of the same type as Zariski has constructed in his investigations on algebraic
surfaces, in particular by obtaining valuations of a two-dimensional function
field by succesive blow-ups. But this belongs to the subject of the second part
of our project, so we will not discuss it here.

5.3.3 The general valuation problem

Let us return to Ostrowski’s paper [1934], Part III. There, Ostrowski puts the
“general valuation problem” as follows: Given a valued field K and an arbitrary
extension field L of K, one should give a method to construct all possible ex-
tensions of the valuation from K to L. The solution is, he says, as follows: Let
T = (ti)i∈I be a basis of transcendency of L|K. Then L|K(T ) is algebraic. The
extensions of a valuation to an algebraic field extension are decribed in Part II.
Hence it suffices to deal with the purely transcendental extension K(T ). Now,
he says, the index set I may be assumed to be well ordered, and so K(T ) is
obtained from K by successively adjoining one transcendental element ti to
the field constructed in the foregoing steps. Hence it suffices to deal with just
one transcendental element, and this case is covered by Ostrowski’s theory of
pseudo-Cauchy sequences.

F. K. Schmidt in his Zentralblatt-review says this solution is purely genetic
(rein genetisch). And he compares it with the description which Hasse and
himself had given of the complete discrete valued fields. This is of quite differ-
ent nature (see section 4.3.1). He says that these results are not contained in
Ostrowski’s paper, which aims primarily at non-discrete valuations.

Of course F. K. Schmidt is correct. It is clear that both view points, the
structural one of Hasse-F. K. Schmidt and the “genetic” one by Ostrowski are of
interest, and that none supersedes the other. The question is why F. K. Schmidt
found it necessary to stress this self-evident point in his review ?

There is a letter of F. K. Schmidt to Hasse dated Sep 9, 1933. F. K. Schmidt
had been in Altdorf at the Swiss Mathematical Congress and had met Ostrowski
there. The latter had informed him that just now he is reading the galley proofs
of a long paper on valued fields in which he (Ostrowski) gives a precise descrip-
tion how to construct those fields. (Obviously these were the galley proofs for
Ostrowski’s paper [1934].) F. K. Schmidt reports to Hasse that upon questioning
it seems that Ostrowski “had nothing essential of our things” (“. . . daß er von
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unseren entscheidenden Sachen nichts hat”). And he says that most probably
there is no overlap between the paper of Ostrowski and their joint paper (which
was expected to appear in the next days). Nevertheless F. K. Schmidt seems to
have been somewhat worried because he did not find out what precisely was con-
tained in Ostrowski’s paper. For Ostrowski in their conversation had claimed
not to remember details. With this background we may perhaps understand
why F. K. Schmidt had included the above mentioned sentence in his review of
Ostrowski’s paper. It sounds to me like a sigh of relief, because his long paper
[1933c] had not been superseded by that of Ostrowski. Of course he did not yet
know that [1933c] contained an error, nor that this paper was to be superseded
within two years by Teichmüller and Witt.

5.3.4 The Riemann surface of a field

Ostrowski starts the last §12 of his paper with the definition of what today is
called place of a field. (His terminology is “Restisomorphie”). 109 He reports
that to every such place there belongs a “general valuation” as defined by Krull.
He defines a “simple” place to be one whose value group has archimedean or-
dering and shows that to such a “simple” place there belongs a valuation in his
sense, i.e., the value group is a subgroup of the real numbers. Thus the simple
places correspond to the “primes” as defined earlier.

If K|k is an algebraic function field of several variables over an algebraically
closed field then the set of all places K → k is called by Ostrowski the “absolute
Riemann surface” of K over k. 110 Ostrowski shows that every place of this
absolute Riemann surface can be obtained as a composition of simple places,
i.e., of primes. If the number of these primes equals the degree of transcendency
of K|k then the point is called “Puiseux point”. At such a point every element
in K admits a Puiseux expansion – provided K|k is of characteristic 0.

We see that this last §12 is of different flavor than the foregoing sections. The
reader gets the impression that §12 had been inserted only after Ostrowski had
seen the famous paper of Krull [1932g] introducing general valuation theory. We
observe that Krull’s paper [1932g] had appeared in 1932, and in the same year
Ostrowski submitted his article (which appeared in 1934). Ostrowski strongly
recommends to “read the rich article of Krull” (“. . . die Lektüre der gehaltreichen
Abhandlung von Herrn Krull aufs angelegentlichste empfohlen. . . ”).

In reading Ostrowski’s paper (not only this §12) one cannot help to wonder
that the nature and the form of his results are such that they point directly to
their generalization within the framework of the theory of general Krull valua-
tions.

We may imagine that after having seen Krull’s paper Ostrowski looked again
at his old, never published manuscript of 1917 and realized the coherence of his
ideas with the new ones introduced by Krull. And this then induced him to
have it finally published, with relatively small changes, in the hope that it may
prove helpful in further development. And certainly it did.
109Today we would say “Resthomomorphie ”. But Ostrowski still uses the older terminology

where the notion of “isomorphy” is used when we would say “homomorphy”. In this ter-
minology one distinguishes between “holoedric isomorphy” (meaning “isomorphy” in today’s
terminology) and “meroedric isomorphy” (which means “homomorphy”).
110Today it is also called “Zariski space” or “Zariski-Riemann manifold”.
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développement de Taylor. Journ. de Math. pures et appl., sér.4, vol.8
(1892) 8
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[1907] K. Hensel, Über die arithmetischen Eigenschaften der Zahlen. Jahres-
ber. Dtsch. Math.-Ver. 16 (1907) I: 299–388, II: 388–393, III: 473–496.
6
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16 pages. 14
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[1923f] K. Rychĺık, Zur Bewertungstheorie der algebraischen Körper. Journ. f.
d. reine u. angewandte Math. 153 (1924) 94–107 14, 16, 17, 55

[1923g] L.E. Dickson, Algebras and their Arithmetics. Chicago (1923). Reprint
1938. 28

[1924a] H. Hasse, Symmetrische Matrizen im Körper der rationalen Zahlen.
Journ. f. d. reine u. angewandte Math. 153 (1924) 113–130 22

[1924b] H. Hasse, Darstellbarkeit von Zahlen durch quadratische Formen in
einem beliebigen algebraischen Zahlkörper. Journ. f. d. reine u. ange-
wandte Math. 153 (1924) 113–130 22
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