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Preface

This book is the result of many years’ work. I am telling the story of the
Riemann hypothesis for function fields, or curves, of characteristic p starting
with Artin’s thesis in the year 1921, covering Hasse’s work in the 1930s on
elliptic fields and more, until Weil’s final proof in 1948. The main sources are
letters which were exchanged among the protagonists during that time which
I found in various archives, mostly in the University Library in Göttingen
but also at other places in the world. I am trying to show how the ideas
formed, and how the proper notions and proofs were found. This is a good
illustration, fortunately well documented, of how mathematics develops in
general.

Some of the chapters have already been pre-published in the “Mitteilungen
der Mathematischen Gesellschaft in Hamburg”. But before including them
into this book they have been thoroughly reworked, extended and polished. I
have written this book for mathematicians but essentially it does not require
any special knowledge of particular mathematical fields. I have tried to
explain whatever is needed in the particular situation, even if this may seem
to be superfluous to the specialist.

Every chapter is written such that it can be read independently of the other
chapters. Sometimes this entails a repetition of information which has al-
ready been given in another chapter. The chapters are accompanied by
“summaries”. Perhaps it may be expedient first to look at these summaries
in order to get an overview of what is going on.

The preparation of this book had been supported in part by the Deutsche
Forschungsgemeinschaft and the Marga und Kurt Möllgaard Stiftung. A
number of colleagues and friends have shown interest and helped me with
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their critical comments; it is impossible for me to mention all of them here.
Nevertheless I would like to express my special thanks to Sigrid Böge, Karin
Reich, Franz-Viktor Kuhlmann and Franz Lemmermeyer.

References: Most of the letters and documents cited in this book are
contained in the Handschriftenabteilung of the University Library of Göttin-
gen (except if another source is mentioned), most but not all of them in the
Hasse-files. The letters from Hasse to Davenport are contained in the archive
of Trinity College, Cambridge. The letters from Hasse to Mordell are con-
tained in the archive of King’s College, Cambridge. The letters from Hasse
to Fraenkel are in the archive of the Hebrew University, Jerusalem.

I have translated the cited text into English for easier reading. Transcriptions
of the full letters (and more) in their original language are available at my
homepage:

https://www.mathi.uni-heidelberg.de/∼roquette/
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Chapter 1

Overture

1.1 Why history of mathematics ?

Mathematics is, on the one hand, a cumulative science. Once a mathemat-
ical theorem has been proved to be true then it remains true forever: it is
added to the stock of mathematical discoveries which has piled up through
the centuries and it can be used to proceed still further in our pursuit of
knowledge.

On the other hand, the mere proof of validity of a theorem is in general not
satisfactory to mathematicians. We also wish to know “why” the theorem
is true, we strive to gain a better understanding of the situation than was
possible for previous generations. Consequently, although a mathematical
theorem never changes its content we can observe, in the history of our
science, a continuous change of the form of its presentation. Sometimes a
result appears to be better understood if it is generalized and freed from
unnecessary assumptions, or if it is embedded into a general theory which
opens analogies to other fields of mathematics. Also, in order to make further
progress possible it is often convenient and sometimes necessary to develop
a framework, conceptual and notational, in which the known results become
trivial and almost self-evident, at least from a formalistic point of view. So
when we look at the history of mathematics we indeed observe changes, not
in the nature of mathematical truth, but in the attitude of mathematicians
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1.1. WHY HISTORY OF MATHEMATICS ? 12

towards it. It may well be that sometimes a new proof is but a response to
a current fashion, and sometimes it may be mere fun to derive a result by
unconventional means. But mostly the changes in attitude reflect a serious
effort towards a better understanding of the mathematical universe.

I believe it is worthwhile to observe such trends in the past and see how
they have led to the picture of today’s mathematics. Here I am telling the
fascinating story of the emergence of the Riemann Hypothesis in character-
istic p and of its proof. Initiated by Artin in analogy to algebraic number
theory, further developed by Hasse and Deuring in the framework of function
fields, and later embedded into the new algebraic geometry by A. Weil, this
development exhibits all the features of mathematical research mentioned
above.

Our story covers roughly the years from 1921 to 1948 (with an appendix
devoted to Bombieri’s proof in 1976). In this period Hasse and his team did
not yet reach a proof for arbitrary function fields of higher genus. But all the
prerequisites of a proof had been available already in the year 1936. In order
to provide evidence for this I have included a chapter with a short “virtual”
proof which, indeed, could have been given in 1936 by Hasse or Deuring or
any one of their team.

This story is a good example of what we often observe in the history of
mathematics:1 that much effort and time had to be spent by the pioneers
to explore their way into unknown territory. Thereby they paved the way
for the next generations who now can travel comfortably along their smooth
tracks. I have extensively used original letters and documents since this
provides a glimpse into the communication channels of mathematicians of
that time. One can see the difficulties which had to be overcome although
nowadays they are not any more considered difficult at all. This book may
be regarded as just a commentary to those letters which had been exchanged
at that time.

I have met in my life most of the people from whose letters I am citing
but I have to admit that in the past I did not ask them about their own
opinions and remembrances of those times. Today I regret that I missed
the opportunity to get to know more about the personal memories of these
people. Nevertheless, my interpretation of their letters and notes may show

1And not only of mathematics.
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a certain personal touch in as much as it could possibly depend on my own
impressions of their personalities.

1.2 Artin and the intervention by Hilbert

Our story starts in Göttingen in the early 1920s. The mathematical scene in
Göttingen had recovered from the difficult years of World War I and the im-
mediate post-war period. Göttingen was again considered as “the” center of
mathematics in the world. It was to become an attractive place in particular
for young mathematicians from Germany and from abroad, who were eager
to learn about the latest developments. The mathematical atmosphere was
bristling with new ideas – an ideal background for progress.

But not all the young people arriving in Göttingen found the atmosphere
congenial to their expectations. Let me cite from a letter written by a young
Austrian postdoc to his academic teacher. The letter is dated 30. November
1921. He had recently arrived in Göttingen and had already introduced
himself to the big shots, i.e., to Courant, Hilbert, Klein and Landau. (Emmy
Noether was not yet considered an important figure in the Göttingen scene
whom any newcomer had to formally introduce himself – although she was
the one who cared personally for the young people arriving in Göttingen,
including our man.) He had been friendly received, and Hilbert had invited
him to give a talk at the Mathematical Society of Göttingen in order to report
on his thesis and further work. The talk had been scheduled for 25. November
1921.

However, in his letter five days later he reports that he is deeply disappointed:

“. . . I have now given my talk but with Hilbert I had no luck .
Landau and the other number theorists were quite pleased with it,
they said so even during my talk when Hilbert often interrupted
me. But he kept interrupting frequently – finally I could not speak
any more at all – and he said that from the start he did not even
listen since he had the impression that everything was trivial. But
then he changed his mind when I mentioned the said decomposi-
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tion of prime numbers .2 I had to do this out of the proper context
since I could not speak and hence could not present the latest re-
sults of my thesis and of my recent investigations. But anyhow
this talk had not been successful and Hilbert, through his criti-
cism, has killed my enthusiasm for this work. By the way, in my
opinion (and in the opinion of the others) his criticism is not
justified. I do not know your opinion about this but as to myself,
the delight for these results is gone.”

The name of this young man was Emil Artin, he was 23 years of age and
wrote this letter to his Ph.D. advisor Gustav Herglotz in Leipzig. Hilbert’s
conduct came as a shock to Artin. In fact, Artin closed his letter with the
words:

“Now please excuse me, Herr Professor, from again having both-
ered you with such a long letter but this will probably not happen
any more with this subject since I intend to drop it.”

Artin’s letter had 5 pages. We have cited the last page only, the earlier pages
contain a report on certain supplements to his thesis. These pointed in the
direction of the RHp 3 but Artin was not able to present them in his talk,
due to Hilbert’s interruptions. (See section 3.2.)

Artin’s thesis contained the foundations of the arithmetic theory of quadratic
function fields over a finite base field, in analogy to quadratic number fields.
It included the definition and study of the zeta functions of those fields,
with the aim of applying this to class number formulas, density results etc.
Artin had added a list of about 30 numeric cases where he computed the class
numbers and, on the way, he observed the validity of the Riemann hypothesis
in characteristic p for these examples (see section 2.2).

Young Artin’s disappointment about Hilbert’s unfounded criticism went quite
deep. Indeed he did what he had announced in his letter to Herglotz, namely
he turned to other problems and in his publications never took up the prob-
lem of the RHp. Also, he left Göttingen and accepted a position at Hamburg

2See formulas (3.15b) and (3.16b) in section 3.2.2.
3Here and in the following I am using the abbreviation “RHp” for “Riemann Hypothesis

in function fields of characteristic p ”.
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University which then witnessed the rapid rise of Artin to one of the top
mathematicians of his time.

To vindicate Hilbert it should be said that some days after the talk he ad-
mitted that now he appreciated Artin’s work and did not any more consider
it trivial. He offered Artin the publication of his new results in the Mathe-
matische Annalen. But Artin did not accept the offer.

Artin’s thesis appeared in print three years later in the Mathematische Zeit-
schrift [Art24]. It is the only one of all his publications in which the RHp is
mentioned. In the Nachlass of Artin there was found a print-ready manuscript
dated November 1921, containing his subsequent investigations which he had
reported to Herglotz. But Artin had never submitted this for publication.
See [Art00].

1.3 Hasse’s project

It took quite a while until the RHp was taken up by another mathematician.
His name was Helmut Hasse. He had refereed Artin’s thesis in the “Jahrbuch
für die Fortschritte der Mathematik”4 but had not given any sign that he
was particularly interested in the RHp – until he had occasion to talk to
Artin in November 1932 when Hasse visited Artin in Hamburg and gave
a colloquium talk. At that time, not only Artin but also Hasse was an
established mathematician in the top ranks. They had exchanged letters
since many years, see [FLR14].

In his Hamburg talk 1932 Hasse spoke about the problem of estimating the
number of solutions of diophantine congruences, a problem in which he had
recently become interested through his friend Harold Davenport. In the
ensuing discussion after the talk Artin pointed out that Hasse’s problem was
equivalent to the RHp – as a consequence of his (Artin’s) unpublished results
which he had reported in his letter to Herglotz but never published. Thus
Hasse’s problem on diophantine congruences mutated into the RHp. With
this information at hand he and Davenport succeeded quickly with the proof
of RHp for generalized Fermat function fields and for Davenport-Hasse fields.

4Today the reviews in this journal are incorporated in the database of “zbMATH”.
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Parallel to this Hasse also considered the problem of the RHp for elliptic
function fields. There he could draw on the classic theory of complex mul-
tiplication of elliptic functions which he was familiar with. The date of his
success in the elliptic case is documented by a letter of Hasse to Mordell of
6. March 1933 where he reports that he has just obtained the proof. But
Hasse’s second (final) proof for elliptic fields appeared in print three years
later only [Has36c]. Hasse’s result in the elliptic case received much attention
at that time in the mathematical community. It led to an invitation for a spe-
cial 1-hour lecture at the next conference of the International Mathematical
Union which was scheduled for 1936 at Oslo.

Thus Artin, although not any more active in this direction, had contributed
essentially to the further development by informing Hasse about his results
which he had found in 1921 but Hilbert did not wish to take notice of.

By the way, Hasse like Artin had also not found the mathematical atmo-
sphere in Göttingen congenial to his expectations. He had entered Göttin-
gen University at the end of 1918 when he was 20 years of age. There, in
his first semester he attended Hecke’s course on algebraic numbers and ana-
lytic functions (see [Hec87]). This was quite fascinating as he later recalled.
But unfortunately Hecke soon left Göttingen and went to Hamburg. Hasse
then became interested in Hensel’s theory of p-adic numbers but he was told
(by Courant) that in Göttingen this was considered but an unimportant side
track and hence not worthwhile to study. So Hasse left Göttingen in 1920
and went to Hensel in Marburg where he wanted to learn more about p-adics.
(Thus when Artin arrived in November of 1921 Hasse was not any more in
Göttingen, the two would meet first in September of 1922 at the annual
meeting of the German Mathematical Society (DMV) in Leipzig.)

In Marburg, Hasse soon got his Ph.D. with a thesis on the Local-Global
Principle for quadratic forms. In consequence of Hasse’s further work the
p-adic numbers became an important, indispensable tool of algebraic number
theory – contrary to Courant’s prophecy which at that time seems to have
been the general opinion in the circle around Hilbert.

After his success in the case of elliptic function fields, Hasse pushed towards
a proof of RHp for arbitrary function fields with finite base fields. This
turned out to become a larger project since it became necessary first to
develop generally the algebraic theory of function fields (over arbitrary base
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fields) including their Jacobians. At that time this was not yet sufficiently
established. From today’s geometric viewpoint this is seen as part of the
transfer of classical algebraic geometry of curves from characteristic 0 to the
case when the base field is of arbitrary characteristic p .

In this story we shall meet the names of quite a number of mathematicians
who at least for some time joined Hasse in this work. Some of them are:5

• F. K. Schmidt (1901-1977) who provided the proper definition of the
zeta function of an arbitrary function field over a finite base field.
Moreover, he proved the Riemann-Roch Theorem for function fields
and showed that this is essentially equivalent with the functional equa-
tion of the zeta function [Sch31a].

• Harold Davenport (1907-1969) who had introduced Hasse to the prob-
lem of counting solutions of diophantine congruences. Moreover, jointly
with Hasse he showed that for generalized Fermat function fields and
related fields (the so-called Davenport-Hasse fields) the zeros of the
zeta function are given explicitly by means of Gauss sums. This solved
the RHp for these fields [DH34].

• Ernst Witt (1911-1991) who gave the first proof of the functional equa-
tion for the L-series of function fields over a finite base field. (But he
never published it.) Moreover, among quite a number of other impor-
tant contributions, he determined jointly with Hasse the structure of
the maximal unramified abelian extension of exponent p (the character-
istic of the field) by means of the so-called Hasse-Witt matrix [HW36].

• Max Deuring (1907-1984) who provided an algebraic theory of corre-
spondences and so constructed the endomorphism ring of the Jacobian
of a function field of arbitrary genus [Deu37], generalizing what Hasse
had done in the elliptic case. Moreover he continued Hasse’s work on
elliptic function fields by determining completely the structure of their
endomorphism rings.

• André Weil (1906-1998) who had shown interest in Hasse’s project right
from the beginning. He had visited Hasse in Marburg in the summer

5Most mathematicians which are mentioned in this book have a biographic article
in “Wikipedia” or in “Mac Tutor History of Mathematics Archive” or in other openly
accessible places; hence I believe it is not necessary here to always include biographical
information – except in a few cases when some such information may be of interest in the
present context.
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of 1933 and they exchanged letters thereafter. With the outbreak of
World War II their contact broke down. Weil could escape from the
Nazi terror from France to USA. There in the year 1941 he announced
a proof of the Riemann hypothesis for arbitrary function fields with
finite base field [Wei41].

Thus Weil was able to complete Hasse’s project ten years after it had been
started.

1.4 Weil’s contribution

There is a letter of Weil to Artin dated 10. July 1942 in which he informed
Artin about the main ideas and some details of his proof. At that time both
Weil and Artin resided as refugee immigrants in the USA. This letter, which
Weil has included and commented in his Collected Works [Wei80], is more
detailed than his announcement in 1941. The fact that the letter was sent
to Artin shows that Artin still was regarded as the ultimate expert for the
RHp – although he had nothing published on this subject except what was
contained in his thesis more than 20 years ago. The final version of Weil’s
proof appeared six years later [Wei48a].

But Weil did much more. In his proof he stressed the analogy of RHp to
problems which had been treated within the framework of classical Italian
algebraic geometry. But there, algebraic geometry was studied over the com-
plex base field C only, i.e., in characteristic 0. So Weil had first to make sure
that those results which he needed remain valid in characteristic p > 0 . To
this end he wrote a book containing a complete foundation of algebraic ge-
ometry in arbitrary characteristic [Wei46]. This was a formidable task. Weil
did not only establish the theory of curves in characteristic p (this would have
been sufficient for the RHp) but he covered varieties of arbitrary dimension.
This enabled him to develop the theory of abelian varieties over any charac-
teristic. In particular his treatment included Jacobian varieties which led to
another proof of the RHp [Wei48b].

Weil’s “Foundations of Algebraic Geometry” [Wei46] had an enormous in-
fluence. In the course of time it led to what today is generally accepted
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under the name of “arithmetic geometry”, i.e., to the use of the language of
algebraic geometry in algebra and number theory, and in other branches of
mathematics.

After Weil’s success there appeared several papers putting into evidence that
the RHp could also have been proved within the theory of algebraic function
fields, in which it had been started by Artin in 1921 and continued by Hasse.
The last(?) word in this endeavor was given by Bombieri in 1972 [Bom74]. He
perfected Hasse’s idea to search for a proof which works in the function field
directly. He concentrated his proof on the Frobenius map, without caring
for the general theory of correspondences of curves. Still he relied heavily on
Artin’s unpublished results of 1921.

Summary

After having received his degree in Leipzig, Artin spent a year 1921/22 as
post-doc in Göttingen. In several letters from there to his academic teacher
Herglotz, Artin developed some important further results for zeta functions
of quadratic function fields beyond his thesis. But these results were never
published. The reason was that when Artin reported about it in Göttingen in
the presence of Hilbert, the latter critized his work heavily. Although Hilbert
later changed his mind and offered Artin publication of his new results, Artin
did not accept. He left Göttingen and went to Hamburg where he turned to
other problems. He continued to be interested in the RHp but did not publish
anything more in this direction.

Ten years later the RHp was taken up by Hasse. In the year 1932 he gave
a colloquium talk in Hamburg about the problem of estimating the number of
solutions of diophantine equations, a problem in which he had recently become
interested through his friend Harold Davenport. In the discussion with Artin
the latter pointed out that the Hasse-Davenport problem was equivalent to
the RHp for the function fields in question – as a consequence of Artin’s
unpublished results which he had reported in his letters to Herglotz but never
published. Hasse, stimulated by results of Davenport, succeeded quickly with
the proof of RHp for what today are called the generalized Fermat function
fields and for related fields. Parallel to this Hasse was able to prove the
RHp for elliptic function fields. There he could draw on the classic theory of
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complex multiplication of elliptic functions which he was familiar with. While
preparing his proof for publication Hasse found that it is possible to develop
much of “complex multiplication” directly in the case of characteristic p > 0 .
He decided to write a new proof on this basis. This appeared in print three
years later, in the year 1936. Although it was still limited to the elliptic case,
it received much attention at that time in the mathematical community. It
led to an invitation for a special 1-hour lecture at the next conference of the
International Mathematical Union at Oslo in the year 1936.

After his success in the elliptic case Hasse and his collaborators started a
project towards a proof of RHp for function fields of arbitrary genus. A
number of new results were reached in this direction, in particular by Deuring.
Today we can see that these results were well sufficient to compose a proof of
the RHp. However this goal was not reached at the time.

André Weil had shown interest in Hasse’s project right from the beginning.
During the 1930s they exchanged a number of letters, among others about
the envisaged proof of the RHp for function fields of higher genus. Weil
discovered that there is a close connection of the problem to results of Severi
in classical algebraic geometry. He managed to translate the foundations of
algebraic geometry to characteristic p > 0 and on this basis solve the RHp
for general function fields in the year 1941. His final proof appeared 1948.



Chapter 2

Setting the stage

2.1 Our Terminology

I have written this book for mathematicians but I do not assume that the
reader is familiar with the basic notions and terminology of the theory of
algebraic function fields in the 1930s. The present section provides an intro-
duction to this. At the same time I would like to fix the notations which I
will be using in this book.

As said above already a global field of characteristic p > 0 can be regarded
as a function field with a finite base field.

I am using the term “function field” to denote a finitely generated field
extension F |K of transcendence degree 1. Thus a function field is actually not
a field but a field extension . This somewhat queer terminology is historically
sanctioned from the time when the base field K used to be the field of all
complex numbers and hence needed not to be mentioned explicitly. If x ∈ F
is transcendental over the base field K then F is a finite algebraic extension
of the field K(x) of rational functions over K. The analogy to number fields
is apparent: The rational function field K(x) is considered to be an analogue
to the rational number field Q, and then the finite algebraic extensions of
K(x) become the analogues to the finite algebraic extensions of Q.

In algebraic geometry one considers also finitely generated field extensions

21
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of arbitrary finite degree of transcendency, i.e., function fields “of several
variables”. But in this paper a “function field” F |K is always assumed to be
of transcendence degree 1 (except if explicitely said otherwise).

For simplicity I shall always assume that the base field K is relatively alge-
braically closed within F (except if explicitly said otherwise). Consequently,
if F is a global field of characteristic p > 0 then its base field K consists of
all elements in F which are algebraic over the prime field Fp. Hence in this
case the base field K is uniquely determined by F . In general, however, this
is not the case. A field F may contain different subfields K,K ′ such that
both F |K and F |K ′ are function fields in the sense defined above.

Let F |K be a function field. The prime divisors of F |K (or simply “primes”)
correspond to those valuations of F which are trivial on the base field K. If
f ∈ F then its residue modulo a prime P is denoted by f(P ), or briefly fP ,
with the specification that fP =∞ if f does not belong to the valuation ring
OP of P . Since P is trivial onK its residue field F (P ), or briefly FP , contains
an isomorphic image of K. Usually the residue map will be normalized such
that it leaves K elementwise fixed. The degree of P is defined as

degP = [FP : K].

The set of primes P of F |K can be considered as the analogue of what in
analysis is called the Riemann surface of the function field. Every element
f ∈ F yields a function f : P → fP on this space; this justifies the name
“function field”. The value of this function at P is contained in the residue
field which is denoted by FP , or we have fP = ∞. If c ∈ K then cP = c
for all P ; this is the reason why the elements c in the base field K are also
called the “constants” of the function field.

Let vP denote the valuation of F |K belonging to the prime P . Usually vP
is normalized such that the value group vP (F×) = Z where F× denotes the
multiplicative group of the field F . If f 6= 0 and fP = 0 then P is a “zero”
of f ; in this case vP (f) > 0 , and vP (f) is the “multiplicity” of P as a zero
of f . Similarly if fP = ∞, then P is a “pole” of f ; in this case vP (f) < 0
and −vP (f) is the multiplicity of the pole. For every f 6= 0 we have the
relation

(2.1)
∑
P

deg P · vP (f) = 0 ,
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showing that f has as many zeros as it has poles if these are properly counted
according to their multiplicities. If K is algebraically closed then every prime
is of degree 1 and hence fP ∈ K ∪∞ for all primes P .

A divisor A of F |K is defined to be a formal product of finitely many primes P
with positive or negative exponents. The exponent with which P appears in
A is denoted by vP (A). The degree of A is defined by linearity, i.e.,

degA =
∑
P

degP · vP (A) .

The divisor A is called principal if there exists 0 6= f ∈ F such that
vP (A) = vP (f) for all P ; if this is the case then we write A = (f) or f ∼= A.
The formula (2.1) shows that principal divisors are of degree 0 . If AB−1

is principal then the divisors A and B are said to be “equivalent” and we
write A ∼ B. Divisors of the same equivalence class have the same degree.
Therefore we can speak of the degree of a divisor class C, notation: degC.

A divisor A is called “integer” if vP (A) ≥ 0 for all primes P . If AB−1 is
integer then the divisor B is said to “divide” A, and A is a “multiple” of B.
We write B|A in this situation.

Remark: In our time the language of algebraic geometry is prevalent. In
this language a “function field” F |K as defined above is understood as the
field of rational functions of an irreducible algebraic curve Γ defined over K,
and one writes F = K(Γ). If Γ is smooth and complete then it is uniquely
determined by the function field F |K (up to birational equivalence over K)
and the primes P of F |K are the K-closed points of Γ. In this book I mostly
use the language of function fields which stresses the analogy to number
fields, and which was mainly used at the time I am reporting about. The
translation into the language of geometry is straightforward and easy. (But
this was not the case in the 1930s when algebraic geometry was not yet
completely included in the “modern” algebra of the time, although a number
of attempts in this direction can be registered.) Note that in the framework
of algebraic geometry, divisors are usually written in additive notation; then
a divisor will be not a formal product but a formal sum of primes with
positive or negative integer coefficients. Accordingly, an integer divisor A is
then called “positive” and one writes A ≥ 0 in this case.
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2.2 The Theorem: RHp

In this book I will tell the story of the Riemann hypothesis in characteristic p .
Let me explain:

Let F be a global field of characteristic p > 0, i.e., a function field over a
finite base field. The zeta function of F is defined by

(2.2) ζF (s) =
∏
P

1

1− |P |−s
=
∑
A

|A|−s

where P ranges over the primes of F and A over the integer divisors of F .
The symbol |P | denotes the number of elements in the respective residue
field. The integer divisors A of F are formal products of the primes, and |A|
is defined multiplicatively. In formula (2.2), s denotes a complex variable.
The infinite sum and product converge if the real part R(s) > 1 , but the
function s → ζF (s) extends uniquely to a meromorphic function defined on
the whole complex plane, periodic with the period 2πi

log q
and poles of order 1

at s = 1 and s = 0.

Riemann Hypothesis in characteristic p. All zeros of ζF (s)
are situated on the line with real part R(s) = 1

2
.

Of course, Riemann himself did not consider fields of characteristic p > 0
and their zeta functions. So I should better speak of the analogue of the
Riemann hypothesis. But for brevity I will mostly omit the word “analogue”
if no misunderstanding seems possible. I shall often use the abbreviation

RHp for Riemann hypothesis in characteristic p .

Actually, the analogy between the characteristic 0 case and the characteris-
tic p case is not quite straightforward. For, if F is a global field of charac-
teristic 0, i.e., a number field of finite degree, then the corresponding zeta
function ζF (s) is defined, due to Dedekind, by the same formula (2.2), where
now P ranges over the prime ideals of F and A over the integer ideals of F .
If F = Q then this is the classical zeta function of Riemann. But now, in
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characteristic 0, this function does have zeros which are situated on the nega-
tive real axis; these are called “trivial”. The classical hypothesis of Riemann
asserts that the non-trivial roots of the zeta function of a number field have
real part R(s) = 1

2
. The existence of the trivial zeros is due to the fact that

in characteristic 0 the product in (2.2) does not contain any term for the
infinite primes, which belong to the archimedean valuations of the field. If
the infinite primes, represented by certain Gamma-factors, are included in
the defining product for the zeta function then there are no trivial zeros any
more and the analogy to the characteristic p case is more perfect, at least in
appearance.

But the structure of the zeta function in characteristic 0 is much more com-
plicated than in characteristic p > 0. While the characteristic 0 case of
the Riemann hypothesis remains still among the great unsolved problems of
mathematics, the case of characteristic p > 0 has been settled. This hap-
pened during the decades from the 1920s to the 1950s, and it is the story
narrated in this book.



2.2. THE THEOREM: RHP 26



Chapter 3

The beginning: Artin’s thesis

Emil Artin (1898-1962) was born in Vienna. He was brought up in Rei-
chenberg, a German speaking town in Northern Bohemia belonging to the
Austro-Hungarian empire. (The town is now called Liberec, in the Czech
Republic.) In 1916 he enrolled at the University of Vienna where, among

27
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others, he attended a lecture course by Ph. Furtwängler. After one semester
of study he was drafted to the army. In January 1919 he entered the Univer-
sity of Leipzig. I have taken this information from Artin’s own hand-written
vita that he submitted together with his thesis to the Faculty at Leipzig
University1. There in June 1921 he obtained his Ph.D. with Herglotz as his
thesis advisor.

Gustav Herglotz (1881-1953), also of Austro-Bohemian origin, was an all-
round mathematician whose work covered astronomy, mathematical physics,
geometry, applied mathematics, differential equations, potential theory, and
also number theory. His five number theoretical papers were published within
the period of 1921-1923. It seems that Artin came to Leipzig just during the
time when Herglotz was interested in number theory, and so he inherited
this interest from his academic teacher. Or was it the other way round, that
Herglotz got interested in number theory through his brilliant student Artin?

In the preface of Artin’s Collected Papers [Art65] the editors remark that
Artin kept a heartfelt appreciation towards Herglotz throughout his life.
Herglotz was the only person whom Artin recognized as his academic teacher.
(That’s what he answered when once I had asked him about it.) Ullrich
[Ull00] observes that in Artin’s early letters to Herglotz in 1921/22, he al-
ways signed with the words “your grateful disciple” (Ihr dankbarer Schüler).

3.1 Quadratic function fields

In his thesis [Art24] Artin considers quadratic function fields, i.e., quadratic
extensions of the rational function field K(x). The base field K is assumed
to be finite of characteristic p > 2. Thus a quadratic function field is of
the form F = K(x,

√
D) where D ∈ K[x] is square free. D is called the

“discriminant”. Such fields are called “hyperelliptic”. But strictly speaking,
this applies only if degD > 4. If degD = 3 or 4 then F is “elliptic”. If
degD = 1 or 2 then F is rational. In order to avoid discussion of trivial
cases, let us assume here that degD > 2 although Artin in his discussion
carries the case degD = 0, 1, 2 as far as possible.

1The documents for Artin’s Ph.D. are kept in the archive of the University of Leipzig.
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Remark: The case of characteristic 2 can be discussed in a similar manner
by using the Artin-Schreier generators of quadratic field extensions. But the
theory of Artin-Schreier extensions in characteristic p did not yet exist at the
time of Artin’s thesis; it was published in 1927 only [AS27b]. The arithmetic
of these Artin-Schreier extensions in characteristic p has been developed by
Hasse in the year 1934 [Has34e].

Actually, Artin in his published thesis works over the prime field K = Fp
only. But in a letter to Herglotz dated 13. November 1921 he says:

“It should be observed that the theory remains valid word by word
over an arbitrary Galois field, if p is understood to be not a prime
number but the corresponding prime power where the exponent is
not important. Of course this is self-evident and not new.”

This letter was written one month after Artin had sent his manuscript to
the Mathematische Zeitschrift , which was on 14. October 1921. Thus very
probably Artin knew about this generalization before sending. Then why did
he not include this more general case in his manuscript? Perhaps his above
letter contains the answer: Artin did not regard this as necessary because
the said generalization was self-evident to him.

Accordingly I will discuss Artin’s thesis in his spirit, i.e., as if it would refer
to an arbitrary finite base field K, of characteristic p > 2. I denote the
number of elements of K by q. This is a power of p where the exponent, as
Artin said in his letter, may be arbitrary. Sometimes in the literature one
writes K = Fq.

Artin’s aim is to develop the theory of quadratic function fields, including
their zeta functions, in complete analogy to the theory of quadratic number
fields. It was Herglotz who had suggested this topic to Artin; this has been
stated by Artin himself in his vita which he had to submit to the Faculty
in Leipzig. Frei [Fre04] forwards the opinion that Herglotz had read a paper
by Kornblum [Kor19] that deals with L-series in rational function fields,
and therefore he had proposed to Artin to investigate the L-series belonging
to quadratic function fields in more detail. This opinion is confirmed by
Herglotz’s report on Artin’s thesis to the Faculty in Leipzig: It starts with a
brief description of the results of Kornblum’s paper.
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The RHp was not the main theme of Artin’s thesis. In fact, Herglotz says in
his report:

“The author develops the complete “number theory” in quadratic
function fields – to the same extent as it is known today for
quadratic number fields.”

And then Herglotz proceeds to state the main points of the arithmetic of
quadratic number fields, which Artin had transferred to the function field
case:

– foundation of ideal theory,

– theory of units,

– the zeta function and its functional equation,

– number of ideal classes,

– existence of the genera.

And only in a side remark Herglotz mentions that Artin had obtained certain
evidence of the curious fact that the non-trivial roots of the zeta function
have real part 1

2
.

Artin assumes the theory of quadratic number fields to be well known, but
he does not cite any literature for this. When and where did Artin him-
self learn about quadratic fields? It seems probable that he had learned it
in Herglotz’s lectures. For, in the summer semester 1919 Herglotz had an-
nounced a lecture course “Elementary Number Theory”, and in the following
semester “Number Theory (Quadratic Number Fields)”. And in the summer
semester 1920 Herglotz offered three courses, “Algebraic equations”, “Geom-
etry of numbers”, and “Problem sessions on number theory”, altogether 9
hours weekly.2 Perhaps this amassment of algebraic and number theoretic
courses in Leipzig was done to satisfy the thirst for knowledge of his eager
student Artin? Herglotz’s lectures were generally regarded as “pieces of art”
(Kunstwerke) according to Constance Reid [Rei76].

A short, 9-page preview of Artin’s thesis was published 1921 in the Jahrbuch
of the Philosophical Faculty of Leipzig University [Art21]. There, Artin says

2I am obliged to Frau Dr. Peter from the University of Leipzig for sending me the
lecture announcements of the years 1918–1921.
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that his proof of the finiteness of class number is analogous to the proof
as presented in Weber’s Algebra book [Web08]. So we may suppose that
Artin had read Weber, as had probably every young German speaking (or
at least German reading) mathematician at that time who was interested in
algebraic number theory. At one point in his thesis he refers in some detail
to Landau’s book “Introduction to the elementary and analytic theory of
algebraic numbers and ideals” [Lan18].

On the function field side, Artin refers to Dedekind’s paper [Ded57]. There,
Dedekind had developed the arithmetic theory of the polynomial ring Fp[x]
over the prime field Fp , including the quadratic reciprocity law in this ring –
in complete analogy to the arithmetic of Z and Gauss’ quadratic reciprocity
law there. Artin says that this suggests to extend Dedekind’s theory by
adjoining a quadratic irrationality

√
D(x) to the field of rational functions

modulo p. Thus he wants his work to be considered as a continuation of
Dedekind’s paper which had appeared more than 65 years before . The title
of that old paper of Dedekind reads:

“Outline of a theory of higher congruences with respect to a real
prime number modulus.”

This title may sound somewhat strange to us, but it makes sense if we recall
that in those times a “real prime number” was understood to be an ordi-
nary prime number p ∈ Z, in contrast to “imaginary” primes which may
be primes in Z[

√
−1] or in other rings of algebraic numbers. And “higher

congruences” in Z[x] meant simultaneous congruences modulo p and modulo
some polynomials f(x) ∈ Z[x]; this is essentially equivalent to congruences in
Fp[x] modulo some polynomials f(x) ∈ Fp[x]. Dedekind regarded Fp[x] not
as a mathematical structure in its own right, but as the result of reduction
of Z[x] modulo p.

On first sight Artin seems to adopt the same viewpoint since the title of his
thesis reads:

“Quadratic fields in the domain of higher congruences.”

Since Artin uses Dedekind’s terminology of “higher congruences”, one may
be tempted to conclude that he too wants to regard his fields as obtained by
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reduction mod p from a function field in characteristic 0. But in the very
beginning of his paper he says: “We will call functions and numbers to be
equal if they are congruent modulo p in the sense of Dedekind.” This makes
clear that, although Artin wishes his work to be regarded as a follow up of
Dedekind’s, he immediately switches to the viewpoint, “modern” at the time,
that he is working in fields of characteristic p in the sense of Steinitz’ great
paper [Ste10].

Remark: For some time function fields over finite base fields were called
“congruence function fields” (Kongruenzfunktionenkörper) and their zeta
functions were called “congruence zeta functions” (Kongruenzzetafunktio-
nen); see, e.g., [Has34c], [Roq53], [WZ91]. This terminology can be under-
stood as a remnant of Dedekind’s “higher congruences”.

Artin’s thesis is divided into two parts:

I. Arithmetic Part.

II. Analytic Part.

The adjectives “arithmetic” and “analytic” are Artin’s. But what is their
meaning in this context?

Artin does not give any explanation; obviously he assumes that the reader
will know how these words were used at the time. But the usage of the
word “arithmetic” has changed through the times, and even at the time of
Artin’s thesis it was not used uniformly. Emmy Noether, for instance, used
“arithmetic” in connection with anything referring to ideal theory and prime
ideals, and in an extended way also to module theory. Today this would be
regarded as belonging to “algebra”, or sometimes to “algebraic geometry”
but not to “arithmetics”. Some authors, also in Artin’s time, would reserve
the word “arithmetic” for those topics that refer explicitly to properties of
the natural numbers. But do function fields in characteristic p fit into this
scheme? Similar comments can be given for the use of “analytic”. If this
should imply that analytic functions are involved then one could point out
that the zeta function of a function field is essentially a rational function. The
Riemann hypothesis refers to the zeros of a polynomial. Is this “analytic” or
“algebraic”?

So let us refrain from the attempt to describe in detail the meaning of “arith-
metic” versus “analytic” in the context of Artin’s thesis. Artin himself seems
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to have used these adjectives in some intuitive way, hoping that the reader
will be able to follow his intentions; let us try to do this too. Within the
theory of function fields, “analytic” will be used for those topics which refer
to the zeta function, L-series and similar objects of function fields. Whereas
“arithmetic” is used for those topics which do not rely on the use of analytic
functions. The analogy to algebraic number theory is prevalent.

3.1.1 The arithmetic part

As said above, K denotes a finite field of characteristic p > 2. Let F =
K(x,

√
D) where D ∈ K[x] is assumed to be square free. Let R = K[x,

√
D]

denote the integral closure of K[x] in F . (The notation is ours, not Artin’s.
Quite generally, for the convenience of the reader I use consistently my own
notation, which often is different from the various notations used in the
papers which I will report on.)

In his first part Artin sets out to develop the “arithmetics” of the ring R.
His main results are the following statements which we have already seen
mentioned in Herglotz’s report (see page 26).

(i) Prime ideal decomposition: R is a Dedekind ring.

(ii) Ramification: Let P ∈ K[x] be a prime polynomial. P is ramified in
R if and only if P divides D.

(iii) Unit Theorem: The unit group R× is either a torsion group, con-
sisting of the constants, or there exists a fundamental unit ε which
generates R× modulo torsion – according to whether x has only one
pole or two different poles in F .

(iv) Class number: The ideal class group of R is finite.

(v) Decomposition law: Suppose the prime polynomial P ∈ K[x] is rel-
atively prime to D. Then P splits in R into two different prime ideals
if and only if D is a quadratic residue modulo P . Otherwise P remains
prime in R .

(vi) Reciprocity: In K[x] a quadratic reciprocity law holds, in analogy to
Gauss’ quadratic reciprocity law in Z.
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Artin does not use the terminology of “Dedekind ring”; this was introduced
much later. (Perhaps “Bourbaki” can be regarded as the one who created this
terminology?) Artin just proves that every proper ideal of R admits a unique
representation as a product of prime ideals. In fact, he does not even present
a complete proof. After having developed the relevant facts about ideals
and their norms in R he says: “It is seen that the arguments are completely
parallel to those in the number field case. Hence in the following it will suffice
to state the definitions and theorems.” I have said earlier already that Artin
does not cite any source where the reader could find in detail those arguments
for number fields which he uses for function fields. Obviously he could assume
that the material was common knowledge among the prospective readers of
his thesis.

It is worthwhile to observe how Artin handles the place at infinity. He realizes
that in K(x) the place x 7→ ∞ plays a role similar to the ordinary absolute
value in the number field case. Now in the latter case, the completion of Q
with respect to the ordinary absolute value is R, the field of real numbers.
The theory of quadratic number fields Q(

√
D) looks quite different according

to whether
√
D is real or not. Here, “real” means that D is a square in R,

and then Q(
√
D) can be regarded as a subfield of R.

In analogy to this, in the function field case Artin considers the valuation of
K(x) at infinity and its completion. He does not use the terminology of valu-
ation or completion, he just says that he will extend K[x] by considering not
only polynomials but arbitrary power series of the form f(x) =

∑n
ν=−∞ aνx

ν

with aν ∈ K, which is to say Laurent series with respect to x−1. If an 6= 0
then Artin defines n to be the degree and |f(x)| = qn as the size of that
Laurent series. (q denotes the order of K.) In fact, this is the valuation at
infinity. And the field of those Laurent series is the completion of K(x) with
respect to this valuation.

The use of this valuation in the function field case is quite the same as that
of the ordinary archimedean valuation in the number field case. It is used
to estimate ideals and functions in order to prove the finiteness of the class
number, and it is also used to define continued fraction expansions in order
to obtain the fundamental unit in the “real” case. Here, Artin says that

√
D

is “real” if it can be represented by a Laurent series of the above type, and
“imaginary” if not. Artin shows that

√
D is real if and only if the degree

of D is even and, in addition, the highest coefficient of D is a square in K.
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Of course this is a consequence of Hensel’s Lemma but Artin gives explicitly
the Laurent expansion of

√
D in terms of the binomial expansion for the

exponent 1
2
.

When Artin wrote his thesis he was not yet aware of the methods and ter-
minology of valuation theory which he later handled so brilliantly. Artin
learned the use of valuation theory from Hasse in the years 1923 and later,
during the time when Hasse stayed at the University of Kiel not far from
Hamburg. They both met frequently in Hamburg at the Hecke seminar. In
a letter of July 1923 to Hasse, Artin wrote: “I am slowly making progress in
`-adics. Now I am already taking logarithms!” (See [FLR14] p.57.)

Concerning the quadratic reciprocity law (vi): If the prime polynomial P
does not divide D then Artin introduces the Legendre symbol (D

P
) which

assumes the value 1 or −1 according to whether D is a quadratic residue
modulo P or not. Artin points out that Dedekind [Ded57] had stated the
quadratic reciprocity law for this symbol without proof, and therefore he will
now present a proof in detail. Well, Dedekind had said the following, after
stating the reciprocity law: That he had transferred to the function field case
all ingredients of Gauss’ fifth proof, and therefore it would not be necessary
to repeat the proof in every detail.

It seems that this did not satisfy Artin. So he presented his own proof of the
quadratic reciprocity law:

(3.1)

(
Q

P

)(
P

Q

)
= (−1)nm

q−1
2

where P,Q are different monic prime polynomials in K[x], of degrees n and
m respectively. Artin’s proof does not follow the lines of Gauss’ fifth proof.
Frei points out in [Fre04] that Artin’s proof can be regarded as the analogue
to a proof of Kummer [Kum87].

Apparently Artin did not realize that the quadratic reciprocity law inK[x] for
finite K had been proved already by Kühne [Küh02] who more generally dealt
also with the power reciprocity law for an arbitrary power ` which divides
q − 1. Probably Artin did not know Kühne’s paper.3 Later, F. K. Schmidt
in [Sch27] rediscovered Kühne’s power reciprocity law and provided a quite

3I am indebted to Franz Lemmermeyer for pointing out Kühne’s results to me. Kühne
(1867-1907) had obtained his Ph.D. in the year 1892 at the University of Berlin. He was
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elementary proof. Namely, if P 6= Q are monic irreducible polynomials in
K[x] and if

P (x) =
∏

1≤i≤m

(x− ai) , Q(x) =
∏

1≤j≤n

(x− bj)

in the algebraic closure of K, then(
Q

P

)
`

=
∏
i,j

(ai − bj)
q−1
`

which trivially gives (3.1) for arbitrary ` | q − 1, not only for ` = 2. Here,
(Q
P

)` is the `-the power residue symbol. It is an `-th root of unity, and it is 1
if and only if Q is an `-th power mod P .

Having established the quadratic reciprocity law inK[x] Artin follows straight-
forwardly the analogy to quadratic number fields. He defines the Jacobi
symbol (M

N
) for two arbitrary polynomials M,N in K[x] without common

divisor, in such a way that it becomes bi-multiplicative in the two variables
M and N . Formula (3.1) remains valid for this extended symbol if M and
N are monic. Artin points out its application to the decomposition law in
statement (v) above. Namely, (v) shows that the decomposition type of a
monic prime polynomial P , not dividing D, is governed by the value

(3.2) χD(P ) =

(
D

P

)
which is either 1 or −1. On the other hand, χD(M) =

(
D
M

)
is defined as

a Jacobi symbol for an arbitrary polynomial M ∈ K[x] relatively prime
to D. It follows from the reciprocity law that χD(M), as a function of M ,
is a quadratic character which differs from the residue character M 7→

(
M
D

)
modulo D by a factor depending only on the degree and on the highest
coefficient of M (if D is considered to be fixed). From this he concludes:

Let n > 0 denote the degree of the discriminant D. If M ranges over all
monic polynomials, relatively prime to D and of fixed degree m, then

(3.3)
∑

degM=m

χD(M) = 0 if m ≥ n .

a teacher at the technical school in Dortmund. It would be desirable to obtain more
biographic information.
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The condition that M is relatively prime to D can be omitted by putting
χD(M) = 0 if M has a common divisor with D.

This becomes a key result in the “analytic” part of Artin’s thesis.

3.1.2 The analytic part

In the second part of his thesis Artin introduces the zeta function

(3.4) ζR(s) =
∏

p

1

1− |p|−s
=
∑
a 6=0

|a|−s

where s is a complex variable. Here, p ranges over all prime ideals 6= 0 of
R = K[x,

√
D] and |p| = qdeg p is the number of elements in the residue

field R/p.4 Accordingly a ranges over all integer ideals 6= 0 of R and |a| is
the order of R/a. Since R is a Dedekind ring, every nonzero prime ideal p of
R defines a unique prime divisor of the field F which may also be denoted by
p, and R/p = Fp. But in this way one does not obtain all the prime divisors
of F . The primes at infinity (where x(p) = ∞) do not correspond to prime
ideals of R. There are one or two such primes of F , according to whether√
D is imaginary or real in the sense of Artin. Hence Artin’s zeta function

ζR(s) does not coincide with the zeta function ζF (s) of the field in (2.2); the
latter was defined later by F. K. Schmidt (see section 4.1.) ζR(s) and ζF (s)
differ by the Euler factors belonging to the one or two infinite places. More
precisely: We have

(3.5) ζF (s) = ζR(s) ·
∏

x(p)=∞

1

1− |p|−s
.

Thus Artin’s zeta function appears in a sense as an “affine” object, belonging
to the affine curve with R as its coordinate ring – whereas F. K. Schmidt’s
function belongs to the nonsingular projective completion of this curve.

4For the moment, while discussing Artin’s thesis I am denoting the prime ideals of R
by gothic letters p since the latin capital P has been used already for prime polynomials
in K[x]. Later I will switch again to the notation introduced in section 2.1 where latin
letters like P,Q etc. denote primes of F .
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Because of this, Artin’s formulas look somewhat different from the corre-
sponding formulas which we are used to when referring to F. K. Schmidt’s
zeta function. Also, the Riemann hypothesis for Artin’s zeta function con-
cerns the “nontrivial” roots of ζR(s) only: these are supposed to have real
part R(s) = 1

2
, whereas there may be some “trivial” zeros of ζR(s). It will

be seen below which roots are “trivial” in this sense.

Artin himself in his thesis is not concerned with the difference between ζR(s)
and ζF (s); at that time the latter was not yet defined and Artin’s zeta func-
tion ζR(s) was for him the first and only zeta object to study in quadratic
function fields. But in a letter to Herglotz written on 30. November 1921,
Artin already considered the change of his zeta function by birational trans-
formations. See page 45 below.

The investigation of the properties of ζR(s) is the main objective in the second
part of Artin’s thesis. The first and essential observation is that ζR(s) is a
rational function if considered as a function of the variable t = q−s. If this
would have been known for the F. K. Schmidt zeta function ζF already then it
would follow immediately for Artin’s zeta function ζR too, because the (one
or two) absent Euler factors are also rational functions of t. F. K. Schmidt in
[Sch31a] proves the rationality of his zeta function by means of the Theorem
of Riemann-Roch. But as we have just said, F. K. Schmidt’s result was later,
and the Riemann-Roch Theorem had not yet been established at the time of
Artin’s thesis for function fields with finite base field. Thus Artin had to use
another strategy. He represented the zeta function of the quadratic function
field by means of an L-series – following closely the procedure in the number
field case.

Let P ∈ K[x] denote a monic prime polynomial. The decomposition type of
P into prime ideals in R is governed by the value of the character χD(P ),
as Artin had shown in the first part of his thesis, see (3.2). According to
whether χD(P ) = 1 or = −1 , the prime P splits in R into two different prime
ideals each of relative degree 1, or P remains prime of relative degree 2. If
χD(P ) = 0 then P is ramified in R.

This leads to the following product decomposition where P ranges over all
monic prime polynomials of K[x] and M over all monic polynomials, and
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where we have put t = q−s:

ζR(s) =
∏
P

(
1

1− tdegP

)(
1

1− χD(P )tdegP

)
=
∑
m≥0

qmtm ·
∑
m≥0

σmt
m with σm =

∑
degM=m

χD(M) .

The second factor is the L-series with respect to the character χD. It appears
as a power series in t = q−s. (Artin does not introduce the variable t and
keeps writing q−s instead; in this way the power series in t appears as a
Dirichlet series in s. He also does not use the notation L at this point.) But
now, using the relation (3.3) of the arithmetic part, Artin concludes that this
power series is in fact a polynomial of degree < n = degD. This gives:

Artin’s zeta function can be written in the following form:

(3.6) ζR(s) =
1

1− qt
·
n−1∑
m=0

σmt
m =

LR(t)

1− qt
(with t = q−s) .

where LR(t) is a polynomial of degree ≤ n−1 whose coefficients σm are given
as above. (Actually, it turns out with the help of the functional equation that
the degree of the polynomial LR(t) is precisely n− 1.)

This result is central in Artin’s thesis. It shows explicitly that Artin’s zeta
function of a quadratic function field behaves quite differently from the zeta
function in the quadratic number field case. In the introduction to his thesis
Artin had said:

“It appears that a general proof [of the Riemann hypothesis for
quadratic function fields] will have to deal with problems of similar
type as with Riemann’s ζ(s), although here [in the function field
case] the situation is clearer and more lucid because it essentially
concerns polynomials.”

From the second part of this statement we see that he was fully aware of the
fact that in the function field case the situation is different from the classical
case.

Artin was not the first to have observed this. There is a paper by H. Korn-
blum [Kor19] where L-series L(t|χ) are considered, for arbitrary (not only
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quadratic) characters χ in K[x] modulo D .5 For non-trivial characters Korn-
blum had shown that L(t|χ) is a polynomial, and he had done it in the same
way as Artin does in his thesis by means of (3.3).

Artin immediately starts to draw consequences from (3.6). Among other
things he arrives at the following results:

1. Trivial and non-trivial zeros: If
√
D is “real” then LR(1) = 0. If

√
D

is “imaginary” and the degree of D is even then LR(−1) = 0. These zeros
are called “trivial”. All the other “nontrivial” zeros of LR(t) are contained
in the region 1

q
< |t| < 1 which means 0 < R(s) < 1.

The Riemann hypothesis claims that the non-trivial roots have real part
R(s) = 1

2
. Artin cannot prove this in general but he observed that the

weaker result in statement 1. has already important consequences.

2. Class number formula: Formulas for the class number hR of R are
obtained by computing the residue of ζR(s) at s = 1. Artin obtains the
following formulas:

(3.7)

lim
s→1

(s− 1)ζR(s) =



√
q · hR√
|D| · log q

if
√
D is “imaginary” and degD odd

(q + 1)hR
2
√
|D| · log q

if
√
D is “imaginary” and degD even

(q − 1)ρ(R)hR√
|D| · log q

if
√
D is “real” .

In the “real” case, ρ(R) denotes the regulator of R which is the integer
defined by the formula |ε| = q ρ(R) involving the fundamental unit ε. Thus

ρ(R) = log |ε|
log q

. By means of the functional equation (see below) this can be
transferred to s = 0, i.e., t = 1. Artin arrives at the following formulas

5I have mentioned Kornblum’s paper already, see page 25. The young Kornblum
had been a Ph.D. student of Landau in Göttingen. He died in early World War I. The
manuscript of his Ph.D. thesis had been almost completed; it was edited and commented
by his academic teacher Landau and published 1919 in the newly founded Mathematische
Zeitschrift. Artin cites Kornblum, and he points out that his (Artin’s) results on the
number of prime polynomials in an arithmetic progression are essentially stronger than
Kornblum’s.
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involving the coefficients σm of the polynomial L(t):
(3.8)

hR =

σ0 + σ1 + · · ·+ σn−1 = LR(1) if
√
D is “imaginary”

− 1
ρ(R)

(σ1 + 2σ2 + · · ·+ (n− 1)σn−1) = − 1
ρ(R)

L′R(1) if
√
D is “real” .

3. Functional equation: I will not write down the explicit form of the
functional equation for Artin’s zeta function. Let us be content by saying
that ζR(1 − s) is expressed in terms of ζR(s), and hence LR( 1

qt
) in terms of

LR(t). This yields certain symmetry relations of the coefficients σm which
Artin uses to reduce computations of the class number hR by means of (3.8).

4. Table of class numbers: Artin computes numerically tables of class
numbers, for small prime numbers q = p ≤ 7 and small degrees 3 or 4. (These
fields are all elliptic.) Using the above mentioned symmetry properties it
suffices to compute σ1. In each of Artin’s cases, about 40 in number, he
verifies numerically the Riemann hypothesis, by computing the coefficient
σ1 and discussing the nontrivial zeros of the corresponding L-polynomial.
Furthermore, Artin remarks (without showing tables) that for q = p = 3
he has extended his computations to discriminants of degree 5, except some
prime discriminants, and again, the Riemann hypothesis could be verified.
(These fields are hyperelliptic of genus 2.)

This last remark about discriminants of degree 5 had been inserted into the
manuscript shortly before the paper was sent to print, which was 13. October
1921. Hence between the first version, which was submitted to the Leipzig
Faculty in May 1921, and the final version in October, Artin had done quite
a number of additional computations in order to verify the Riemann hypoth-
esis. But now, in a letter to Herglotz on the same day, 13. October 1921, he
writes:

“I believe that more computations are of no use, for they would
not lead to a decision. (If so, then in the negative sense.)”

From this statement we can see Artin’s own attitude towards the question
of whether the Riemann hypothesis is valid or not. Although formally he
leaves the question open, admitting that the final decision may turn out to
be negative, he is putting that possibility into parentheses. And he decided
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to stop his computations. So we may infer that indeed he expected the
Riemann hypothesis to hold generally.

Sometimes in the literature it is said that the Riemann hypothesis for hy-
perelliptic function fields “was first conjectured by Artin in his thesis”. But
in Artin’s thesis we do not find any statement which looks like such conjec-
ture. It is true that Artin was the first to state the problem and to open
the scene. But as far as we know, he never came out with a “conjecture”
that the Riemann hypothesis would be true. The only indication about his
personal attitude is contained in the above passage in his letter to Herglotz.
In this sense, perhaps, Artin can be said to have “conjectured” the Riemann
hypothesis. But as far as his published thesis is concerned it would be more
precise to say that he had “verified” it in some examples.

Although Artin cannot prove the Riemann hypothesis in general he proves
the following conditional result:

5. Finitely many imaginary fields with given class number: If the
validity of the RHp is assumed for quadratic function fields, the following
holds: For all q > 2 and n = degD > 2 there are only finitely many “imag-
inary” quadratic function fields F = Fq(x,

√
D) with given class number h.

Fields with h = 1 are possible only for q = 3. (Probably only one field.)

Artin mentions this result for h = 1 because in the number field case, the
determination of all imaginary quadratic fields with class number 1 was a
classical problem which at the time of Artin’s thesis was not solved. Nine
imaginary quadratic number fields of class number 1 were known but it was
not yet known whether that list was complete (which it is). Thus Artin
wished to put into evidence that in the case of function fields the situation
is easier than for number fields.

The “one field” with class number h = 1 for q = 3 which Artin mentions, is
listed in his class number tables; it belongs to the discriminant D = x3−x−1.
Artin does not say how he arrived at his prediction that this is the only imag-
inary quadratic function field with h = 1 and q = 3, neither in the published
thesis nor in his letter to Herglotz. Has he just used computational evidence?
Artin’s prediction was later verified by MacRae [Mac71]. In addition to the
Riemann hypothesis MacRae used the Riemann-Roch Theorem. This, as
we know from F. K. Schmidt, is equivalent to the functional equation of the
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zeta function, and the latter was available to Artin for quadratic function
fields. Thus in principle, Artin could have done himself the (elementary)
computation which MacRae did. But it is not straightforward.

Remark: Recall that Artin works in characteristic > 2. At the time of
MacRae’s paper [Mac71] it was possible to handle also the case of char-
acteristic 2. MacRae found that in characteristic 2 there are precisely three
“imaginary” quadratic fields with h = 1. See also Madan and Queen [MQ72].

3.2 Artin’s letters to Herglotz

As we have seen in the foregoing section, Artin’s thesis was devoted to the
transfer of the arithmetic of quadratic number fields to the function field
case with finite base field. This can be regarded as good work for a young
Ph.D. candidate but it did not carry any new and unexpected insight. A. Weil
reports in his review of Artin’s Collected Papers [Wei79b] that at the time
when Artin wrote his thesis he was very young and, “as he used to say later,
very ignorant”. In particular Artin did not quote Dedekind-Weber [DW82]
which, Weil says, “would have been more relevant to his purposes.” That was
finally done by F. K. Schmidt, see section 4.1.

The RHp did not play any significant role in Artin’s thesis. But the situation
changed in the letters of Artin to Herglotz. There Artin reported on some
further work in the direction of the RHp, and this pointed the way forward.

The legacy of Gustav Herglotz contains several letters from Artin. Two of
those letters, written in November 1921, carry important ideas concerning the
Riemann hypothesis. These letters became known through Ullrich’s paper
[Ull00]. There we can observe in a nutshell several ideas which later became
important for the proof of the Riemann hypothesis.

The letters were sent from Göttingen where Artin had moved to as a post-
doc. He reports to his former academic teacher about his impressions in the
new environment. He also reports about the seminars which he is attending.
But otherwise he feels quite lonely:

“Unfortunately, I have here very little contact to the lecturers, and
therefore I am missing the personal stimulus which in Leipzig I
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have had to such high degree by yourself, Herr Professor. For this
I will always be grateful to you.” 6

But then he proceeds to report about his work, following the lines set in his
thesis.

3.2.1 Extension of the base field

Artin finds it self-evident that the whole theory in his thesis, although
presented over Fp as the base field, remains valid over every finite base
field K. This I have mentioned already (see page 25). Now, in a letter
dated 13. November 1921, he studies base field extensions in a systematic
way.

Let F = K(x,
√
D) be a quadratic function field with a finite base field K,

and degD > 0. Consider the extension Kr of K of degree r and let Fr =
Kr(x,

√
D) be the corresponding base field extension of F . Let R,Rr be

the integral closures of K[x] in F , and of Kr[x] in Fr respectively. The
corresponding zeta functions are denoted by ζR(s) and ζRr(s). Artin had
found a connection between ζR(s) and ζRr(s). His formula is:

(3.9) ζRr(s) =
∏

0≤µ≤r−1

ζR

(
s+

2πiµ

r log q

)

Artin concludes:

“ 1.) If the Riemann hypothesis holds for ζR(s) then also for
ζRr(s). Hence with every zeta function there is a whole bunch
of infinitely many other zeta functions for which the Riemann
hypothesis holds. (In every Fr with arbitrary r.)

2.) Conversely: If the Riemann hypothesis is proved for ζRr(s)
then also for ζR(s). Hence it is sufficient to prove the Riemann
hypothesis over all those finite fields K for which the discrimi-
nant D split into linear factors. Over every such field there are
only finitely many cases to be dealt with.”

6Constance Reid reports in her book [Rei76] that Herglotz had little contact with his
students. If this was the case then it seems that his relation to Artin was an exception.
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In the next letter, dated 30. November 1921, he goes one step further and ob-
tains the following conclusion. Recall the notation in (3.6) where σ1 denotes
the first coefficient of the polynomial LR(t) = 1 + σ1t + · · · . Artin derives
from (3.9) the following criterion for the validity of the Riemann hypothesis:

“. . . for the proof of the Riemann hypothesis it is only necessary
to have the following “raw” estimate of σ1, but over all Galois
fields :

|σ1| < A
√
q

where A depends only on the degree of the discriminant.”

It is seen from the definition in (3.6) that

(3.10) σ1 = NR − q

where NR is the number of prime ideals of degree 1 in the ring R. Thus we
may write the above inequality as |NR−q| < A

√
q . But this should be known

not only for q but also for all powers of q, and with the same bound A. So
we should better write Artin’s criterion as

(3.11) |NRr − qr| < A
√
qr for r = 1, 2, 3, . . .

where the bound A does not depend on r.

We see that now Artin begins to think about a general proof of the Riemann
hypothesis, more than just numerical verification in examples. In fact, the
criterion (3.11) has become crucial in all later setups for the proof of the
Riemann hypothesis. It is remarkable that Artin at this early stage is fully
aware of the importance of this criterion. I shall give Artin’s proof later in the
context of F. K. Schmidt’s birationally invariant zeta function (see page 71).

3.2.2 Complex multiplication

Suppose the discriminant D = D(x) is cubic. Then all the zeros of the
quadratic polynomial LR(t) = 1 + σ1t + qt2 are non-trivial in the sense as
explained above. Consider the “inverse” polynomial

(3.12) L∗R(t) = t2 + σ1t+ q .

According to what Artin has just found, the RHp is equivalent to the in-
equality

(3.13) σ2
1 − 4q < 0
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which is to say that the roots of L∗R(t) are imaginary.

In this situation Artin puts himself the question how to describe the connec-
tion between the elliptic function field F = K(x,

√
D) over a finite field K

of order q, and the square free kernel d ∈ Z of σ2
1 − 4q, so that σ2

1 − 4q = u2d
with u ∈ Z. It appears that he hoped to find some way to deduce that d < 0
and, hence, to prove the RHp at least in the case of a cubic discriminant D.
(Artin writes σ2

1 − 4q = −u2d and so he is looking for a proof of d > 0.)

Later, when Hasse was going to prove the Riemann hypothesis for elliptic
function fields F (i.e., for cubic discriminants D), one of the essential steps
in his proof was the discovery that to each elliptic field F there belongs a
so-called endomorphism ring such that every member of this ring satisfies
a quadratic polynomial with negative discriminant. The polynomial L∗R(t)
above is the quadratic polynomial which belongs to the so-called “Frobe-
nius operator” of F |K. This is the theory of “complex multiplication” in
characteristic p. (See section 7.4.)

It seems remarkable that Artin in 1921, without referring to complex mul-
tiplication and Frobenius operator, poses the problem in this way. Now we
can understand that in 1934, when he invited Hasse for a lecture course in
Hamburg, he was so enthusiastic about Hasse’s work. (See page 117.) For
Hasse could do what Artin had seen in 1921 but was not able to prove in
general. Probably Hasse did not know about Artin’s 1921 letter to Herglotz.
In that letter, Artin had written:

“The big question is, which d belongs to the given discriminant D?
In general I know nothing about this. But in two cases I can decide
this and will now report on it.”

And he proceeds to discuss the following two cases:

D = x3 − x when q ≡ 1 mod 4

D = x3 − 1 when q ≡ 1 mod 6 .

For the proof of the RHp the respective congruence condition for q is not
essential because of what Artin has just mentioned: One may replace the
base field K by its extension of order 2, hence q by q2, which then satisfies
the congruence condition (if characteristic p > 3). Also, one may replace
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x3 − x by x3 − bx with b ∈ K, because after a suitable extension of K this
can be transformed easily into the form as given. Similarly, x3 − 1 may be
replaced by x3 − b.

In those two cases Artin succeeds to determine d = −1 and d = −3 respec-
tively. And so he can proudly announce:

“Accordingly one has the Riemann hypothesis for all q, and all
D = x3 − bx and D = x3 − b.”

Note that this result is of quite different nature from the numerical verifi-
cation which Artin gave in his published thesis, because it is valid for all q
whereas in the thesis only small prime numbers are involved.

We observe that the two cases which Artin had chosen are elliptic fields of
absolute invariant j = 0 and j = 1, and these are known to have endomor-
phism ring Z[i] and Z[%] respectively, where i is a primitive 4-th and % a
primitive 3-rd root of unity. In these cases the endomorphism ring has units
of order > 2. But it seems that Artin at that time was not aware of the con-
nection to complex multiplication since he did not mention it in his letter.
But then, how did he proceed to obtain d = −1 and d = −3 in those two
cases ?

He did it with what he called a trick. Consider D = x3−x with the condition
q ≡ 1 mod 4. Artin compares the field F = K(x,

√
D) with the field F =

K(x,
√
D) where D = x3 − bx, and b is not a square in K. These fields are

not isomorphic but they become isomorphic after base field extension from
K to K4, the extension of degree 4 over K. Let σ1 be the first coefficient of
the L-polynomial for F , in the same way as σ1 is defined for F . Then Artin
compares F2 and F 2, the base field extensions of degree 2. Using (3.9) he
finds the following relation:

(3.14) σ2
1 + σ2

1 = 4q

which shows that, indeed, σ2
1 − 4q = −σ2

1 and thus d = −1.

(A closer look at this “trick”, which today could be interpreted in the frame-
work of Galois cohomology, will reveal that it depends on the existence of
automorphisms of F of order > 2. Thus the two examples which Artin used
are essentially the only ones for which this works.)
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By the very definition of σ1 and σ1 Artin obtains the following cute side
result in the case when q = p is a prime number: Let p ≡ 1 mod 4. Then:
If b is a non-square modulo p and if we put

(3.15a) α =
∑

0≤ν≤ p−1
2

(
ν3 − ν
p

)
and β =

∑
0≤ν≤ p−1

2

(
ν3 − bν

p

)

then

(3.15b) p = α2 + β2 .

Here, the brackets denote the ordinary quadratic residue symbol in Z.

Thus Artin’s arguments lead to an explicit algorithm to write any p ≡ 1
mod 4 as a sum of two squares. He writes, however:

“. . . unfortunately, this result is not new, it had been found by
Jacobsthal using pure computation, as I have been informed some
days ago.”

Artin does not give any reference. A search in the Jahrbuch database reveals
that the result is implicitly contained in Jacobsthal’s Berlin thesis 1906. The
publication appeared four years later in Crelle’s Journal [Jac07].

But, Artin added, by doing a similar trick for the discriminant D = x3 − 1
he had obtained the following which he believed was new: Let p ≡ 1 mod 6.
Then: If b is not a cubic residue modulo p and if we put

(3.16a) α =
∑

0≤ν≤p−1

(
ν3 − 1

p

)
and β =

∑
0≤ν≤p−1

(
ν3 − b
p

)

then

(3.16b) 3p = α2 − αβ + β2 .

From this one can easily obtain a representation of p by the quadratic form
X2 −XY + Y 2.
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3.2.3 Birational transformation

Artin considers applying a linear fractional transformation to x. He replaces

x by some x′ =
ax+ b

x− c
with a, b, c ∈ K. Let R′ denote the integral closure

of K[x′] in F . Artin gives a formula expressing the ζ-function belonging to
R′ in terms of the ζ-function belonging to R. We do not write down this
formula because it is quite obvious, exchanging the Euler factors belonging
to the infinite primes with respect to x, with the Euler factors belonging to
the infinite primes of x′. Artin remarks:

“If D is divisible by x − a and of even degree then the degree
will decrease. Since D will obtain a linear factor after suitable
increase of the base field K, one may assume the degree to be
odd. This decrease of degree looks very similar to hyperelliptic
integrals.”

By “degree” he means the degree of the discriminant D. At the same time,
the degree of the corresponding L-polynomial, which is one less than the
degree of D, will also decrease.

By considering such transformations, Artin gets rid of the limitations which
are set by the attempt to obtain complete analogy to the number field case.
For, in the number field case the ring Z is given and cannot be changed; if one
insists on complete analogy then in the function field case, the polynomial
ring K[x] should be fixed and should not be changed. By leaving this re-
striction behind and considering also linear fractional transformations, Artin
starts to use fully the possibilities which function fields offer, which are not
available in number fields.

In this way Artin can simplify the problem by reducing it to the case where
the degree of D is odd. Then

√
D is “imaginary” and remains so after every

base field extension; thus for the proof of the Riemann hypothesis it is not
necessary to consider the “real” case any more. Although Artin does not
mention it, he certainly knew that if degD is odd then all the zeros of the
polynomial LR(t) are nontrivial and they are birational invariants of the
field F .
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This is the first step towards a birational invariant definition of the zeta
function, which later was given by F. K. Schmidt.

3.3 Hilbert and the consequences

By all what Artin wrote in his letters to Herglotz it is evident that he had
become quite interested in the Riemann hypothesis at least for quadratic
function fields. Surely, there is a long way to go from the knowledge that
(3.11) would be sufficient, to an actual proof. We shall see that it required
an enormous effort until this goal was reached. But certainly his criterion
(3.11) is to be considered as a first important step.

Why did Artin not proceed further in this direction? I have already narrated
in section 1.2 that it was Hilbert’s reaction which had the effect that he left
this topic. This is evidenced by the editors of his “Collected Papers” [Art65]
who put his thesis quite singularly into a separate chapter, thus indicating
that the thesis is somewhat isolated among the other papers of Artin, none
of which can be regarded to be closely related to the thesis.

But Artin continued to be interested in the subject and observed keenly the
further development; this can be inferred, e.g., from his letter to Hasse cited
on page 117. In Artin’s lectures on number theory he included function
fields. He was striving for a unified theory for number fields and function
fields, which later was established as the theory of “global fields”. See, e.g.,
his famous paper jointly with Whaples [AW45]. But in his publications Artin
kept silent on the topic of the Riemann hypothesis in characteristic p .

As Ullrich [Ull00] reports, Herglotz had been able to arrange that Artin
could move from Göttingen to Hamburg where he was offered by Blaschke
a position as assistant.7 There, in the very neighborhood of Hecke, Artin
found the mathematical atmosphere which suited him. Soon he rose to one
of the leading figures in algebra and number theory. But for the RHp his
thesis remained his only published contribution.

7I would like to use this opportunity to point out that it was Blaschke, the first math-
ematician at the newly founded University of Hamburg, who succeeded to raise this
place within a few years to one of the leading mathematical centers in Germany. He
did this through a careful Berufungspolitik . The Hamburg Mathematical Seminar in its
first decades is a good example that mathematical excellence cannot be created by more
money or more positions only, but that the decisive point is to attract excellent people.
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Summary

Artin’s thesis is concerned with quadratic function fields over finite base fields.
Artin goes about to transfer the arithmetic theory of quadratic number fields
to the case of characteristic p . This includes, firstly the arithmetic properties
like decomposition into prime ideals, theory of units, class number etc., and
secondly the analytic theory of the zeta function of a quadratic function field,
in analogy to quadratic number fields. Artin observes that his zeta function
is a rational function of t = q−s, and it is a polynomial in t up to a trivial
factor. Artin derives the class number formula in terms of the zeros of this
polynomial and he computes it in a number of about 30 numerical cases, most
of them elliptic function fields. On the way he observes that in those cases
the RHp holds for his zeta function. But otherwise there is no indication that
Artin was particularly interested in the RHp when he wrote his thesis.

After having received his degree, Artin spent a year as post-doc in Göttingen.
There, in several letters to his academic teacher Herglotz in Leipzig, Artin
developed some further results in which we can observe the nucleus of what
later will become essential features in the general proof of the RHp. From
this we can deduce that meanwhile Artin had become more interested in the
RHp. But these further results were never published. The reason was Hilbert’s
harsh criticism of Artin’s work when Artin gave a colloquium talk about it
in Göttingen. (I have reported on this in the foregoing chapter already.)
Nevertheless Artin continued to be keenly interested in the development of
the theory of algebraic function fields.

3.4 Side remark: Gauss’ last entry

There is one paper of Herglotz which directly concerns the RHp for a function
field and therefore has to be mentioned here [Her21]. That paper appeared
in the same year when Artin had submitted his thesis, and its title is: “On
the last entry in Gauss’ diary.” This concerns the integer solutions of the
congruence

(3.17) x2y2 + x2 + y2 ≡ 1 mod p

for a prime number p ≡ 1 mod 4. Gauss, in his diary dated 9. July 1814,
had noted the number of solutions as follows:
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Decompose p in the ring Z[i] of Gauss integers as p = ππ′ , as a product of
an “imaginary” prime number π and its conjugate π′.8

We may identify the factor rings Z[i]/π = Z/p, and hence the solutions of
(3.17) in Z (mod p) are the same as the solutions in Z[i] (mod π) of

(3.18) x2y2 + x2 + y2 ≡ 1 mod π .

Now, Gauss had found that the number of solutions of (3.18) equals the norm
(from Q(i) to Q):

(3.19) N (π − 1) = (π − 1)(π′ − 1) = p− S(π) + 1 ,

with the following specifications:

1. The 4 infinite solutions (x, y) 7→ (∞,±i), (x, y) 7→ (±i,∞) have to be
included in the counting.

2. π has to be normalized such that π ≡ 1 mod (1− i)3.

This normalization can be achieved by multiplying π with a suitable unit
ε ∈ {±1,±i}. After such normalization, π is called “primary”. Note that
1− i is a Gauss prime number dividing 2.

Gauss did not actually give a proof, he had observed this fact “by induction”
which according to the terminology at his time meant either heuristically, or
experimentally for several p .

The story of this “ last entry” is well known; see, e.g., the presentation in Lem-
mermeyer’s book [Lem00] and the literature cited there. Herglotz presents a
proof of Gauss’ statement. Before discussing this, let us first point out the
connection of Gauss’ statement to the RHp for the function field F = K(x, y)
where x, y satisfy the lemniscate equation

(3.20) x2y2 + x2 + y2 = 1 .

8There is a clash of notation in the mathematical literature, and also in this book.
In Analysis the greek letter “π” is used to denote the real number which is half of the
circumference of the unit circle. (See formula (3.9) on page 40.) In the present context “π”
denotes an algebraic number, namely a factor of p in an imaginary quadratic number field.
Later when I will discuss Hasse’s theory of complex multiplication in characteristic p the
letter “π” will denote the Frobenius operator. (See section 7.4.4.) I believe it will always
be clear from the context which “π” is meant at the time.
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Thereby K = Fp is assumed to be the prime field.

F is a quadratic extension of the rational function field K(x), and from (3.20)
we obtain

(3.21) y2 =
1− x2

1 + x2
.

This relation is satisfied by the 4 infinite solutions mentioned above. This
explains why these are also counted as solutions of (3.18). Seen in this way,
Gauss’ statement says that N (π − 1) is the number of all places of degree 1
of F ; this number is independent of the choice of generators x, y of F .

If we multiply the above relation with (1 + x2)2 we find

(3.22) F = K(x,
√

1− x4)

which is of the form Artin had discussed in his thesis, with D = 1− x4. We
have seen in section 3.2.3 that Artin admits also linear fractional transfor-
mations in order to reduce the degree of the discriminant D. Such a degree
reduction is obtained by putting x = 1+ix′

1−ix′ where i is a primitive 4-th root of
unity in K. We compute

(3.23) F = K(x′,
√
x′ 3 − x′)

This is precisely the form which Artin had discussed in his letter to Herglotz
on 30. November 1921; see section 3.2.2. In that letter Artin had presented
his proof of the Riemann hypothesis for this field F .

But the validity of the Riemann hypothesis for this field is also immediate
from Gauss’ statement, which is seen as follows:

As Artin had pointed out in his letter to Herglotz, the Riemann hypothesis
is equivalent with the inequality (3.13) which, according to (3.10), can be
written as

(3.24) |NR′ − p| < 2
√
p .

Here, NR′ denotes the number of prime ideals of degree 1 in the integral
closure R′ of K[x′] in F . Every such prime ideal defines a place of F of
degree 1. There is precisely one more place of F of degree 1, and this belongs
to x′ 7→ ∞. (This is so since the degree of the discriminant D′ = x′ 3 − x′
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is odd.) Thus the number of all places of F of degree 1 is NR′ + 1. Hence,
using Gauss’ statement, we obtain NR′ + 1 = N (π − 1) = p− S(π) + 1. We
conclude that NR′ − p = −S(π). Writing π = a+ bi we have S(π) = 2a and
since p = a2 + b2 we see that S(π)2 = 4a2 < 4p which gives (3.24).

Conversely, from Artin’s results as explained in his letter to Herglotz, it
is straightforward to deduce Gauss’ statement (3.19) for a Gauss prime π
dividing p, without however the normalization in 2. which is a more subtle
affair.

In any case, we see that between the results of Herglotz and those of his
disciple Artin there is a very close connection indeed. The question arises:
Why does none of them cite the work of the other?

As pointed out above, Herglotz’s paper [Her21] appeared in the same year
as Artin submitted his thesis. It is conceivable that Herglotz had completed
his work before Artin started his thesis. And that Herglotz, because he had
seen the connection with the RHp for one particular quadratic function field,
had proposed to Artin to look into this question quite generally, for arbitrary
quadratic function fields. But then Artin should have cited Herglotz’s paper
as the one where his work started. Since he did not, and since he explained
the case in such detail in his letter to Herglotz, we conclude that Artin did not
know Herglotz’s paper at that time. Why not? Why did Herglotz not show
his paper to Artin? The theory of complex multiplication which Herglotz
used, was to become in the future, in the hands of Hasse, a powerful tool for
the proof of the RHp for arbitrary elliptic function fields. If Herglotz would
have foreseen the importance of complex multiplication for the Riemann
hypothesis then he would probably have proposed to Artin to study that
theory, with the aim to apply this to the proof of RHp. But apparently he
did not.

Another possibility would be that Herglotz wrote his paper later, after he
had seen Artin’s thesis. Inspired by Artin’s work he may have realized that
Gauss’ last entry would imply the validity of the RHp for the function field of
the lemniscate, and so he set out to work on it. In this case Herglotz would
have cited Artin and shown the connection between his paper and the work
of his disciple Artin. But he did not.

I have no obvious explanation for the fact that none of them, Herglotz and
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Artin, cited the other.

As to the contents of Herglotz’s paper [Her21]: He first presents the state-
ment (3.19) of Gauss’ last diary entry, and then reports (without giving any
reference) that Dedekind had verified Gauss’ statement for all p < 100, and
that Fricke had pointed out the coincidence of the equation (3.20) with the
equation which is satisfied by the lemniscate functions of Gauss:

x = ϕ(u) := sin lemn(u) and y = ψ(u) := cos lemn(u) . 9

Herglotz continues:

“In addition we shall remark here that the solutions of (3.17)
coincide precisely with the congruence solutions modulo π of the
division equations for

(3.25) x = ϕ

(
α

ω3

π − 1

)
and y = ψ

(
α

ω3

π − 1

)
.”

(Herglotz uses the Weierstrass notation, namely: ω3 = −(1 + i)ω where ω
is the primitive real period of ϕ(u). In the above equation, α ∈ Z[i] is
arbitrary.)

After this introduction Herglotz starts with his calculations. The division
equation is used in a form which Weierstrass had given, and the greater part
in Herglotz’s calculations seems to be catching the connection to the nota-
tions which Weierstrass had used. We have not checked these calculations.
Schappacher [Sch97] writes that “Herglotz uses the Weierstrass theory, albeit
with notation that has not quite survived to the present day .” The essential
feature in these calculations is the observation that at a certain point there
appears an Eisenstein equation with respect to the prime π and therefore,
modulo π, the result follows.

The normalization π ≡ 1 mod (1− i)3 implies that the multiplication with π
of the arguments in (3.25) induces the map (x, y) → (xp, yp) mod π, which
is to say the Frobenius map of the reduced curve. This is implicitly used in
Herglotz’s computations.

9) The function sin lemn is defined as the inverse function of
∫ x

0
dx√
1−x4 , and accordingly

cos lemn by means of (3.21).
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We observe that Herglotz never says explicitly that Gauss’ statement follows
from his results. He seems to consider it as self-evident that the number
of distinct (x, y) in (3.25) is N (π − 1) when α ranges over Z[i]/(π − 1) .
Indeed this belongs to the basics of complex multiplication and we have
no doubt that Herglotz regarded it as such. He was a very knowledgable
mathematician, well acquainted with the old masters of the science. When
he not explicitly claimed to have proved the statement in Gauss’ last entry,
then because in his eyes this was self-evident from what he really proved.
His style used to be very concise – or maybe we should say “minimal” if it
comes to explanations for the reader.

This may have been the reason why the paper of Herglotz was not properly
appreciated by the mathematical public of the time. The paper was reviewed
by Gábor Szegö in the “Fortschritte der Mathematik”, and he just repeats
the author’s claim that the solutions of (3.17) coincide precisely with the
congruence solutions modulo π of the division equations for the lemniscate
functions. No mention of the fact that this implies the validity of Gauss’
statement. The same we can observe in the commentaries in Herglotz’s
“Collected works” [Her79]: The article on Gauss’ last entry was commented
on by Theodor Schneider, and again he does not mention that the validity
of Gauss’ entry follows from Herglotz’s result.

When in the year 1933, Hasse used complex multiplication to prove the
RHp for all elliptic function fields, he did not cite Herglotz’s paper although
Herglotz had used the same method, namely complex multiplication, in the
special case of the lemniscate function field. And in the joint paper of Hasse
and Davenport [DH34] we find an extra section where a particularly simple
proof of the Riemann hypothesis for the field K(x,

√
1− x4) is given; in view

of (3.22) this is precisely the field of the lemniscate. Again, Herglotz’s paper
was not cited. Probably Hasse (and Davenport too) did not know it.

So we see that Herglotzs’ paper was not widely known among the mathemati-
cians of the time, at least it was not realized that it yields a proof of Gauss’
last entry. Only after many years this consequence of Herglotz’s paper was
re-discovered by Deuring [Deu41a]. That paper was dedicated to Herglotz on
his 60th birthday in 1941. Deuring mentions Hasse’s work on the Riemann
hypothesis for elliptic fields and then writes:

“Apparently the mathematicians who work on these problems did
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not notice that this theorem about congruences of genus 1 had
been known to Gauss already, at least in the case of lemniscate
functions. . . Finally Herglotz has proved Gauss’ statement. His
method, namely to use the division of elliptic functions by π − 1,
is the same, in principle, which Hasse had used in his first paper
on the Riemann hypothesis.”

Of course, Deuring knew the theory of complex multiplication well; after all
he was the one who, following Hasse’s lines, completely remodelled the theory
replacing the analytic framework with a purely algebraic one. (See section
8.5.) Thus for him it was obvious that Herglotz’s results imply the validity
of Gauss’ last entry. In this way Herglotz’s paper came to be appreciated
belatedly as a forerunner of Hasse’s general theory of elliptic function fields
and the RHp.

But even so, I have no explanation why Herglotz himself did not mention his
own paper, not to Hasse and not to anyone around Hasse.

On 10. January 1933 Hasse delivered a colloquium talk in Göttingen at the
Mathematische Gesellschaft . At that time Herglotz was in Göttingen already,
having accepted in 1925 an offer from Göttingen as the successor of the
applied mathematician C. Runge. It seems to us very probable that Herglotz,
being a member of the Mathematische Gesellschaft , attended Hasse’s talk
where Hasse presented his new view of the Riemann hypothesis in connection
with the work of Davenport and Mordell. Would it not be natural that in
the ensuing discussion, Herglotz would mention that he had proved the RHp
for the lemniscate, in his paper on Gauss’ last entry? Later in the same year,
on 10. December 1933, Hasse gave another talk in Göttingen; at this time he
had already obtained his proof of the RHp for arbitrary elliptic curves. This
time we know for certain that Herglotz attended the talk for he, together
with F. K. Schmidt, had invited Hasse to Göttingen. Herglotz had offered
that Hasse may stay in his house during the time of his visit. (I do not know
whether Hasse accepted this offer.) And again Herglotz did not mention his
own paper. If he would have then Hasse, who generally was very careful in
his citations, would certainly have mentioned it in one of his papers.

In the summer of 1934 Hasse accepted a position in Göttingen and from then
on the two, Hasse and Herglotz, worked as colleagues at the same institution.
It is inconceivable that Herglotz was not informed about Hasse’s work at that
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time. Then, why did he keep silent about his own work, realizing that Hasse
did not know it?

I have no explanation, except perhaps that the years of Herglotz’s activities in
number theory had passed and his interest had shifted to partial differential
equations and differential geometry. And he had forgotten his own paper
on Gauss’ last entry. This seems not to be entirely implausible. There are
several mathematicians who were known to forget their own work after some
time. For instance, Hilbert is said to have completely forgotten his earlier
work as soon as he turned to a new field of mathematical research.

Summary

In 1921, the same year when Artin submitted his thesis, Herglotz published
a note containing a proof of the statement in the last entry of Gauss’ diary
of 1814. This concerned the number of solutions modulo p of the lemniscate
equation, for p ≡ 1 mod 4. It implies the validity of the RHp for the function
field of the lemniscate. But Artin does not cite Herglotz’s paper in his thesis,
and it appears that he did not know it.

The method which Herglotz used belongs to the theory of complex multipli-
cation. Later in 1933, when Hasse obtained the first proof of the RHp for
elliptic function fields, Hasse used the same method as Herglotz had used in
the special case of the lemniscate function field. But Hasse did not cite Her-
glotz’s paper and it appears he did not know it either. And again, Herglotz
did not tell him about it. Quite generally, Herglotz’s paper seems not to have
been widely known at that time, and it was 1941 only that Deuring brought
it to the attention of the mathematical public.



Chapter 4

Building the foundations

4.1 F.K.Schmidt

Friedrich Karl Schmidt (1901-1976) studied at the University of Freiburg

59
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where he did his Ph.D. examination in May of 1925. In the introduction to
his thesis he refers to Artin’s thesis on quadratic function fields which had
just appeared in print, and he says:

“The analogy to the quadratic number fields which he [Artin]
found, suggested the question whether there exists a similar par-
allelism if one replaces the quadratic by an arbitrary algebraic
extension. The present paper shows that indeed this is the case.”

In other words: F. K. Schmidt1 aimed at generalizing Artin’s thesis from
quadratic function fields to arbitrary function fields over a finite base field.
Formally the thesis advisor of F. K. Schmidt was Alfred Loewy but in reality
the topic of F. K. Schmidt’s thesis was proposed by Wolfgang Krull (1899-
1971) who at that time held a position at the university of Freiburg as Privat-
dozent and assistant to Loewy. Krull had been in Göttingen as a postdoc for
two years, where he got into closer contact with Emmy Noether. It appears
that it was Emmy Noether who had the idea to generalize Artin’s thesis and
had challenged Krull to do so, or at least have one of his Ph.D. candidates
do it. (Noether reports in a letter to Alexandroff, written in the year 1930,
that she had been addressed as “grandmother” in regard to F. K. Schmidt,
see [Tob03].)

As said already in section 3.1 Artin’s thesis had been divided into two parts,
an “arithmetic” and an “analytic” part. In the second part Artin had in-
troduced his zeta function as a complex analytic function and studied its
properties. The first part contained those results on quadratic function fields
which could be obtained without the analytic zeta function.

Although F. K. Schmidt had announced in the introduction of his thesis that
he is going to generalize Artin’s thesis for arbitrary function fields, he did not
complete this fully. He generalized Artin’s first part only. More precisely:
Artin’s statements (i)-(vi) on quadratic function fields which I have listed
on page 29-29 were generalized to arbitrary function fields F |K over finite

1In Germany the name “Schmidt” is quite common. There are several well known
mathematicians with this name. In order to identify them it is common to use their first
names or first name initials. We shall follow this habit here too; this is the reason why
we always use the initials when mentioning F. K. Schmidt, whereas with other mathemati-
cians the initials are not used in general. We shall meet later another Schmid, namely
H. L. Schmid (this time without “t”).
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base fields, in the following situation: F |K(x) is separable and R the integral
closure of K[x] in F . But F. K. Schmidt left no doubt that he will be going
to deal with the second part soon. Indeed he did, as we shall see.

Remark: If F |K(x) is separable then x is called a “separating element” for
F |K. F. K. Schmidt shows that there exist such separating elements provided
the base field K is finite or, more generally, K is perfect. Artin in the case of
quadratic function fields had avoided this by supposing from the start that
the characteristic is not 2.

Later in the same year (1925) the young F. K. Schmidt attended the annual
meeting of the German Mathematical Society (DMV) which took place in
September in the town of Danzig. There he attended Hasse’s famous 1-hour
lecture on the new face of class field theory à la Takagi; the lecture notes
were published later in an extended form as Hasse’s “Class Field Report”
[Has26a].

Hasse’s lecture, delivered on 15. September 1925, presented the new class
field theory for the first time to a broader mathematical audience. This
attracted a great deal of attention of the mathematical community.2 The
young F. K. Schmidt too became enthusiastic about the new vista which class
field theory opened for algebraic number theory. And he decided on the spot
that he would transfer class field theory from number fields to global fields
of characteristic p > 0 . It appears that Hasse had encouraged him to do
so. In any case the correspondence between Hasse and F. K. Schmidt, mainly
about function fields, started soon after the Danzig meeting and continued
for many years.

But it was clear to F. K. Schmidt that first of all Part 2 of Artin’s thesis
would have to be generalized, in particular the zeta function and the L-series
for residue characters of divisors. At that time these objects were considered
as indispensable when dealing with class field theory. And he started to work

2It seems that the young group theorist Otto Schreier, who also attended the Danzig
meeting, had missed Hasse’s talk. For he wrote to his friend Karl Menger one day later,
i.e., on 16. September 1925, that scientifically almost nothing of interest had happened
during the meeting [Sch14]. Did he also miss Emmy Noether’s talk where she for the first
time introduced group representations by means of algebras and representation modules
[Noe25] ? Did he not meet Chebotarev there for whose famous density result he, Schreier,
provided a substantial simplification one year later [Sch26] and which inspired Artin’s
proof of the reciprocity law in class field theory?
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on this.

In a letter of F. K. Schmidt to Hasse dated 6. May 1926 – half a year after
the Danzig meeting – he writes that he did not yet succeed to get the limit
formula for the zeta function in characteristic p . (This formula gives the
residue of the zeta function at its pole for s = 1 and it was expected that
it would contain important information on the class number, similarly as
in Artin’s thesis in the case of hyperelliptic fields.) But later, on 8. August
1926, he informs Hasse that finally he has obtained that formula. (See (4.14)
on page 66.) In the same letter he announces a prepublication in the “Er-
langer Berichte”. This was a journal published by the University of Erlangen
containing research articles of its members from all fields, not only mathe-
matics. It was not widely distributed and would probably not have been read
by many mathematicians; its main purpose seems to have been to secure pri-
ority for the authors. (This was important for young F. K. Schmidt since
in the meantime he had learned about the paper [Sen25] by P. Sengenhorst,
a student of Landau, covering the same topic as F. K. Schmidt’s thesis. In
view of this, F. K. Schmidt did never publish his thesis. But the text is still
available as a hand written document at the archives of Freiburg University.)

When I read this prepublication [Sch27] I found that F. K. Schmidt originally
worked with Artin’s zeta function ζR(s) belonging to a finitely generated
Dedekind ring R of the function field and its prime ideals. But there is an
important appendix “Added in Proof”, dated October 1926, in which he
switches from Artin’s zeta function to the birationally invariant ζF (s) whose
definition I have given on page 20. He refers to the well known paper by
Dedekind-Weber [DW82] where the birationally invariant viewpoint for the
algebraic theory of function fields was proposed for the first time. In that
appendix F. K. Schmidt sketches how his formulas, in particular the limit
formula, look like when using this birationally invariant zeta function and
announces a more detailed exposition.

Thus already in October 1926 F. K. Schmidt gave the birationally
invariant definition (2.2) of the zeta function of a function field
with finite base field.

I do not know who had suggested this idea to F. K. Schmidt. It may have
been Krull who, as mentioned before, kept good relations to Emmy Noether
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in Göttingen. About Emmy Noether it is known that she admired the work
of Dedekind and was promoting his point of view in algebra and number
theory.

The announced more detailed version of F. K. Schmidt’s paper is contained
in his Habilitation thesis 1927 and appeared 1931 in the Mathematische
Zeitschrift [Sch31a] under the title:

“Analytic Number Theory in characteristic p .”

This is the paper where F. K. Schmidt generalizes the second part of Artin’s
thesis. And he did it in the style of the classical paper of Dedekind-Weber
where the theory is built in a birationally invariant way. So he did what
A. Weil later said Artin should have done in the first place. (See page 39.)

Let me repeat that F. K. Schmidt did not write his paper with the RHp in
mind. I have not found any evidence that he was particularly interested in
the RHp. His aim was to provide the necessary tools for building class field
theory in characteristic p , and it was for this purpose that he developed the
properties of the zeta function contained in [Sch31a].

Remark 1: F. K. Schmidt did not fully succeed to build class field theory
in characteristic p . In his article [Sch31b] he developed the theory of abelian
extensions of global fields in characteristic p under the restrictive assump-
tion that the degree is not divisible by the characteristic. It turned out
that this theory can be obtained in complete analogy to the classical case
which concerns abelian extensions of number fields, including the theory of
L-series L(s|χ) for ray class characters χ of order prime to p. In his treat-
ment F. K. Schmidt kept close to Hasse’s class field report for number fields
[Has26a, Has27]. But he did not consider Artin-Schreier extensions nor did
he transfer Artin’s general reciprocity law to characteristic p . This was later
done by Hasse [Has34e] (compare the remark on page 96). It appears that
originally F. K. Schmidt regarded his article as a prepublication only which
he wished later to adapt to the new developments of class field theory due
to Artin, Hasse, Chevalley and others. But he never did so, and today his
article on class field theory in characteristic p seems to be forgotten.

Remark 2: F. K. Schmidt’s paper [Sch31a] has been refereed in the Zen-
tralblatt. There the referee said that for any function field with finite base
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field

“there exists, according to Artin, an ideal theory, a theory of units
and an analytic theory, with results which are largely identical
with the known properties in algebraic number fields.”

The referee was van der Waerden who had been present in Artin’s Hamburg
lectures on algebraic number theory. (The famous book “Modern Algebra” is
an outgrow of the cooperation of van der Waerden and Artin while working
on the print version of Artin’s lectures.) Thus van der Waerden was well
informed when he reported that Artin himself had already achieved the gen-
eralization of his thesis to arbitrary function fields with finite base fields (al-
though not published). But van der Waerden admitted that F. K. Schmidt’s
paper gives a “new justification” of the theory, based on divisors and divisor
classes instead of ideals and ideal classes. In particular he says explicitly that
F. K. Schmidt replaces Artin’s zeta function by a new birationally invariant
zeta function. I am mentioning this since it confirms what I have said in
section 3.3, namely that Artin continued to be interested in function fields
with finite base fields, although in his publications he never took up the RHp.

I am now going to report on F. K. Schmidt’s paper [Sch31a].

4.2 Zeta function and Riemann-Roch Theo-

rem

Let F |K be a function field with finite base field. Let q = |K| be the number
of elements in K. The residue field for each prime P of F is a finite extension
of K, hence in formula (2.2) we have

(4.1) |P | = qdegP and therefore |A| = qdegA

for all divisors A of the function field. Consequently, after introducing the
variable t = q−s , F. K. Schmidt’s zeta function ζF (s) of (2.2) is transformed
into a power series in t :

(4.2) ZF (t) =
∏
P

1

1− tdegP
=
∑
n≥0

ant
n
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with an ∈ Z. It turns out that ZF (t) is a rational function in the variable t.
To see this it is necessary to know more about the coefficients an appearing
on the right hand side.

In order to simplify notation I will write Z(t) instead of ZF (t) if it is clear from
the context which function field F is discussed at the time. Similarly, I will
omit the index F in the notation also for other objects which are connected
with F . For instance I am writing W instead of WF for the canonical class,
g for the genus, h for the class number etc. However, in cases when it is
important to indicate which field I am referring to, I shall use the index F
or F |K.

By definition, an in (4.2) is the number of integer divisors of F of degree n.
Let C be a divisor class of degree n. The integer divisors in C are counted
as follows: Choose a fixed divisor A0 ∈ C. For any integer divisor A in the
same class the quotient AA−1

0 = (f) is a principal divisor of some 0 6= f ∈ F ,
uniquely determined by A up to a nonzero factor in the base field K. (There
are q − 1 such possible factors.) These f (together with the zero element)
form a K-vector space L(A0), consisting of all multiples of A−1

0 in F . Its
dimension does not depend on the choice of the divisor A0 ∈ C and is denoted
by dimC . We conclude that there are

(4.3) aC =
qdimC − 1

q − 1

integer divisors A in the class C. Hence

(4.4) an =
∑

degC=n

qdimC − 1

q − 1
.

These numbers appear in the power series expansion (4.2).

In order to obtain information on dimC the theorem of Riemann-Roch is
applied. More precisely I should say the algebraic analogue of the Riemann-
Roch Theorem. For, neither Bernhard Riemann nor Gustav Roch considered
function fields of characteristic p . Their result concerned geometric (or rather
topologic) properties of a Riemann surface. Dedekind and Weber had discov-
ered the algebraic nature of the Riemann-Roch Theorem in their pioneering
paper of 1882 in Crelle’s Journal [DW82] which F. K. Schmidt refers to. But
they had worked in characteristic 0 only, with the complex field K = C as
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base field. F. K. Schmidt had seen how the Riemann-Roch Theorem can be
proved also in characteristic p with arbitrary base field K, and he realized
the importance of the theorem for the investigation of the zeta function.

The Riemann-Roch Theorem refers to a certain distinguished divisor class
W of the function field F |K, called the “canonical class”. Sometimes it is
called “differential class” since it consists of the divisors of the differentials
of F |K. Its K-dimension

(4.5) g : = dimW

is called the “genus” of F |K. If the divisors in W are interpreted as divi-
sors of differentials then g can be interpreted as the number of K-linearly
independent integer differentials, or “differentials of the first kind” as it was
called in the classical theory.

This being said, the Riemann-Roch Theorem can now be formulated as fol-
lows: For every divisor class C of F |K consider its “dual” WC−1. Then the
Riemann-Roch Theorem establishes a relation between the dimension of C
and of its dual:

(4.6) dimC = degC − g + 1 + dim(WC−1) .

In particular, for C = W it follows

(4.7) degW = 2g − 2 .

The canonical class W is uniquely determined by the Riemann-Roch The-
orem, and hence (4.6) can be taken as a definition of W . But this does
not say anything about the existence of a divisor class W satisfying (4.6).
F. K. Schmidt [Sch31a] gives a proof which is modeled after that of Dedekind-
Weber [DW82] but enhanced with some extra arguments taking into account
that the characteristic is a prime number p and, moreover, the base field is
not algebraically closed. On the way he obtained the important Riemann-
Hurwitz formula. This refers to a separating element x of F |K. Putting
n = [F : K(x)] the Riemann-Hurwitz formula says that

(4.8) 2g − 2 = deg D(F |K(x))− 2n

where D(F |K(x)) denotes the different of the separable extension F |K(x).
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In later years Hasse included F. K. Schmidt’s proof in his book “Zahlentheo-
rie” [Has49], and we find the same proof in the later editions of the second vol-
ume of van der Waerden’s “Algebra” [vdW67]. In the meantime quite a num-
ber of other proofs have appeared in the literature, one by F. K. Schmidt him-
self [Sch36], another one by A. Weil [Wei38b], and more. (See also [Che51],
[Ros52], [Roq58].) Today the Riemann-Roch Theorem belongs to the well
known prerequisites for the study of function fields, and it is easily accessible
in the literature. But this was not yet the case in the 1930s and it is due
to F. K. Schmidt to have early seen the importance of the Riemann-Roch
Theorem and its relevance for the zeta function.

If degC > degW then its dual WC−1 is of negative degree and hence there
are no integer divisors in its class, i.e., dimCW−1 = 0. The Riemann-Roch
Theorem (4.6) shows that therefore,

(4.9) dimC = degC − g + 1 if degC > 2g − 2 .

Thus for those C the dimension depends on the degree only. (This is Rie-
mann’s part of the Riemann-Roch Theorem.) Hence for n > 2g−2 all divisor
classes of degree n give the same contribution (4.3) to the series (4.2). Con-
sequently, if h denotes the number of divisor classes of degree n, then

an = h · q
n−g+1 − 1

q − 1
if n > 2g − 2 .

As already indicated by the notation, the number h of divisor classes of
degree n is finite and does not depend on n. Conclusion:

Z(t) =
∑

n≤2g−2

ant
n + h ·

( ∑
n≥2g−1

qn−g+1 − 1

q − 1

)
· tn(4.10)

The first sum on the right side is a polynomial of degree ≤ 2g − 2, and the
second term a difference of two geometric series, with respect to the powers
of qt and of t respectively, starting with the exponent 2g−1. (In any case the
summation index n in these formulas is assumed to be n ≥ 0. Hence if g = 0
then the first term in (4.10) does not appear and Z(t) = 1/(1 − qt)(1 − t).
In the following we will exclude this trivial case, if convenient, and assume
g ≥ 1.) We conclude that Z(t) is indeed a rational function in t, as announced
above already, and that Z(t) has simple poles at t = q−1 and t = 1.
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Remark 1: Divisors of degree 1 . In the above computations I have tac-
itly pretended that for every given n there exist divisors in F |K of degree n.
This is indeed the case but is not obvious; it was discovered by F. K. Schmidt
as a consequence of the finiteness of the base field K. This had raised some
surprise among the mathematicians of that time since for infinite base fields
this is not always the case. (If g > 1 then d is a divisor of 2g − 2. But
if g = 1 then, according to Shafarevich [Sha57], there exist function fields
F |Q of genus g = 1 for which the smallest positive divisor degree d is ar-
bitrarily large.) F. K. Schmidt’s proof is analytic in the sense that it uses
his analytically defined zeta function in characteristic p . Shortly thereafter,
Witt produced an algebraic proof by using suitable arguments from cyclic
cohomology [Wit34b]. Both proofs are based on the decomposition law for
primes in base field extensions.

Remark 2: Base field extensions. Let F |K be a function field with finite
base field and K ′ an algebraic extension of K. Then the field compositum
F ′ = FK ′ can be regarded as a function field with K ′ as base field. F ′|K ′ is
called a “base field extension” of F |K. Already Artin had found that often
it is useful to consider base field extensions, see section 3.2.1. F. K. Schmidt
in his paper gives a systematic theory of base field extensions. He says:

“In this way it is possible to avoid the difficulties which, when
compared to the classical theory of algebraic functions, are due to
the fact that the base field K is not algebraically closed.”

The method of base field extensions is used over and over again in the alge-
braic theory of function fields. Hence it may be useful to list some of their
basic properties which F. K. Schmidt had included in his paper. He shows:

• The divisor group of F |K embeds naturally into the divisor group of
any base field extension F ′|K ′,
• the degree of a divisor A of F |K does not change if A is considered

as a divisor of a base field extension F ′|K ′; similarly for the dimension
of A ,

• the divisor class group of F |K embeds injectively into the divisor class
group of F ′|K ′,
• the canonical class of F |K remains to be the canonical class of F ′|K ′,
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• the genus of F |K does not change under base field extensions.

These properties hold not only when the base field K is finite, but more
generally for arbitrary separable base field extensions. K ′|K may be even
a transcendental separable extension (i.e., every finitely generated subex-
tension is separably generated. In such case FK ′ is defined as the field of
quotients of the integral domain F ⊗K K ′.)

Today a function field F |K is called “conservative” if the genus remains the
same in every base field extension, regardless of whether the new base field
is separable over K or not. The term “conservative” shows up in Artin’s
Princeton lectures in the 1950s.

In this book I shall consider base field extensions of a function field only in
the case when the function field is conservative, so that I can freely use the
above properties.

4.3 F.K.Schmidt’s L-polynomial

According to (4.10) Z(t) may be written in the following form:

(4.11) Z(t) =
L(t)

(1− qt)(1− t)
where L(t) is a polynomial of degree 2g. The first two and the last coefficient
of L(t) can be explicitly obtained by taking a closer look at (4.10). One finds
that

(4.12) L(t) = 1 + (N − q − 1)t+ · · ·+ qgt2g .

Here, I am writing N for the number of primes P of degree 1 of F |K, i.e.,
N = a1 in the notation of (4.2). By writing N instead of a1 I follow the
notation which has become standard in this connection. More precisely I
will write NF when it should be pointed out that this number belongs to the
function field F .

In terms of the variable t = q−s the RHp asserts that every root of L(t) lies

on the circle |t| = q−
1
2 . It is common to consider the reciprocal polynomial

(4.13) L∗(t) = t2gL(t−1) = t2g + (N − q − 1)t2g−1 + · · ·+ qg ;
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its roots are the inverses of the roots of L(t). Hence:

The RHp asserts that all the 2g roots of L∗(t) are situated on the
circle |t| = √q.

While the RHp originally refers to the infinitely many zeros of the analytically
defined zeta function, now it appears as a statement about the finitely many
roots of a polynomial of degree 2g. These roots, not necessarily distinct, are
algebraic integers, due to the switch from L(t) to L?(t).

Let me call L(t) = LF (t) the “F. K. Schmidt’s L-polynomial” of F . Some-
times I shall use this name also for the inverse polynomial L∗(t).

Hasse says in his survey [Has34f] that formula (4.11) had been communicated
to him by F. K. Schmidt. But it is not contained in F. K. Schmidt’s paper
[Sch31a]. Also, I did not find any mention of it in the letters of F. K. Schmidt
to Hasse. So I assume that F. K. Schmidt had told Hasse about it at some
occasion when they had met. They met several times in the years 1933/34.

4.3.1 Some comments

On page 58 I have said that F. K. Schmidt had some problems to find the
analogue to Kronecker’s limit formula for the class number of a function field.
Now, for his birationally invariant zeta function he obtained the limit formula
from (4.10) and (4.11) as follows:

lim
t→1

(t− 1)Z(t) = − h

q − 1
=
L(1)

1− q

and therefore simply

(4.14) h = L(1) = L∗(1) .

In the elliptic case, since L∗(t) = t2 + (N − q− 1)t+ q it follows that h = N .

When comparing this with Artin’s class number formulas (page 37) it should
be kept in mind that Artin did not work with F. K. Schmidt’s zeta function
ζF (s), for the simple reason that this was not yet defined. Artin had studied
quadratic function fields F = K(x,

√
D) and he worked exclusively with the
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truncated zeta function ζR(s) for R = K[x,
√
D] as explained on page 33.

Artin did not know (or care) about the Riemann-Roch Theorem, instead he
used the quadratic reciprocity law in K[x], thus keeping close to the analogy
to quadratic number fields. His class number formulas (3.8) can easily be
transformed into F. K. Schmidt’s simple formula (4.14). For, using (3.5) it is
seen that in the case of quadratic function fields we have

(4.15) LR(t) =



LF (t) if
√
D is “imaginary” and degD odd

(1 + t)LF (t) if
√
D is “imaginary” and degD even

(1− t)LF (t) if
√
D is “real” .

This corresponds to the fact that LR(t) may have “‘trivial” zeros. In the last
two cases there is one trivial zero, namely t = −1 or t = 1 respectively. In
the first case there is no trivial zero.

Moreover it has to be taken into account that when Artin spoke about the
“class number” then he meant the number hR of ideal classes of the Dedekind
ring R = K[x,

√
D]. This differs from the class number h = hF as defined

above by a factor ρ(R) called the “regulator” of the Dedekind ring R which
is a measure for the size of the fundamental unit in R. This regulator is
nontrivial if and only if

√
D is “real” in the sense of Artin.

By the way, F. K. Schmidt in his thesis [Sch25] defines the regulator ρ(R) of
any finitely generated Dedekind ring R of any function field F |K with finite
base field K, as follows: Let r denote the number of primes Qi of F |K which
do not lie above R. The group of units R× modulo torsion is a free abelian
group of r − 1 generators. Let ε1, . . . , εr−1 denote a system of fundamental
units, i.e., a basis of R× modulo torsion. Then he defines

ρ(R) := | det vi(εj)| (i, j = 1, 2, . . . r − 1)

where the vi are the additive valuations of F belonging to the primes Qi, nor-
malized according to the sum formula for valuations, i.e., vi(x) = degQi ·vQi(x).
F. K. Schmidt shows that

hR = ρ(R)hF

which generalizes Artin’s class number formulas (3.8) on page 37.
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For historical reasons I should mention that the existence of fundamental
units had been proved already in the year 1903 by Kühne [Küh03]. It appears
that F. K. Schmidt did not know that paper. I have already cited another
paper by Kühne in connection with the power reciprocity laws in function
fields (see page 31). It appears that Kühne’s papers were not widely recog-
nized by the mathematical public. This may be due to the fact that they
were written in the style of “multiple congruences”, and this was not any
more understood in later times, after it became common to use the abstract
notions of field, ring, ideal etc.

4.4 The functional equation

The functional equation describes the behavior of ζF (s) under the substi-
tution s → 1 − s. For the variable t = q−s this means the substitution
t→ q−1t−1.

The function t−(g−1)Z(t) remains unaltered under the substitution
t→ q−1t−1. Hence:

(4.16) Z(q−1t−1) = q−(g−1)t−(2g−2)Z(t) .

This can be verified by explicitly looking at the expansions (4.2), (4.3) and
using the Riemann-Roch Theorem. But I cannot resist to present here an
elegant proof by Witt which he has never published. (But it appears, with
reference to Witt, in Hasse’s report [Has43b] in Italian language.)

Witt’s proof is based on the Riemann-Roch Theorem (4.6) written in sym-
metric form:

(4.17) dimC − 1

2
degC = dimC ′ − 1

2
degC ′

where C ′ = CW−1. The degree formula (4.7) can be written in anti-symmetric
form:

(4.18) degC − (g − 1) = −
(

degC ′ − (g − 1)
)
.
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Witt starts by observing the relation∑
−∞<n<∞

tn = 0

which is to be interpreted as follows: If the sum is cut at any place into two
parts, one to the left and one to the right, then the two emerging rational
functions in t add up to 0. The relation

(4.19)
∑
C

tdegC = 0

is to be interpreted similarly; here and in the following C ranges over all
divisor classes of F |K, of positive or negative degree.

Now, starting from the expansion (4.2), (4.3) and getting rid of the denomi-
nator q − 1, Witt applies (4.19) and obtains:

(q − 1)Z(t) =
∑
C

qdimC · tdegC(4.20)

where he observed that if degC < 0 then qdimC = q0 = 1. Introducing the
new variable u = q1/2 t, i.e., t = q−1/2 u, this can be written as:

(q − 1)Z(t) =
∑
C

qdimC− 1
2

degC · udegC .(4.21)

Multiplying with t−(g−1) = q
1
2

(g−1) u−(g−1):

(q − 1) t−(g−1)Z(t) = q
1
2

(g−1)
∑
C

qdimC− 1
2

degC · udegC−(g−1) .(4.22)

From (4.17) and (4.18) it is seen that on the right side the transformation
u→ u−1 permutes the terms for C and C ′, hence the sum remains invariant.
By definition, u→ u−1 means t→ q−1t−1.

4.5 Consequences

The roots of Z(t) are the same as the roots of F. K. Schmidt’s polynomial
L(t), see (4.11). Their inverses are the roots of L∗(t). Hence as a consequence
of the functional equation (4.16):



4.5. CONSEQUENCES 74

If ω is a root of L∗(t) then qω−1 is also a root of L∗(t). In other
words: The roots of L∗(t) come in pairs ω, ω′ (not necessarily
distinct) such that ωω′ = q .

Hence, if it is known that |ω| ≤ √q for all roots ω then one can conclude
that |ω| = √q , i.e. the validity of RHp.

The estimate |ω| ≤ √q can be achieved by using Artin’s criterion. Artin had
established his criterion in his letter to Herglotz (see (3.11) on page 41). He
did it for his truncated zeta function ZR(t) but it also works for F. K. Schmidt’s
zeta function Z(t) = ZF (t). Let us explicitly state Artin’s criterion for Z(t).

Let ω1, . . . , ω2g denote the roots of L∗(t). First we observe that if the RHp
holds for F |K then, using (4.13) we have:

(4.23) |N − q − 1| = |ω1 + · · ·+ ω2g| ≤ 2g
√
q .

Moreover, the validity of RHp for F |K implies its validity for every base field
extension Fr = FKr where Kr is the extension of K of degree r. This is due
to the formula for the respective zeta functions

(4.24) ZFr(t
r) =

∏
εr=1

ZF (εt) .

This is the generalization of Artin’s relation (3.9) on page 40, written for the
variable t = q−s. Observe that Kr has qr elements, hence for ZFr the correct
variable is tr = q−rs . This explains the appearance of tr on the left side of
(4.24). The formula is locally verified by comparing the contribution of a
prime P of F on the right side with the contribution of its prime divisors
Q1, . . . , Qd in Fr on the left side. The number d of the Qi is the greatest
common divisor of r and deg(P ). The degree of each Qi in Fr|Kr is deg(P )/d.

It follows that the zeros of ZFr(t) are the r-th powers of the zeros of ZF (t)
and therefore, as claimed above, the RHp for F |K implies the RHp for Fr|Kr.
Thus the estimate (4.23) holds similarly for Fr|Kr, i.e.,

|Nr − qr − 1| = |ωr1 + · · ·+ ωr2g| ≤ 2g
√
q r ,

where Nr is the number of primes of degree 1 of Fr|Kr. (Recall that Fr|Kr

has the same genus as F |K, see Remark 2 on page 64.) Artin’s criterion is a
certain inverse:
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Artin’s Criterion. Suppose there exists a constant A indepen-
dent of r such that

(4.25) |Nr − qr − 1| < A
√
qr for all r ≥ 1 .

Then the RHp holds for the function field F |K (and hence also
for every base field extension Fr|Kr).

Let us briefly present Artin’s proof of it which is contained in his letter of
30. November 1921 to Herglotz (see page 41). Of course Artin worked there
in quadratic function fields only and with his truncated zeta function. But
his proof is valid also in the general case with F. K. Schmidt’s zeta function.
Artin writes

logL(t−1) = log
∏

1≤i≤2g

(1− ωit−1)

= −
∑
r≥1

(ωr1 + · · ·+ ωr2g)
t−r

r

=
∑
r≥1

(Nr − qr − 1)
t−r

r
.

The terms of this series can be estimated by (4.23) which gives:

| logL(t−1)| ≤ A
∑
r≥1

√
q r|t|−r

r
.

The logarithmic series on the right side is convergent for
√
q |t|−1 < 1. Hence

L(t−1) has no zero in this region. Thus the ωi satisfy
√
q |ωi|−1 ≥ 1 for

i = 1, . . . , 2g. This implies |ωi| ≤
√
q , hence |ωi| =

√
q as mentioned above

as a consequence of the functional equation.

2

The relation (4.25) expresses the fact that for r →∞ the numberNr increases
with the order of magnitude qr with the error term of order

√
q r. This can

be written in the form

(4.26) Nr = qr +O(
√
q r) for r →∞
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where O(· · · ) is the Landau symbol. Similarly for the number of rational
points of an irreducible projective curve Γ defined over K with F as its
function field. More precisely, let Nr(Γ) be the number of Kr-rational points
of Γ. Then Nr(Γ) differs from the number Nr of Kr-rational places of Fr
by a finite bound, depending on the singularity degree of the curve. If Γ is
an affine curve one has also to take into account the finite number of poles.
Thus (4.26) is equivalent to

(4.27) Nr(Γ) = qr +O(
√
q r) for r →∞ .

Thus Artin’s criterion can also be expressed in geometric language:

Let Γ be an absolutely irreducible curve defined over a finite field
K with q elements, and F = K(Γ) its function field. For any
finite extension Kr|K let Nr(Γ) denote the number of Kr-rational
points of Γ. Then the condition (4.27) is necessary and sufficient
for the validity of the RHp for the zeta function of F .

Remark: Artin’s criterion is used in every known proof of the RHp. (Except
the proof by Davenport and Hasse for the generalized Fermat fields and the
Davenport-Hasse fields. See page 96 and page 98.) But it is not contained in
F. K. Schmidt’s papers although, as we have seen, it is an easy consequence
of the functional equation. As I have said already, F. K. Schmidt was not
primarily interested in the RHp. His aim was to establish the foundations for
class field theory for global fields of characteristic p . Moreover F. K. Schmidt
did not know Artin’s criterion, not even for the case of quadratic function
fields. Artin had established this criterion in a letter to Herglotz, written
in 1921, but never published it (see page 40 ff). I have found no sign that
anyone else except Artin and Herglotz knew this criterion before November of
1932 when Artin met Hasse and told him about it (see next section). Artin’s
criterion was published in the year 1934 by Hasse [Has34f] in his survey
where he collected all known facts about the zeta functions of function fields,
including those which he had been told by Artin and F. K. Schmidt. However
Hasse’s proof of Artin’s criterion is different from Artin’s proof which I have
given above. Hasse’s proof is based on Newton’s formulas for symmetric
polynomials.
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Summary

The systematic theory of zeta functions for arbitrary function fields was pub-
lished by F. K. Schmidt, in generalization of the second part of Artin’s thesis.
After a preliminary announcement in 1926 F. K. Schmidt decided to build the
theory from a birational point of view, in the spirit of the classical work of
Dedekind-Weber of 1882. The basic notions are those of “prime divisor” (or
briefly “prime”) of a function field, and of “divisor”. F. K. Schmidt proved
the Riemann-Roch Theorem for divisors of algebraic function fields with per-
fect base fields. If the base field is finite then he exhibited a close relationship
between the Riemann-Roch Theorem and the properties of the zeta function of
the function field, in particular the functional equation. This is to be regarded
as his main achievement. The zeta function is essentially, up to a trivial fac-
tor without zeros, a polynomial L(t) of degree 2g where g is the genus of the
field. A direct consequence of the functional equation is Artin’s criterion for
the validity of the RHp. But this is not contained in F. K. Schmidt’s paper.
It was published in the year 1934 by Hasse after Artin had orally informed
him about it.

The main aim of F. K. Schmidt was not the RHp but the establishment of
class field theory for function fields over finite base fields. (He did not fully
reach this goal, however.) F. K. Schmidt’s paper was used as his thesis for Ha-
bilitation 1927 in Erlangen, and it was published 1931 in the Mathematische
Zeitschrift [Sch31a], the same journal where Artin’s thesis had appeared.

There is evidence that Artin in his lectures in the 1920s also developed the
algebraic theory of function fields, and perhaps the analytic theory too. But
this had not appeared in print at that time.
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Chapter 5

Enter Hasse
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Helmut Hasse (1898-1979) was of the same age as Artin.1 In 1917 during
his military service he got permission to study at the University of Kiel with
Toeplitz. After the war he moved to Göttingen where he studied mainly with
Hecke. When the latter left Göttingen in 1920, Hasse became interested in
the theory of p-adic numbers and went to Marburg to study with Kurt Hensel.
He regarded Hensel as his “first” academic teacher, the “second” being Erich
Hecke. (That’s what he answered when once I had asked him about it.)

In May 1921 Hasse received his Ph.D. in Marburg. In his thesis he formulated
his “Local-Global Principle” for quadratic forms over the rational number
field Q. His papers on quadratic forms culminated 1924 in the Local-Global
Principle for quadratic forms over an arbitrary algebraic number field [Has24].
In the year 1922 Hasse obtained a position as Privatdozent at the University
of Kiel. The towns of Kiel and Hamburg are not far from each other, and the
mathematicians of Kiel kept close contacts to their colleagues in Hamburg.
There, Hasse and Artin frequently met in Hecke’s seminar, and a long lasting
friendly relationship began, documented in a number of letters between Artin
and Hasse, mostly on problems of class field theory [FLR14].

In the year 1925 Hasse accepted a professorship at the University of Halle.
In the summer semester 1930 he changed to Marburg, as the successor of his
academic teacher and “fatherly friend” (väterlicher Freund) Kurt Hensel.

Of course Hasse was familiar with the content of Artin’s thesis. In fact he
had reviewed it in the Jahrbuch der Fortschritte der Mathematik. Although
he briefly mentioned the RHp in his review I have found no evidence that
Hasse was particularly interested in the RHp at that time. But this suddenly
changed in 1932. One can precisely determine when and how Hasse became
seriously interested in the RHp. This happened in one of the last days of
November 1932. On this day Hasse arrived in Hamburg by train from Kiel
where he had given a colloquium talk at the University, on invitation from
Fraenkel.

1In their joint paper [AH25] it is said that the write-up of the paper was done by the
younger of the two. Since both were born in the same year it takes a precise knowledge
of their birth dates to decide who indeed was the younger one. Fact is that Hasse was 175
days younger than Artin.



81

Hasse had known Fraenkel since many years; their correspondence shows
their friendly respect towards each other.2 Fraenkel was full professor at
the University of Kiel since 1928 . There he tried whatever he could do to
have Hasse (who was in Halle at that time) back to Kiel University, but this
was in vain since the Prussian ministry of education wanted Hasse to go to
Marburg as the successor of Hensel. In fact, as I have said already Hasse
went to Marburg in 1930. In September of 1932 Fraenkel met Hasse again
at the International Congress of Mathematicians in Zürich, and he invited
Hasse for a colloquium talk in Kiel. Hasse accepted; the date was finally
fixed for the end of November of 1932. (Fraenkel had invited Hasse to stay
in his (Fraenkel’s) home while in Kiel for the colloquium.)

Originally Hasse had proposed to talk in Kiel on his recent results on simple
algebras over number fields and their role in class field theory – this had
also been the topic of his lecture at the ICM in Zürich. In his Nachlass I
have found a complete script for this proposed talk. But some time between
September and November Hasse apparently had become interested in another
topic, namely diophantine congruences. In his Nachlass there is a second
script for a talk in Kiel with the title:

“On the asymptotic behavior of numbers of solutions of
congruences modulo p .”

Hasse had recently become interested in this topic through his friend Harold
Davenport. It seems not likely that Hasse gave two talks in the colloquium
at Kiel. I believe that he talked about the second topic only, like he did in
Hamburg some days later.

As the towns of Kiel and Hamburg are situated not far from each other it
seems natural that Hasse, on the way back from Kiel, took a stop in Hamburg
“with the only purpose to be together with the Artins” as he wrote to Daven-
port. But somehow Artin had been able to induce Hasse into presenting his
Kiel lecture a second time in Hamburg. This lecture had the same title as
that in Kiel which I have quoted above. There is no hint in the title nor in
Hasse’s own lecture notes of a connection to function fields and the RHp.

2The letters from Hasse to Fraenkel are kept at the archives of Hebrew University in
Jerusalem. I am indebted to Moshe Jarden for helping me to find them. The letters in
the other direction are in the Hasse Nachlass in Göttingen.
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But such a connection was opened by Artin in the discussion with Hasse
after his colloquium talk. Artin informed Hasse about his results on the
RHp which he had written to Herglotz but never published (see section 3.2).
In particular he told Hasse about his criterion for the validity of the RHp
(see page 71). In view of these results the Hasse-Davenport problem mutated
into the RHp – and for the next years Hasse was almost completely absorbed
in its proof.

But what was Hasse’s original problem on diophantine congruences and how
did he become interested in it? This is another side of our story. Hasse’s
younger friend Davenport has played a decisive role in this. One can safely
say that without his friendship with Davenport, Hasse would not have taken
up his work on the RHp.



Chapter 6

Diophantine congruences

6.1 Davenport
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Harold Davenport had been introduced to Hasse in 1930 by Louis J. Mordell.
This came about as follows:

On 25. November 1930 Hasse wrote a letter to Mordell who at that time held
a professorship at the University in Manchester. They knew each other since
several years; they had exchanged reprints and letters. Mordell, who liked
to travel, had visited Hasse occasionally; the last visit had been on 16. July
1930 when Mordell gave a colloquium talk in Marburg on the invitation of
Hasse. The above mentioned letter contained, on the request of Mordell,
Hasse’s opinion on Wedderburn who was considered for election to the Royal
Society. Hasse had written his opinion in German because he felt not to be
sufficiently proficient in the English language. He added a note to his letter,
in a rather quaint1 English, which reads as follows:

“. . . In order to have further occasion for applying and enriching
my knowledges I would much like to get a young English fellow at
home. It would be very kind of you, if you could send me one of
your students during next summer term (April-July). We would
invite that student to dwell and eat with us. He would be obliged
to speak English with us at any time we are together (at breakfast,
dinner, tea, lunch etc.). . . From my point of view it would be best,
if he were student of pure mathematics out of an advanced course
of yours. . . I would much like to hear from you, whether you know
a clever and handsome fellow for this purpose.”

Thus Hasse wished to upgrade his English. At those times, English had not
yet become the lingua franca for science and not, in particular, for mathe-
matics.

Already two days after Hasse had sent the letter, on 27. November 1930,
Mordell replied to him as follows:

“. . . I can suggest the very person you want to go to Marburg. Mr.
Harold Davenport, Trinity College, Cambridge. He was formerly
one of our students, the best we have had for many years. He
is now doing research, and lately he has proved some such result

1This is the expression which Davenport had used in a letter to Mordell.
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as
∑p−1

n=0

(
n4+an2+bn+c

p

)
= O(p3/4) where the left hand ( ) is the

symbol of quadratic reciprocity . . . He is interested in certain as-
pects of number theory and I believe he would be free to go. I have
written to him and asked him to write direct to you . . . ”

Davenport needed not much time to think it over. On 30. November 1930
he wrote to Mordell thanking him for passing Hasse’s request on to him.
He regarded it as a great compliment, especially, he wrote, in view of the
phrase “handsome fellow” which appeared in Hasse’s letter. And he was
very interested in Prof. Hasse’s scheme. On 7. December 1930 Davenport
wrote to Hasse from Cambridge:

“Dear Prof. Hasse,
Prof. Mordell has told me of your letter to him, in which you say
that you would like to know of an advanced English student of pure
mathematics, whom you could invite to Marburg next summer
term. May I offer you my services?

I used to be a student of Mordell’s at Manchester, but for the last
three years I have been studying here. I am particularly inter-
ested in the analytical theory of numbers – Gitterpunktprobleme,
ζ-function, etc. Are you interested in these subjects, or is there
anyone else at Marburg who is? So far I have only written two
short papers, which will appear soon in the Journal of the Lon-
don Mathematical Society; one on the distribution of quadratic
residues mod (p), the other on Dirichlet’s L-functions.

I am 23 years old, and not at all ‘handsome’ (as you required in
your letter). Also I do not swim or drink beer – and I understand
that these are the principal recreations in Germany. . . ”

Hasse seems not to have minded these “shortcomings” with which Davenport
had advertised himself, and he sent Davenport a definite invitation.

So in the next summer (1931) Davenport stayed as “language teacher” with
the Hasses in Marburg. There developed a longtime friendship between the
Hasse family and the younger Davenport – including several mutual visits
during the next years. Certainly this had an effect on Hasse’s proficiency
in English, but in addition Davenport succeeded to raise Hasse’s interest in
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English history, English literature and quite generally in everything which
was considered as “typically English”. Hasse kept this interest throughout his
life. On the other hand, Davenport also profited from this contact; later on
he was fluent in German. Let us cite from a letter of Davenport to Mordell in
September 1931, from the German town of Bad Elster where he was staying
with Hasse during the annual meeting of the German Mathematical Society.

“The Hasses and I have been on a motor tour during the past 12
days, in which we have visited the Black Forest, Switzerland, the
Italian Lakes, and Tyrol, with very much pleasure and edification.
Hasse is now taking an active part in the D. M. V. congress here,
I a more passive part. I can never be sufficiently grateful to you
for passing on Hasse’s invitation to me: I have had an excellent
time in Marburg.”

By the way, the car of that motor tour was Davenport’s. At that time Hasse
did not own a car.

6.2 The challenge

Of course, the conversation between the two was not confined to English
language and literature but it soon included mathematics. It seems quite
natural that one of the first questions of Hasse to his younger colleague was
about Davenport’s result which Mordell had mentioned in his letter. (See
page 80.) On first sight this seems to be a rather special technical lemma.
But since Mordell had mentioned this explicitly, Hasse wanted to know more
details.

Consider the curve Γ defined over Z, given by

Γ : y2 = x4 + ax2 + bx+ c

with rational integers a, b, c. Let p > 2 be a prime. In order to count the
rational points of Γ modulo p one has to count those x mod p for which the
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right hand side is a quadratic residue mod p. Observe that

(6.1) 1+

(
z

p

)
=


2 if z is a quadratic residue mod p

0 if z is a quadratic non-residue mod p

1 if z ≡ 0 mod p

where the brackets denote the symbol for quadratic residues modulo p as
in Mordell’s letter. In any of these cases, 1+( z

p
) is the number of solutions

y modulo p of the congruence y2 ≡ z mod p . We see that the number of
solutions (x, y) mod p of the congruence

(6.2) y2 ≡ x4 + ax2 + bx+ c mod p

is given by the sum of the p terms 1 +
(
x4+ax2+bx+c

p

)
when x ranges over Z

modulo p . Hence this number of solutions is

p+
∑

x mod p

(
x4 + ax2 + bx+ c

p

)
.

Here appears the sum mentioned in Mordell’s letter (see page 80). Accord-
ingly Davenport’s result can be expressed as follows:

If p is large then the number of solutions mod p of the congruence
(6.2) is about p with the error term of order of magnitude O(p3/4)
for p→∞ .

Here, the symbol O(· · · ) is, like in Mordell’s letter, the so-called Landau
symbol; the above statement means∣∣∣∣∣

p−1∑
x=0

(
x4 + ax2 + bx+ c

p

)∣∣∣∣∣ < C · p
3
4

with a constant C independent of p . The really important achievement of
Davenport was that he could get the estimate of the error term with the
exponent 3

4
. This was much better than all earlier known estimates. Daven-

port’s method for this was new and consisted of an ingenious manipulation
of the sum to be estimated. See [Dav31]. (In that paper Davenport obtained
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the above estimate while studying the occurrence of consecutive quadratic
residues modulo p .) However, heuristically the exponent 1

2
was expected as

the proper estimate. Thus Davenport’s result, although the best estimate
known at the time, was not considered to be the final one.

Looking at the congruence (6.2) we are reminded of Artin’s thesis where
already in 1921 such congruences were investigated. In fact, the congruence
(6.2) defines a quadratic function field F = Fp(x, y) over the prime field
Fp of characteristic p . The solutions of that congruence correspond to the
prime ideals of degree 1 in the ring R = Fp[x, y] which appear in Artin’s zeta
function ζR(s) of F . The suspected exponent 1

2
in the estimate of the error

term would have been a consequence of the RHp for these function fields (see
(3.11) on page 41).

But Artin was not mentioned in Davenport’s paper [Dav31] . At the time
when Davenport had written this paper in 1930 he did not yet know Artin’s
thesis. He learned about it from Hasse during his visit in Marburg, as re-
ported by Halberstam in [Dav77].

Inspired by Davenport’s result, Mordell too became interested in the ques-
tion, and he studied a number of other instances where one could obtain
similar estimates. Mordell’s paper appeared in 1933 but he had obtained the
results in 1931 already . For, on 8. November 1931 he wrote to Hasse:

“. . . during the last three weeks I became very interested in Dav-
enport’s note on the distribution of quadratic residues and I could
not do anything else. I have only within the last few days proved
that the number of solutions of y2 ≡ ax3 + bx2 + cx+ d mod p is
p+O(p3/4) & more generally when y2 is replaced by ym except in
one trivial case. Davenport has also found the theorem & proof of
a different case about the same time. If I remember any German,
I might speak on this to your students etc. as the method is very
elementary.”

The last sentence refers to Mordell’s future visit to Marburg, planned for
early 1932.

One month later, on 14. December 1931 Mordell wrote again:
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“. . . You may also be interested in knowing that I have made fur-
ther progress with congruences. The cubic congruence f(x, y) ≡ 0
has in general p+O(p2/3) solutions. Also ym ≡ a1x

n + · · ·+ an+1

has in general p+O(pγ(m,n)) solutions where

γ(m,n) = 2/3 if n = 4, m = 2

= 7/8 if n = 6, m = 2

= 5/6 if n = 4, m = 4

= 3/4 if n = 3, (m = 2 included above)

= 1/2 if n = 3, m = 3 .

Davenport has also found results of this kind; and I saw him three
days ago. . . ”

As to Davenport’s results, he had obtained in addition:

γ(4, 4) =
2

3
, γ(m, 4) =

5

6
, γ(5, 5) =

5

6
, γ(3, 6) = γ(6, 6) =

7

8
, γ(2, 7) =

19

20

in his papers [Dav31] and [Dav33].

I have found no indication that Hasse had developed a special interest in
problems of this sort before he was confronted with these results by Mordell
and Davenport. But now, looking at these and their proofs which often
required some nontrivial computational skill, he became interested. Never-
theless he was not much impressed by the methods used, and not by the
general attitude of the authors towards these problems.

Hasse tended to think about diophantine congruences not as problems per
se, but as manifestations of mathematical structures. Thus, he said to Dav-
enport, the results so far are obtained through clever computations only,
manipulating and estimating algebraic and analytic expressions. Hasse ac-
knowledged that the methods used may be non-trivial but they did not seem
to him adequate since they lead to many different exponents for the remain-
der term in so many special cases, whereas in every case the exponent 1

2
was

expected. Perhaps it would be possible to reduce some of the exponents a
little further by refining those methods. But instead of “reducing exponents”
the proper thing to do would be to find out the structure behind this.
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(The terminology “reducing exponents” seems to have been established be-
tween Hasse and Davenport, somewhat ironically on the side of Hasse (you
should do better than reducing exponents!) and in a sense provocative on the
side of young Davenport (I can at least reduce exponents, and what can you
do with your abstract methods?). In a letter of 25. February 1932 Davenport
had written “I haven’t reduced any exponents recently, I regret to say.”)

Davenport may have said that he does not believe that those abstract meth-
ods could do better than the very explicit computations which he and Mordell
had used. After all, what only counts are the results and not the methods.
And since Hasse still insisted on his view, Davenport challenged him to solve
the problem with his abstract structural methods.

The above description of a possible dispute between Hasse and Davenport is
not purely fictional. Hasse used to tell us this story along these lines when
asked about it. At the other side, Davenport told the story in the same spirit
to Mordell to whom he was quite close. Mordell reports in [Mor71] :

“Davenport was staying with Hasse at Marburg in the earlier thir-
ties and challenged him to find a concrete illustration of abstract
algebra. This led Hasse to his theory of elliptic function fields. . . ”

Hasse accepted Davenport’s challenge. In September 1932, after the Zürich
congress of the International Mathematical Union where Hasse reported on
his results on simple algebras, he found time to start working on the problem.

As a first step, he tried to generalize the problem, replacing the integers Z and
its prime numbers p by the integers of an arbitrary algebraic number field
and its prime ideals P. Thus, given an absolutely irreducible polynomial
f(x, y) with integer coefficients in that number field, the problem is to count
the solutions of f(x, y) ≡ 0 mod P in that number field.

We see that Hasse did what mathematicians often do: in analyzing a problem
he tried to generalize it in order to find out which properties are essential for
the problem and which are not. Hasse went through the special examples
of Davenport and Mordell. He was able to get the same exponents γ of the
above list in all those cases, but now for congruences modulo prime ideals
in number fields. He had found out about it while travelling from Kiel to
Hamburg by train. (As I have reported earlier in Chapter 5, Hasse had given
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colloquium talks in Kiel and Hamburg in November of 1932.) In a letter to
Davenport dated 7. December 1932 Hasse wrote:

“My lectures found much interest with the Hamburg and Kiel
mathematicians. In Hamburg, I was able to produce a couple
of new results, which I had found during my journey back from
Kiel in a Personenzug.”2

But working with congruences modulo prime ideals in number fields amounts
to the same as working with equations in finite fields. And it was Artin who,
after Hasse’s talk in Hamburg, informed him that these results have some
bearing on the location of the roots of the zeta function of the respective
function fields in characteristic p . Well, this did not yet lead to the proof of
the RHp for these function fields since the exponent γ appearing in Mordell’s
and Davenport’s results was not always 1

2
. But Artin’s criterion and proof

works also for arbitrary exponents γ with 1
2
≤ γ < 1, leading to the conclusion

that the roots ω of F. K. Schmidt’s L∗-polynomial satisfy at least |ω| ≤ qγ

(compare with section 4.5).

As said above already, in all these cases the exponent γ = 1
2

was expected.
This could now be interpreted that in all these cases the validity of RHp was
expected.

Thus Hasse, after his discussion with Artin, had now found the algebraic
structure behind the various estimates of Davenport and Mordell, namely
global fields in characteristic p and the behavior of their zeta functions.

It appears that Hasse at that time was not yet fully convinced that the RHp
would be true in all cases. I am indebted to the late Professor S. Iyanaga, who
had been present at Hasse’s Hamburg talk in 1932, for informing me that
in the discussion Hasse was still somewhat hesitating. In contrast, Artin
showed himself quite certain that the RHp will hold generally.

It is a common observation in the history of mathematics that a problem
can be more easily solved if it can be put into a structural framework which
seems “adequate” to it – at least in the eyes of those people who work on
that problem. In any case, after his Hamburg visit with Artin, Hasse found

2At that time in the language of German Railways a “Personenzug” meant a slow train.
It took about 50 minutes from Kiel to Hamburg. Fast trains were called “D-Zug”.
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that the framework of function fields and their zeta functions was adequate
to the Davenport-Mordell problem.

Let Hasse himself explain his new vision in his own words, to be found in his
Zentralblatt review of Mordell’s paper [Mor33]. The results of this paper had
already been announced by Mordell in his letter to Hasse on 14. December
1931 (see page 84.) The following text is an excerpt from Hasse’s review.

“The paper is concerned with special cases of the following gen-
eral problem: Let f(x, y) be a polynomial with integer coefficients
which is absolutely irreducible over the finite field Fp of p ele-
ments, and N the number of solutions of f(x, y) = 0 in Fp . One
should find an estimate of the form

(A): |N − p | ≤ Cpγ

where the exponent γ < 1 is as small as possible, and C is a
positive constant. Both γ and C should not depend on p, and
also not on the special choice of the coefficients of f , but only
on the algebraic invariants of the function field F defined by the
equation f(x, y) = 0 over Fp .

I would like to remark in advance that the final solution of this
general problem is closely related to the analogue of the Riemann
hypothesis for F. K. Schmidt’s zeta function ζF (s) for F . If the
infinite solutions are correctly included into the count then N
becomes the number of prime divisors of degree 1 of F and the
theory of ζF (s) shows that γ can be chosen as the maximal real
part θ of the zeros of ζF (s). In addition, one can choose C = 2g
where g is the genus of F . It is known that θ < 1 but a bound
which is independent of p is not yet known. The analogue of the
Riemann hypothesis, θ = 1

2
, would imply that one could choose

γ = 1
2
.

Conversely, the statement (A) for F and for all constant field
extensions of F (where on both sides p is to be replaced by the
number q = pr of elements in the field of constants, and γ , C
are independent of r too) would imply that θ ≤ γ, hence for
γ = 1

2
the analogue of the Riemann hypothesis for F would fol-

low. – The author explains this connection in the hyperelliptic
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cases f(x, y) = y2 − f(x) only, with the special congruence zeta
functions of Artin.”

Only after this introduction Hasse proceeds to review the results of Mordell’s
paper in some more detail; these are essentially the same as Mordell had
stated in his letter to Hasse of 14. December 1931, where he obtained the
values γ = 2

3
, 7

8
, 5

6
, 3

4
, 1

2
in various situations; see page 84.

The above review text shows clearly Hasse’s new viewpoint. Whereas Mordell
regarded the theory of the zeta function as a means to obtain good estimates
of the form (A), Hasse now proposes to look in the other direction. Namely,
any estimate of the form (A) would lead to a result about the real parts of
the zeros of the zeta function, provided that the estimate (A) can be proved
over all finite field extensions of Fp too. In this spirit Hasse added a last
paragraph to his review, confirming what he had found in the train from
Kiel to Hamburg and reported in his letter to Davenport:

“I would like to add that the results of the author can be trans-
ferred almost word for word to the case of an arbitrary finite field
K instead of Fp as field of coefficients. Hence, as said at the be-
ginning, they lead to a bound of the maximal real part of zeros θ
by the respective γ and, if γ = 1

2
, to the Riemann hypothesis for

the respective zeta function of F. K. Schmidt.”

Three months after his visit to Hamburg, at the end of February 1933, Hasse
succeeded to prove the Riemann hypothesis in the case of elliptic function
fields. I shall report about it in Chapter 7.

6.3 The Davenport-Hasse paper

When in a conversation the work of Hasse on the RHp comes up then, in
my experience, most people connect his name with elliptic function fields (or
curves) only. It seems to be less known that he also obtained the RHp
for other classes of fields, namely the generalized Fermat fields and the
Davenport-Hasse fields. And this happened even before the proof for el-
liptic fields was complete. The immediate cause for this was a letter from
Davenport.
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6.3.1 Davenport’s letter and generalized Fermat fields

As said above, Davenport stayed with the Hasses in Marburg in the summer
semester of 1931. Already in January of 1932 Davenport again visited Hasse.
As Hasse wrote to Mordell on 20. November 1931:

“We have invited Davenport for the second half of his Christmas
vacation – or rather he has invited himself with our readily given
consent . . . ”

Apparently on that occasion Davenport informed Hasse about his latest re-
sult which concerned the number of solutions of congruences of the form

axm + byn + c ≡ 0 mod p (if a, b, c 6≡ 0 mod p) .

Hasse seems to have asked him for details, for as soon as Davenport was
back in England he sent Hasse the full proof. The letter is not dated but
Hasse wrote “Jan 1932” on the margin. It turned out that for this kind of
congruence Davenport had been able to obtain the best estimate, i.e., with
the exponent γ = 1

2
.

Davenport’s proof seems to have caught Hasse’s interest, for right away he
copied it into his mathematical diary [LR12]. Davenport’s letter is the nu-
cleus of the joint paper of Davenport and Hasse [DH34]. As the proof is short
and beautiful let us read Davenport’s letter:

“My dear Helmut, I promised to send you my treatment of the
congruence

(6.3) axm + byn + c ≡ 0 (mod p) .

Let χ1, . . . , χm−1 be the non-principal characters for which χm = 1,
the principal character. It is easily seen that

(6.4) 1 + χ1(t) + · · ·+ χm−1(t)

is precisely the number of solutions of xm ≡ t . Hence the number
of solutions of (6.3) is
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N =
∑
t

{
1 + χ1(t) + · · ·+ χm−1(t)

}
×{

1 + ψ1

(
− at+c

b

)
+ · · ·+ ψn−1

(
− at+c

b

)}
where ψ1, . . . , ψn−1 are the non-principal characters for which
ψn = 1 . Hence

N = p+
m−1∑
r=1

n−1∑
s=1

∑
t

χr(t)ψs(−
at+ c

b
) .

The sums in t can be easily expressed in terms of generalized
Gauss sums

(6.5) τ(χ) =
∑
ν

χ(ν)e(ν) , e(x) = e
2πix
p .

These have the property χ(u) τ(χ) =
∑

ν χ(ν)e(uν). Hence

∑
t

χ(t)ψ(at+ c) =
1

τ(ψ)

∑
t, ν

χ(t)e((at+ c)ν)ψ(ν)

=
τ(χ)

τ(ψ)

∑
ν

χ(aν)ψ(ν) e(cν)

=
τ(χ) τ(χψ)

τ(ψ)
χ(a)χψ(c) .

Therefore

N = p+
m−1∑
r=1

n−1∑
s=1

τ(χr)τ(χrψs)

τ(ψs)
χr

( c
a

)
ψs

(
−c
b

)
(6.6)

= p+ ϑ
√
p (m− 1)(n− 1),

(
|τ | = √p , |ϑ| ≤ 1

)
> 0 if p > (m− 1)2(n− 1)2 .
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Quite trivial ! . . . ”

In the above letter Davenport has in mind the characters χ, ψ of the multi-
plicative group F×p . He does not explicitly mention that m and n are sup-
posed to divide p − 1, which is natural in this situation. (For otherwise,
m,n could be replaced by their greatest common divisor with p− 1 without
changing the number N of solutions.) If t ≡ 0 mod p he puts χr(t) = 0 and
similarly ψs(t) = 0. Moreover, a, b, c are supposed to be 6≡ 0 mod p . The
group theoretical character relation (6.4) generalizes the statement (6.1) in
the preceding section.

Davenport’s computation yields

(6.7) |N − p | ≤ C · √p with C = (m− 1)(n− 1) .

Such estimate is also contained in a paper by Mordell but with another
constant C and not using Gauss sums; see [Mor33]. Mordell had visited Hasse
in January 1932 and on that occasion given him a copy of his manuscript.
Hence Hasse knew about it. Mordell’s proof is “purely elementary”. But
Hasse did not copy Mordell’s proof into his diary. Evidently he preferred
Davenport’s who used Gauss sums.

It seems likely that the estimate (6.7) was among those which Hasse could
generalize, later in the year, to the case of arbitrary finite fields instead of just
the prime fields Fp . (See page 87.) Namely it turned out that Davenport’s
computation works in the same way over any finite field K = Fq , provided
m,n divide q − 1. In that case χ, ψ range over the nontrivial characters
of the multiplicative group K× with orders dividing m,n respectively. The
exponential e(x) appearing in Davenport’s definition of the Gauss sum has
now to be defined as

(6.8) e(x) = e
2πiS(x)

p

where x ∈ K and S : K → Fp denotes the trace function (“Spur” in German).
Hence we can conclude:

Let K be any finite field and q the number of its elements. Assume
m and n divide q − 1. Then the number N of solutions in K of
the equation

(6.9) axm + byn + c = 0 with a, b, c ∈ K×
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satisfies the estimate (6.7) with p replaced by q.

But then the same holds also over every finite extension Kr = Fqr and so we
have (6.7) also for qr. It follows from Artin’s criterion (see page 71):

The RHp holds for any function field F = K(x, y) over K which
can be generated by an equation of the form (6.9).

Observe that here it is not necessary any more to assume that m,n divide
q−1. For, if this would not be the case then one could replace K by any finite
extension of K for which this is the case. We know from Artin’s result on
base field extensions (section 3.2.1) that the RHp for that extension implies
the RHp for F |K.

Function fields defined by (6.9) are called “generalized Fermat fields”.

Thus already in 1932 Hasse had proved the RHp for a large class of function
fields of genus g > 1. He used Davenport’s method of estimating by Gauss
sums, generalized it to arbitrary finite base fields and then applied Artin’s
criterion. Davenport called this the “GF-method” since it provided a proof by
extending the base field, which was Fp in Davenport’s papers, to any Galois
field (=GF). (At that time finite fields were also called “Galois fields”, at
least in the English mathematical literature.)

Remark: Consider the double sum in (6.6). Since τ(1) = 0 it suffices to sum
over those pairs r, s for which χrψs 6= 1. Let d denote the greatest common
divisor of m and n. There are d − 1 terms in the double sum (6.6) with
χrψs = 1 and which therefore can be omitted in (6.6). Thus Davenport’s
estimate (6.7) can be sharpened to C = (m − 1)(n − 1) − (d − 1). But the
genus g of the function field is given by

(6.10) g =
1

2

(
(m− 1)(n− 1)− (d− 1)

)
.

Thus the Davenport-Hasse computation yields

(6.11) |N − q | ≤ 2g
√
q .

Observe that here N stands for the number of solutions of (6.9). If counting
the number of prime divisors of degree 1 of the function field then one has
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also to include the pole P∞ of x and y, and with this new N the above
inequality reads

(6.12) |N − q − 1| ≤ 2g
√
q ,

which is precisely what is expected for the RHp.

6.3.2 Gauss sums

Hasse and Davenport agreed to have a joint paper containing the proof of
the RHp for generalized Fermat function fields. That paper appeared in 1934
in Crelle’s Journal; see [DH34] Sometimes this paper is erroneously cited as
having appeared in 1935. But the part of volume 172 which contained the
Davenport-Hasse paper had appeared in 1934 already. By the way, the results
of the paper had already been announced by Hasse in September of 1933 at
the annual meeting of the German Mathematical Society (DMV) [Has34c].

The Davenport-Hasse paper contains much more than just the RHp. While
the RHp is concerned only with the absolute value |ω| of the roots ω of
F. K. Schmidt’s L-polynomial of F |K, the Davenport-Hasse paper deals also
with the question of identifying those roots completely.

In this spirit Davenport had asked Hasse in a letter of 17. March 1933:

“What do you think the form of the ordinates of the zeros of
Artin’s ζ–function will be?”

In terms of F. K. Schmidt’s polynomial L∗(t) this is to be translated into the
question about the angles of its roots while the RHp is concerned with their
absolute value. But Hasse wanted more. The roots ω of L∗(t) are algebraic
integers, accordingly he wished to characterize them not only as complex
numbers but through their arithmetic properties, i.e., prime decomposition
and congruences. In the general case, for arbitrary function fields, this is
a difficult question and probably not possible to solve in a meaningful way.
But in the case of the generalized Fermat function fields, Hasse’s dream came
true. (Also in the case of Davenport-Hasse fields, see section 6.3.3, and of
elliptic fields, see chapter 7.)
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For simplicity, only the case without parameters a, b, c was considered since
this can be achieved by a suitable finite extension of the base field. So the
equation (6.9) becomes

(6.13) xm + yn = 1 .

Theorem. Let K be a finite field with q elements and F =
K(x, y) the generalized Fermat function field with the defining
relation (6.13). It is assumed that m and n divide q − 1. Then
the zeros of F. K. Schmidt’s polynomial L∗(t), i.e., the inverses
of the zeros of the zeta function Z(t), are given by the so-called
Jacobi sums

(6.14) ωχ, ψ := −
∑
a+b=1

χ(a)ψ(b)

where χ , ψ 6= 1 range over the nontrivial characters of K× of
order dividing m and n respectively, with the specification that
χψ 6= 1 .

Indeed, this is a remarkable result. It shows that the zeros of the Riemann
zeta function of generalized Fermat function fields can be expressed by well
known algebraic numbers which had appeared long ago already in classic
algebraic number theory. The sums appearing on the right side of (6.14) are
called Jacobi sums. They can be interpreted, after elementary computa-
tions, as factor systems of the Gauss sums

(6.15) τ(χ) := −
∑
a∈K×

χ(a)e(a) with e(a) := e
2πiS(a)

p

where S : K → Fp denotes the trace function. Namely we have:

(6.16) ωχ, ψ =
τ(χ)τ(ψ)

τ(χψ)
.

These factor systems had already appeared in Davenport’s letter during his
calculation for his estimate (see page 91). (Note the minus sign in the above
definition (6.15) of τ . It had been inserted by Hasse in order to simplify the
formulas.)
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In view of the well known relation |τ(χ)| = √q for Gauss sums, the RHp is
an immediate consequence of the theorem. This gives a direct proof of the
RHp for these fields, without recourse to Artin’s criterion. Instead of Artin’s
criterion Hasse had used class field theory for global fields of characteristic p .
He considered F = K(x, y) as an abelian extension over the rational field
K(xm), generated by two cyclic extensions according to (6.13):

F

ssssssssssssssssssssss

KKKKKKKKKKKKKKKKKKKKKK

K(x)

m

cyclic

KKKKKKKKKKKKKKKKKKKKK
K(y)

n

cyclic

sssssssssssssssssssss

K(xm) = K(yn)

and he computed the corresponding L-series L(s|ϕ) for ray class characters
ϕ 6= 1 of F |K(xm). These L-series turn out to be polynomials in the variable
t = q−s , and they are the factors of F. K. Schmidt’s polynomial L(t) which
occurs in (4.11) on page 65. This is seen by comparing (4.11) with the
following relation known from class field theory

ζF (s) = ζK(xm)(s) ·
∏
ϕ6=1

L(s|ϕ) =

∏
ϕ6=1 L(s|ϕ)

(1− q1−s)(1− q−s)

The ray class characters ϕ of F |K(xm) are products ϕ = χψ of the ray class
characters χ of K(x)|K(xm) and ψ of K(y)|K(yn), and a detailed study
of the situation, standard in class field theory, shows that these ray class
characters can be identified with the characters χ, ψ of K× appearing in the
theorem above. It turns out that the corresponding L-series, if nontrivial,
are linear polynomials (in the variable t = q−s); their coefficients can be
explicitly computed. This leads to formula (6.14).

Remark: The field degree [F : K(xm)] = mn is relatively prime to p. There-
fore, in applying class field theory to the generalized Fermat fields, Hasse
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could have referred to F. K. Schmidt’s paper [Sch31b] on class field theory
in characteristic p which I have mentioned earlier (see page 59). However,
F. K. Schmidt did not treat class fields of degree divisible by p. Hence Hasse
decided to prepare an extra paper where he developed class field theory for
global fields of characteristic p quite generally, without the degree restriction
of F. K. Schmidt’s paper. This paper included Artin’s reciprocity law and the
Local-Global Principle . Hasse obtained this by using Tsen’s Theorem which
states that over a function field with algebraically closed base field every
central algebra splits [Tse33]. Tsen had recently obtained this result while
working in Göttingen with Emmy Noether. – Let me note in passing that the
Local-Global Principle for algebras over function fields with finite base fields
was also established in Witt’s thesis [Wit34a], published in the same year
1934. Witt used the analytic theory of algebras which he had established in
the function field case. He also proved the so-called “Existence Theorem” of
class field theory in characteristic p.

Hasse’s extra paper mentioned above appeared 1934 in Crelle’s Journal [Has34e].
It is to be regarded not only as a preparation for the Davenport-Hasse paper
[DH34] but it is also of high relevance for the general investigation of global
fields in characteristic p. Hasse completed this paper “within a few days”,
as he wrote in a letter to Davenport dated 15. May 1934. Actually, Hasse
considered in [Has34e] cyclic extensions only. But the generalization to ar-
bitrary abelian extensions is straightforward and was familiar in class field
theory of that time.

6.3.3 Davenport-Hasse fields

In the Davenport-Hasse paper [DH34] not only the generalized Fermat func-
tion fields defined by (6.9) are investigated, but also the function fields
F = K(x, y) defined by

(6.17) yp − y = xm

where m is not divisible by the characteristic p . These fields are called the
Davenport-Hasse function fields.

(Sometimes the terminology “Davenport-Hasse fields” is used for all types
which were dealt with in the Davenport-Hasse paper [DH34], including the
“generalized Fermat fields”.)
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In a certain sense the Davenport-Hasse fields are similar to the generalized
Fermat fields, in as much as they are composite of two cyclic extensions:

F

qqqqqqqqqqqqqqqqqqqqqqqq

MMMMMMMMMMMMMMMMMMMMMMMM

K(x)

m

cyclic

MMMMMMMMMMMMMMMMMMMMMM
K(y)

p

cyclic

rrrrrrrrrrrrrrrrrrrrrr

K(xm) = K(yp − y)

But now yp − y = xm is an Artin-Schreier equation. Artin and Schreier had
discovered in 1927 that equations of this type can be used to generate every
cyclic extension of degree p in characteristic p [AS27b]. But prior to Hasse
nothing was known about the arithmetic behavior of such extensions for
global fields of characteristic p . Hasse entered completely unknown territory
when he investigated such extensions. In particular their class field decom-
position law had to be discovered, as well as the ramification behavior. Not
even the genus was known.

Hasse found their genus to be

(6.18) g =
(p− 1)(m− 1)

2
.

The following result similar to (6.14) was obtained:

Theorem. Let K be the finite field of characteristic p with q el-
ements and F = K(x, y) the Davenport-Hasse function field with
the defining relation (6.17). It is assumed that m divides q − 1.
Then the roots of F. K. Schmidt’s L-polynomial are given by the
generalized Gauss sums

(6.19) τk(χ) = −
∑
a∈K

χ(a)ek(a) .
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where χ is a nontrivial character of K× of order dividing m and
0 < k < p. The exponential ek(a) = e(ka) is given by (6.15).

Again, class field theory from Hasse’s paper [Has34e] was used in the proof,
with respect to the abelian extension F |K(xm). A detailed study of the cor-
responding L-series led to the theorem. And again the RHp is an immediate
consequence since |τk(χ)| = |τ(χ)| = √q.

It seems remarkable that for the Davenport-Hasse fields the Gauss sums
themselves appear as the roots of the zeta function, whereas for the general-
ized Fermat fields the roots are factor systems of Gauss sums. In this respect
the result for the Davenport-Hasse fields looks simpler. Accordingly, in the
published paper [Has34c] the Davenport-Hasse fields are discussed first, and
only thereafter the generalized Fermat fields are treated. I have changed the
order of discussion since this reflects the historic line which is recognizable in
the letters between Davenport and Hasse. After all, this work started with
Davenport’s letter of January 1932 on the congruence axm + byn ≡ 0 mod c.
(See section 6.3.1)

6.3.4 Stickelberger’s Theorem

As said above, Hasse wished to give a full arithmetic characterization of
the zeros of L∗(t). With respect to the generalized Fermat fields and the
Davenport-Hasse fields this comes down to the arithmetic characterization
of Gauss sums, as seen in the foregoing sections.

Already in the year 1890 Stickelberger had solved this problem. He had de-
termined the prime decomposition of Gauss sums, and in addition he proved
certain congruence relations which allowed a complete characterization of
Gauss sums by their arithmetic properties [Sti90].

Hilbert had included Stickelberger’s Theorem in his Zahlbericht [Hil97] but
only for prime numbers p . Hilbert did not consider the case of prime powers
q = pr. Of course Hasse had read Hilbert, in fact a whole generation of
mathematicians had learned classical number theory from Hilbert’s book.
Accordingly Hasse knew Stickelberger’s Theorem for prime numbers only.
He was not aware of the fact that Stickelberger had also covered the case of
prime powers.
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So he sat down and produced, in cooperation with Davenport, the gener-
alization to arbitrary prime powers q = pr. The case of a prime p would
be covering function fields over the prime field Fp only, whereas Davenport
and Hasse dealt with function fields over an arbitrary finite field K. Both
worked hard for this proof. But after finishing they were told by Mordell that
Stickelberger had covered the case of prime powers q = pr as well, although
Hilbert had not included this more general result in his book.

After some discussion in which Davenport advanced the point of accepting
Stickelberger’s old proof and Hasse proposed his new modernized proof, they
decided to include both versions of the proof in their paper. Hasse’s argument
for including the new proof was:

“. . . ours [the proof] is more precise. Moreover the old proof and
the whole matter seems to have slipped from the mind of our gen-
eration, presumably owing to Hilbert’s inconceivable not giving it
in his Zahlbericht.”

For some time I have fostered the idea to present Stickelberger’s Theorem in
Hasse’s version here – in order to prevent that the matter would slip again
from the mind of today’s generation. But then I abstained from this since
it would lead us too far away from the main objective of this book, namely
the history of the RHp. And Stickelberger’s Theorem seems to be quite alive
today and there is no danger of forgetting it. (See, e.g., [Lem00]). So I just
refer to the Davenport-Hasse paper [DH34].

6.4 Exponential sums

Let f(x) ∈ K(x) be a rational function with coefficients in a finite field K
with, say, q elements. The exponential sum for f(x) is traditionally defined
as

(6.20) Σf :=
∑

a∈K∪∞

e(f(a))

where the exponential e(· · · ) is as in (6.15) on page 95. Here a ranges over
those elements in K∪∞ which are not poles of f(x), i.e., for which f(a) ∈ K
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is defined. For instance, if f(x) ∈ K[x] is a polynomial then ∞ is the only
pole and the condition is a ∈ K. Such exponential sums had been studied
for several cases of f(x), mostly when q = p is a prime. For instance, if
f(x) = ax+ bx−1 then Σf is called a “Kloosterman sum”.

One of the classic problems had been to obtain a good estimate of Σf

for q →∞. Already the early letters between Hasse and Davenport (and
Mordell) show that they searched for good estimates but they were far from
the conjectured best estimate of order

√
q.

During the preparation of Hasse’s class field paper [Has34e] (which I have
mentioned above already on page 97) he discovered a connection of the ex-
ponential sums (6.20) to the function field F = K(x, y) defined by

(6.21) yp − y = f(x)

when F is considered as a cyclic Artin-Schreier extension of the rational
function field K(x). In particular the class field structure of this extension
is of importance. Prior to Hasse nothing was known about it.

Thanks to the Hasse-Davenport correspondence which has been preserved, it
is possible to follow step by step how Hasse conquered this unknown territory.
On 24. July 1933 Hasse wrote:

“For yp − y = f3(x) [polynomial of degree 3] the genus is really
p−1 . Further I can explicitly give the characters for any yp−y =
f(x) (polynomial) . . . I have reason to suppose that my method for
determining the genus applies to all cases where f(x) is a rational
function of “degree” less than p .”

Already one day later Hasse reported:

“I have got much more general results on

yp − y = f(x)

than I first thought. As a matter of fact, I have determined
the genus, and with it the number of zeros of the correspond-
ing L–function for every f(x) (integer or fractional). If f(x) =
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f1(x) + · · ·+ fr(x) is the decomposition of f(x) into partial frac-
tions, and if all terms out of these fi(x) which are pure pth powers
are removed by an easy transformation of y , and if n1, . . . , nr are
the degrees [of the pole divisors] of those f1(x), . . . , fr(x) , then

(6.22) g =
(p− 1)(n+ r − 2)

2
where n = n1 + · · ·+ nr

and therefore the L-functions have n+ r − 2 zeros .”

Hasse means the L-functions for ray class characters of F |K(x). These are
polynomials (in the variable q−s). There are p − 1 such L-functions and
their product is F. K. Schmidt’s L(t). In his class field paper [Has34e] Hasse
computes the relevant coefficients of these L-functions and shows that the
sum of their inverse roots coincides with the exponential sum above. More
precisely, since there are p− 1 such L-functions there arise p− 1 exponential
sums, each belonging to a power ek of the exponential function, 0 < k < p :

(6.23) Σ
(k)
f :=

∑
a∈K∪∞

ek(f(a)) .

But since these are all conjugate it suffices to consider Σf (for k = 1). Hasse
says in [Has34e]:

“. . . the problem of estimating the sums Σf is . . . definitely solved
once the RHp for F |K is solved.”

Indeed, since the L-functions have n + r − 2 roots and since these are also
roots of F. K. Schmidt’s L(t), the RHp implies

(6.24) |Σf | ≤ (n+ r − 2)
√
q .

In particular, for Kloosterman sums it follows that |Σf | ≤ 2
√
q. This order

of magnitude O(q
1
2 ) (for q → ∞) is much better than the estimates which

were known at the time, e.g., O(q1− 1
n ) .

Today this can be found in almost every textbook on algebraic function fields
(see, e.g., [Sti09]). But when Hasse prepared his paper [Has34e] he had to
discover this (and more) himself.



6.4. EXPONENTIAL SUMS 107

To be sure, the RHp had not yet been generally proved at the time when
Hasse wrote the lines above. He could solve the RHp for the case f(x) = xm

only, see section 6.3.3. But in my opinion, already the discovery of the con-
nection between exponential sums and the L-functions of an Artin-Schreier
extension is to be regarded as an outstanding advance in the historical de-
velopment. Note that most of this work on Davenport-Hasse fields was done
parallel to the work on elliptic function fields which I shall report on in the
next chapter.

Summary

In 1931 Hasse met the young student Davenport who had been recommended
to him by Mordell. A friendship developed between the two, and Hasse became
interested in Davenport’s work on estimating the number of solutions of dio-
phantine congruences. Some months later Mordell extended and generalized
Davenport’s results. Although Hasse appreciated the high value and the in-
genuity of Mordell’s and Davenport’s methods he voiced his opinion that the
structural methods of “modern algebra” would lead to better estimates. Dav-
enport challenged him to solve the problem with abstract structural methods.
Hasse accepted this challenge and started to work on the problem, looking for
the adequate algebraic structure connected with it.

In November of 1932 Hasse delivered a colloquium lecture in Hamburg and
met Artin there. Artin told him about his results on the RHp which he had
written in the year 1921 in a letter to Herglotz but never published. In this
way Hasse learned that the Davenport-Mordell problem for diophantine con-
gruences, if extended to arbitrary finite base fields instead of the prime field
modulo p , is in fact equivalent to the RHp. Thus Hasse saw the structure be-
hind the Davenport-Mordell problem, namely the theory of algebraic function
fields in characteristic p and their zeta functions.

In early January of 1932 Davenport had written a letter to Hasse containing
an estimate for the number of solutions of the generalized Fermat congruence
axm+byn ≡ c mod p where p is a prime number. It turned out that this num-
ber is approximately p with an error term of order of magnitude

√
p . This

constituted the best possible result which was to be expected. Later Hasse ob-
served that the result can be generalized over an arbitrary finite field Fq with



6.4. EXPONENTIAL SUMS 108

the error term estimated by
√
q for q →∞. After his visit to Artin in Ham-

burg in November of 1932 Hasse became aware that this observation yields a
proof of the RHp for the corresponding function field in characteristic p.

Moreover, the zeros of the corresponding zeta function (if considered as func-
tion of the variable t = q−s) can be described by factor systems of Gauss sums.
This led to a joint paper of Davenport and Hasse which appeared in 1934.
In the same paper the authors dealt with function fields defined by an Artin-
Schreier equation of the form yp − y = xm. The zeros of the zeta function
of such a field are described by Gauss sums. Today those fields are called
Davenport-Hasse fields.

In their proofs the authors used class field theory for global fields of character-
istic p, including L-functions for the corresponding ray class characters. At
that time this theory had not yet been fully developed in the literature, hence
Hasse published another paper containing full proofs of the relevant class field
theory for function fields, including Artin’s reciprocity law.



Chapter 7

Elliptic function fields

7.1 The breakthrough

We all know that a good way to study a mathematical subject is to give a
lecture course about it. The necessity to arrange the theory in a systematic
way and to explain to the audience the various connections between the
different results, often leads to new insights and, in consequence, to new
results.

In this spirit Hasse had lectured in his seminar in February of 1933 on function
fields in characteristic p , in particular on elliptic fields, i.e., when the genus
g = 1 . In the same month he succeeded with the proof of RHp in the elliptic
case. This result got a lot of attention in the mathematical community.

Davenport wrote to Hasse on 21. February 1933:

“. . . I am much excited as to whether your new idea for y2 ≡ f3(x)
comes off. The result for f3(x, y) ≡ 0 follows from it without
further work.”

Here, f3 denotes a polynomial of degree 3. (It is amusing that Davenport
always writes y2 = f3(x) when he is talking about elliptic curves or function
fields, whereas Mordell prefers y2 = f4(x). Of course, every function field
of genus 1 and characteristic 6= 2 can be generated by both of these normal

109
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forms if it contains a prime of degree 1, which is the case if the base field is
finite. Hasse, in his correspondence with Davenport and with Mordell, used
f3(x) or f4(x) respectively, depending on his addressee.)

From Davenport’s wording it is not certain that Hasse at that time had
already completed his proof. Davenport’s words could also be interpreted
such that Hasse had given him a rough outline of his ideas without having
them worked out already. This interpretation seems not to be unrealistic
because in the next letter of Davenport we read:

“. . . I am waiting with great eagerness to hear what the final result
of your work will be. It will be a marvellous achievement, and
should lead to the solution of other problems, i.e., Kloosterman
sums, which are closely connected to y2 ≡ f3(x). I re-read your
letter in which you explained your method the other day. . . I hope
in a few days I shall be able to congratulate you on a final solution
of the problem . . . ”

In a letter dated 6. March 1933 Hasse reported his new result to Mordell.
That letter is preserved. It leaves no doubt that at this date Hasse was in
possession of the proof:

“Dear Prof. Mordell, I succeeded recently in proving that the num-
ber of solutions of y2 ≡ f4(x) mod p is p+ term which is less than
or equal to 2

√
p . Moreover, the same holds for any Galois–field

instead of rational Galois–field mod.p , that is, the analogue to
Riemann’s hypothesis is true for the corresponding Artin Zeta-
function . . . ”

Mordell’s reply to Hasse’s letter is dated 9. March 1933:

“. . . I was exceedingly interested in your mathematical news and
was very glad to hear that you had completely knocked down the
bottom out of y2 ≡ f4(x) mod p. It is a wonderful achievement
and I shall look forward with the greatest interest to seeing your
paper in print. I hope you will make it as easy as possible for
the reader to understand, without reference to all the theorems on
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Klassenkörpertheorie etc. For as this is the first case of any exact
result for zeros of Zetafunctions on R(s) = 1

2
, the paper is sure

to attract an enormous amount of attention . . .

What a tremendous vindication (for those who need it and have
not appreciated the K.k.theory) that the proof should depend upon
such a comparatively high brow theory. I feel rather relieved to
think I did not spend too much time on further results of this
kind with my method, and very pleased that my old paper should
have supplied even an amount ε of usefulness . . . ”

Mordell refers to his “old” paper [Mor22] which contains Mordell’s part of
what today is called “Mordell-Weil Theorem”.

The sentences about class field theory (“K.k.theory”) reflects that Mordell
was no friend of what he called “high brow theory”. In this case, however,
he seems to have accepted it. To him Hasse’s result on the RHp carries suf-
ficient “vindication”. In his first proof Hasse had used class field theory over
imaginary quadratic fields in the framework of classic complex multiplication
(see section 7.3).

Perhaps it was Hasse’s use of class field theory in his first proof which later, in
October of 1933, induced Mordell to ask Hasse about a possible English trans-
lation of Hasse’s 1932 Marburg Lecture Notes on class field theory [Has33b].
Those notes contained the foundations of general class field theory accord-
ing to the state of the art at the time. They had been mimeographed and
distributed among interested mathematicians. Perhaps Mordell wanted his
British colleagues and students to learn class field theory in order that they
would be able to follow Hasse’s proof of the RHp. (Mordell himself did not
need a translation since he had a fairly good knowledge of German.) Hasse
consented to the translation and recommended Reinhold Baer as someone
who would well be able to do it.. Moreover, Baer was to edit a follow up
of Hasse’s Lecture Notes, covering Hasse’s new theory of norm residues; this
part had not yet been included in the Notes. In the end Baer and Mahler
were designated for the translation.

Side Remark: Reinhold Baer had to leave Germany due to the antisemitic
policy of the German Nazi government, and he had gone to England after
Hasse had recommended him to Mordell. Hasse held a friendship with Baer
from their time as colleagues in Halle – a friendship which lasted a lifetime.
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Hasse had hoped that Baer through the translation job would get some ad-
ditional financial support.

But in spring of 1934 the plan of translation of Hasse’s Marburg Lecture
Notes was abandoned, for reasons not known to me. (Many years later
Hasse’s Marburg lectures were reprinted in book form, see [Has67].) One
reason may have been that Hasse had changed his proof of the RHp for
elliptic fields. The new proof did not use class field theory. What kind of
change was this, and why did Hasse perform this change? Let us see:

7.2 The problem

Let F be an elliptic function field with finite base field K, and let q = pr be
the order of K. Since the genus of F is g = 1, F. K. Schmidt’s L-polynomial
of F is quadratic (see formula (4.13) on page 65):

(7.1) L∗(t) = t2 + (N − q − 1)t+ q = (t− ω1)(t− ω2) ,

and the RHp for F implies that |N − q − 1| ≤ 2
√
q . This means that the

discriminant satisfies

(7.2) ∆ := (N − q − 1)2 − 4q ≤ 0 ,

i.e., that the roots ω1, ω2 are contained in an imaginary quadratic field. Con-
versely, assume that (7.2) holds. If ∆ < 0 then Q(ω1) = Q(ω2) is an imag-
inary quadratic field and ω1 is conjugate to ω2. Since ω1ω2 = q the RHp
follows: |ω1| = |ω2| =

√
q . If ∆ = 0 then ω1 = ω2 = ±√q and hence again

|ω1| = |ω2| =
√
q. We see that the RHp requires to solve the following

Problem: Given an elliptic function field F |K with finite base
field K containing q elements, let N denote the number of prime
divisors of degree 1 in F |K. Find an imaginary quadratic number
field Ω|Q and an element π ∈ Ω such that

(7.3) N (π) = q and S(π) = −(N − q − 1)

where N , S denote norm and trace for Ω|Q .



7.2. THE PROBLEM 113

I am writing the norm operator from the quadratic field Ω with a calligraphic
N , in order to distinguish it from the number N of primes of degree 1 of F |K.
Accordingly the trace is written as calligraphic S (“Spur” in German).

If the above problem is solved the roots ω, ω′ of L(t) can be identified with
π and its conjugate π.

Note thatN (π−1) = N (π)−S(π)+1, hence the relations (7.3) are equivalent
to

(7.4) N (π) = q and N (π − 1) = N .

Today this problem is readily solved as follows:

Assume that F = K(Γ) be the function field of an elliptic curve Γ defined
over K. In view of the well known addition formulas we may regard Γ
as an abelian variety of dimension 1. The K-rational points of Γ form a
finite subgroup Γ(K), and its order equals the number N of prime divisors
of degree 1 of F . Consider the endomorphism ring M(Γ) in the sense of
algebraic geometry. It is known that this endomorphism ring is (isomorphic
to) a subring of an imaginary quadratic field Ω (up to a few exceptional
cases). Every endomorphism µ ∈ M(Γ) has a degree, and this degree equals
the norm N (µ) from Ω to Q. If µ is separable then the degree equals the
order of the kernel of µ.

Now, the q-Frobenius operator π ∈ M(Γ) is defined as raising the coordinates
of any point of Γ to their q-th power. Applied to a generic point, we see
that its degree is [F : F q] = q , which gives the first relation in (7.4). On the
other hand, by definition π fixes precisely the K-rational points; hence Γ(K)
is the kernel of π − 1 . This gives the second relation in (7.4) since π − 1 is
separable. In other words:

F. K. Schmidt’s polynomial L∗(t) is the characteristic polynomial
of the Frobenius operator within the endomorphism ring M(Γ),
and the latter is a subring of an imaginary quadratic field Ω .

This sounds “Quite trivial” if I am allowed to use the same words which
Davenport had exclaimed at the end of his proof in his letter of January 1932
(see page 92).
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The “few exceptional cases” mentioned above are those where Γ is “super-
singular” in the sense of Deuring, i.e., where M(Γ) is non-commutative. See
section 8.4.1. Those elliptic curves had been discovered by Hasse. They can
be characterized by the vanishing of a certain number A, the so-called Hasse
invariant of Γ. (I shall explain the definition of A in section 8.1.) In these
cases M(Γ) is a maximal order in the quaternion algebra which is ramified at p
and∞ only. Every maximal commutative subfield of this quaternion algebra
is imaginary quadratic. Since the Frobenius endomorphism π is contained in
such a maximal subfield, the same argument as above can be applied in this
case. (Here, N equals the reduced norm from the quaternion algebra.)

But these arguments were not yet available when Hasse started his work in
1933. The standard notions and results about elliptic curves in characteris-
tic p and their endomorphism rings which I have used here, were unknown
at the time. In fact, Hasse had to create these notions and to prove their
relevant properties during the next years. What I have sketched above con-
stitutes Hasse’s second proof. But what was his first proof and why did he
refrain from publishing that?

Dear reader, if you just want to know how Hasse’s second proof works in the
elliptic case then you may be satisfied with what I have said above. You may
skip the next sections where I shall talk about the gradual evolution of the
ideas which led Hasse finally to what was named “complex multiplication
in characteristic p ”, and what became the base of the arguments employed
above. We have here one of the rare situations where this evolution is well
documented by letters and notes.

7.3 Hasse’s first proof: complex multiplica-

tion

The theory of complex multiplication has a long history back into the 19th
century. In the 1920s Hasse had published two important papers on the
foundations of complex multiplication in connection with Takagi’s class field
theory [Has26b, Has31]. So he was familiar with the close relation between
elliptic curves in characteristic 0 and the arithmetics of imaginary quadratic
fields, since this is the subject of complex multiplication. Therefore it is un-
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derstandable that when Hasse first encountered the problem (7.4) he remem-
bered his own past work and wondered whether there may be a connection
of complex multiplication to the problem (7.3) of RHp.

The classic theory of complex multiplication is concerned with elliptic curves
in characteristic 0. Accordingly Hasse’s first idea was to lift the problem
from characteristic p to characteristic 0. The original elliptic curve Γ in
characteristic p should be represented, if possible, as a good reduction of an
elliptic curve Γ∗ in characteristic 0. (You may have noticed that here I am
switching from to the language of function fields to the language of algebraic
geometry.) At that time, however, the general notion of “good reduction”
had not yet been defined, and Hasse had to perform certain computations
directly which today are standard as immediate consequences of the theory of
good reduction. The general theory was introduced later by Deuring [Deu42]
while generalizing and systematizing Hasse’s arguments. See section 8.4.4.

The lifted curve Γ∗ should have suitable properties, suitable for the solution
of problem (7.4). In order to describe Hasse’s lifting process it may be helpful
first to remember the relevant facts from classic complex multiplication.

Let Γ be an elliptic curve defined over any field K. Consider its modular
invariant, usually denoted by j = j(Γ), which is a non-zero element in the
base field K. If the characteristic is 6= 2, 3 and if Γ has a K-rational point
then the curve can be defined by an equation in Weierstraß normal form:

(7.5) y2 = 4x3 − g2x− g3 with g2, g3 ∈ K ,

and then j is defined as

(7.6) j = 123 g
3
2

∆
with ∆ = g3

2 − 27g2
3 .

This is a birational invariant of the curve (over the algebraic closure of the
base field K).

If the base field is the complex number field C then the elliptic curve Γ can be
analyrically uniformized by the additive factor group C/w where w denotes
the lattice of periods appearing when the unique differential of the first kind
is integrated. The period module w is uniquely determined by Γ up to a
scalar factor. In this situation g2, g3 and hence j can be given by analytical
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formulas as follows:

(7.7) g2 = g2(w) = 60
∑

06=w∈w

1

w4
, g3 = g3(w) = 140

∑
06=w∈w

1

w6
.

The defining relation (7.5) of the curve is then satisfied by the Weierstraß
℘-function and its derivative:

x = ℘(z|w) =
1

z2
+
∑

06=w∈w

(
1

(z − w)2
− 1

w2

)
(7.8)

y = ℘′(z|w)

where z is a complex variable and differentiation is with respect to z. The
function ℘(z|w) (as a function of z) is meromorphic with a pole of order 2
at z = 0, and it is periodic with the period module w. The map

(7.9) z 7→ (℘(z|w), ℘′(z|w))

establishes a bijection between the factor group C/w and Γ(C). Due to this
bijection Γ(C) is equipped with the structure of an additive group with the
point at infinity as the zero element. Let us write Γw for the elliptic curve
analytically uniformized by C/w in this way.

A multiplier of w is defined to be a complex number µ such that µw ⊂ w.
This defines an endomorphism, likewise denoted by µ, of the factor group
C/w and hence of Γw(C). The ring M = M(Γw) of all those multipliers con-
tains Z . If there are more multipliers in M then these are not real numbers.
In this case the lattice w (or the elliptic curve Γw) is said to admit complex
multiplication. From this the whole theory derives its name.

Assume that Γw admits complex multiplication. Then the multiplier ring
M, acting on the period module w which is 2-dimensional, is seen to be a
so-called “order” of some imaginary quadratic number field Ω, i.e. a subring
of the integers which generates the field Ω. (Today the word “order” in
this connection is not in general use any more.) In this case the lattice w

is proportional to some lattice in Ω and one may assume w ⊂ Ω. Then w

appears as an ideal (integer or fractional) of M. In general M is not integrally
closed, i.e., it may admit a nontrivial conductor. This is a natural number m,
and M consists precisely of all algebraic integers in Ω which are congruent to
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some rational integer modulo m. (Hasse says “index” instead of “conductor”,
following the classic terminology in the theory of complex multiplication.)
After adjusting w by a suitable proportionality factor one may assume that
w is relatively prime to the conductor. All ideals of M which are relatively
prime to the conductor form a multiplicative group. Modulo principal ideals
we obtain the ideal class group of M; this is finite.

In this situation, the invariant j(w) of Γw turns out to be an algebraic
number generating an abelian extension K of Ω. In fact, K is the so-called
ring class field of M in the sense of class field theory, and j(w) depends on
the ideal class of w only. If w ranges over the ideal class group of M then the
corresponding invariants j(w) are different, and they constitute a complete
set of conjugates over Ω. The Galois group of K|Ω is isomorphic to the ideal
class group of M via Artin’s reciprocity law. The curve Γw can be defined
over K (up to birational equivalence).

This being said, we can now formulate Hasse’s

Lifting Theorem: Let K be a finite field of characteristic p with
q elements, and Γ an elliptic curve defined over K with invari-
ant j ∈ K. Assume j to be of degree r, so that Fp(j) = Fpr ⊂ K.
There exists an imaginary quadratic field Ω ⊂ C and a lattice w

in Ω such that:

1. p does not divide the conductor of the multiplier ring M(Γw) .
2. p admits a prime divisor P of degree r in the ring class

field K = Ω(j(w)) such that, after suitable identification of
the residue field of K mod P with Fp(j) we have j(w) ≡
j mod P.

3. q splits in Ω into two factors: q = ππ′.

In general the lattice w is uniquely determined by Γ up to a scalar
factor from Ω. Exceptional cases arise only in few cases, namely
when the so-called Hasse invariant A of Γ vanishes; in such case
there are precisely two non-equivalent lattices w,w′ satisfying the
conditions 1–3.

I shall explain later the definition and relevance of the Hasse invariant which
is usually denoted by A. See chapter 8.
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Actually, at the time when Hasse formulated the Lifting Theorem he had not
yet discovered the invariant A. He proved the Lifting Theorem only under
the additional condition that p 6= 2, 3 and, moreover, the degree r of j should
be odd. He believed this last condition to be unnecessary and, indeed, this
has been verified later by Shiratani [Shi67]. Today it is known that the Hasse
invariant A may vanish only if the degree r = 1 or r = 2. The obstruction
which Hasse encountered in his proof when r is even is related to the possible
vanishing of A for r = 2. See Chapter 8 below.

In view of Hasse’s Lifting Theorem above we can understand what Hasse had
meant when he wrote to Mordell about “uniformizing a congruence”, as he
did in his letter of 6 March 1933:

“It is a curious fact that the leading idea of my proof may be
considered as the fruit from our reading Siegel’s great paper last
year, or rather of my learning your method in the elliptic case.
For, as there the equation y2 = f4(x) is treated by uniformizing
it through elliptic functions, so I now treat the congruence y2 ≡
f4(x) mod.p by uniformizing it the same way. . . ”

Here, Hasse refers to Mordell’s visit one year earlier, during the Easter vaca-
tions 1932, when the Mordells had stayed with the Hasses in Marburg. This
visit had happened just at the time when Hasse had to write a Jahrbuch
review of Siegel’s paper [Sie29], and he used Mordell’s presence to go over
Siegel’s paper jointly page by page. (This review has the unusual size of more
than 5 pages. It appeared in volume 56 of the Jahrbuch für die Fortschritte
der Mathematik. See footnote 4 on page 11.)

It seems that on this occasion Mordell had explained to Hasse his use of the
uniformization of elliptic curves in his old paper [Mor22] which contained
Mordell’s part of the “Mordell-Weil Theorem”. When Hasse now speaks of
“uniformization of the congruence” then this can be interpreted such that
the curve Γ in characteristic p should be lifted to the curve Γw with invariant
j(w), and then the said “uniformization” of Γ is C/w, or rather its torsion
subgroup. (By the way, Mordell once told me that he did not like the termi-
nology “Mordell-Weil Theorem.” In his opinion he and Weil had proved two
different theorems which should be referred to as “Mordell’s Theorem” and
“Weil’s Theorem” respectively.)



7.3. HASSE’S FIRST PROOF: COMPLEX MULTIPLICATION 119

It is not my aim here to go into the details of proof of Hasse’s Lifting Theorem.
I have mentioned the theorem in order to point out the general direction of
the ideas of Hasse’s first proof. Hasse tried to connect the RHp with the
classical theory of complex multiplication which he was familiar with.

Observe that the Lifting Theorem alone does not yet give a proof of prob-
lem (7.4). While property 3. of the Lifting Theorem yields an element π
with N (π) = q, the second condition N (π − 1) = N of (7.4) remains to
be verified. To this end, Hasse had to extend the ring class field K to the
so-called (π − 1)-division field K′ which is generated over K by the division
values ℘(α), ℘′(α) where ℘ denotes the Weierstrass ℘-function belonging to
w and α ranges over the complex numbers modulo w which are annihilated
by π − 1. i.e., πα ≡ α mod w . The points of Γ have to be lifted to points
of Γw and those are represented by the values ℘(α) and ℘′(α) as its coordi-
nates. By definition π acts on the points of Γw, hence on the values ℘(α)
and ℘′(α) as their coordinates. In this way it induces an isomorphism ϕπ in
K′|K. Since πα ≡ α mod w it is seen that this isomorphism is the identity
on K′. On the other hand, K′ is an abelian extension of K, hence can be
viewed as class field. Artin’s reciprocity law maps the prime ideal P ap-
pearing in the lifting theorem onto a certain automorphism ϕP of K′|K. In
fact, ϕP is the Frobenius automorphism belonging to P, which maps every
element onto its q-th power modulo P. The theory of complex multiplication
asserts that ϕP = ϕπ, hence ϕP induces the identity in K′. It follows that
℘(α)q ≡ ℘(α) mod P for every α ∈ 1

π−1
w. Similarly for ℘′(α) modulo P. Re-

ducing modulo P it follows that these points are mapped onto those points
(x, y) of Γ for which xq = x, yq = y, i.e., the K-rational points of Γ. This
then leads to the second relation of (7.4).

Actually, Hasse worked here not directly with the Weierstrass function ℘(z)
but with some modification of it, called “Weber’s function” τ(z) which is
more adapted to arithmetical investigations. But here I do not wish to go
into the details. My aim is to point out the main ideas for Hasse’s first proof.

The rising of these ideas is well documented. In his letter to Mordell of
6. March 1933 Hasse gave a brief sketch of his main ideas. In his Nachlass
there are lecture notes for a seminar lecture in Marburg in May of 1933,
obviously meant as a continuation of Hasse’s seminar talk in February which
I have mentioned above already (page 105). Another outline of his first
proof is published in the “Göttinger Nachrichten” of 1933 [Has33a]. In the
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Nachlass of Hasse there was found a manuscript with a complete proof, ready
for publication but never submitted.1 Hasse had given colloquium talks about
it in several places, including the annual meeting of the DMV in September
of 1933 at Würzburg. His report about this talk in Würzburg appeared in
the Jahresbericht der DMV [Has34c].

But while writing down this report Hasse became more and more convinced
that lifting of the problem to characteristic 0 is not really necessary, and
most of the arguments would work in characteristic p already if suitably
formulated. On 5. November 1933 he wrote to Davenport:

“I ought to make my treatment of the elliptic case by means of
elliptic functions ready for print. But I cannot get myself to work-
ing at it. I rather should like to avoid this publication at all by
giving a pure algebraic proof. I have made some definite progress
in this direction in the last weeks.”

When Hasse submitted the text of his Würzburg report for printing he had
already decided to rewrite the proof as indicated in his letter to Davenport.
Accordingly, he added the following announcement:

“In the meantime I succeeded to give this proof for all elliptic
cases in characteristic different from 2 in a purely algebraic way.
I am developing a purely algebraic theory of division fields and of
complex multiplication of elliptic function fields with algebraically
closed base field. In my opinion this new proof seems to be more
adapted to the situation. Hence I will refrain from the presen-
tation of the first analytic proof. The publication of the second
purely algebraic proof will appear in the near future as a sketch
in the Proceedings of the Mathematical Seminar Hamburg, and in
detail in Crelle’s Journal.”

1The manuscript has 94 pages. I am indebted to Reinhard Schertz for providing me
with a copy.
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7.4 The second proof

In the announcement above Hasse refers to his forthcoming paper [Has34a]
in the Hamburger Abhandlungen which contains the Lecture Notes of his
colloquium lectures which he had delivered in Hamburg in January 1934.
There he had introduced the main ideas of his new proof. He had been
invited by Artin who apparently had heard about the new proof. Artin had
written:

“Dear Mr. Hasse! Wouldn’t you want to come over here this se-
mester and give a talk? You could talk abut whatever you want to.
Perhaps the beautiful results on the Riemann conjecture for func-
tion fields ? After all, this is the most beautiful result that has been
obtained in the last few decades. My students would be highly in-
terested. It would be nice if you could take off a whole week . . . ”

Hasse accepted this invitation and went to Hamburg for a week. There he
delivered three lectures. The audience which Artin had mentioned in his
letter were probably the members of his seminar. But the lectures were
announced as public, and certainly there were other people too attending
Hasse’s lectures. Very likely the following persons were present:

• Max Zorn. He had obtained his Ph.D. in 1930 with Artin who con-
sidered him as one of his most brilliant students. Thereafter he got
a position at the University of Halle as an assistant to H. Brandt, the
successor of Hasse there. In 1932 he quitted this position and moved to
Hamburg again. In the year 1933 there appeared his paper in the Ham-
burger Abhandlungen which showed that the thesis [Hey29] of Käte Hey
(the first Ph.D. student of Artin) could be interpreted so as to yield
a proof of the Local-Global-Principle for algebras. This paper [Zor33]
had received great interest among the people working in class field the-
ory, including Emmy Noether and Hasse. In 1934 Zorn emigrated to
the USA. (Today his name is known through Zorn’s Lemma).

• Wei-Liang Chow who had studied in Göttingen with Emmy Noether
but now planned to change to Leipzig in order to work with van der
Waerden. He resided mainly in Hamburg (where he had found his later



7.4. THE SECOND PROOF 122

wife Margot) and, as reported by Chern [Cea96], kept close contact to
Artin. (Chern himself was probably not present at Hasse’s lectures;
according to his own testimony he came to Hamburg in October of
1934.)

• Hans Petersson. He had been a Ph.D. student of Hecke. Now he held a
position as “Privatdozent” at Hamburg University. He had lectured on
class field theory a year before. He was a referee for the Chevalley-Weil
paper [CW34] which also appeared in the Hamburger Abhandlungen of
the current year 1934. That paper gives an important contribution to
the algebraic theory of function fields; it is evident that this topic is
closely connected to the program which Hasse presented in his Hamburg
lectures.

• Harald Nehrkorn, a Ph.D. student of Artin in 1933 who in his thesis
[Neh33] provided algebraic proofs of Artin’s class number relations. In
the 1935 volume of the Hamburger Abhandlungen he published a paper
jointly with Chevalley on class field theory [CN35], taking a big step
towards a purely algebraic foundation of Artin’s reciprocity law.

• Heinz Söhngen, another Ph.D. student of Artin, in 1934. His thesis
[Söh35] is about complex multiplication, expanding a former paper of
Hasse. (Later he went to applied mathematics.)

• Walter Landherr, also a Ph.D. student of Artin in 1934. His thesis
[Lan35] dealt with simple Lie rings over p-adic fields.

• Hans Zassenhaus, yet another Ph.D. student of Artin in 1934, working
in group theory. Even before he received his Ph.D. degree, his name
became known through his explicit proof [Zas34] of the Jordan-Hölder-
Schreier Theorem in group theory (the Butterfly Lemma). From the
beginning of his mathematical career he was very active in group the-
ory; we have counted 7 important published papers in the years 1934–
1938. For a long time his text book [Zas37] was considered as “the”
classical introduction to group theory.

• Erich Kähler who had obtained his Ph.D. in Leipzig but now worked
in Hamburg where had got his Habilitation with Blaschke in 1930, the
same year as Hans Petersson. His interest was mainly with differential
geometry.

• Erich Hecke and Wilhelm Blaschke, Artin’s colleagues in Hamburg.



7.4. THE SECOND PROOF 123

This list of names, certainly not complete, shows that Hasse met a highly
competent and interested audience in Hamburg. As Hasse had announced,
the notes for these lectures appeared in the Hamburger Abhandlungen [Has34a].
(This issue contains a photographic portrait of Hasse. I do not know who
had made it. Perhaps Natascha Artin? The photo is mentioned in a letter
of 26. February 1934 from Blaschke to Hasse.)

Another preliminary report, somewhat amended, appeared one year later in
the Göttinger Nachrichten [Has35]. In particular Hasse could now include
the case of characteristic 2. The final proof was submitted for publication in
November 1935 and appeared 1936 in Crelle’s Journal in three parts [Has36c].
Due to these documents, and from Hasse’s letters to Davenport, we can
observe how the ideas and methods for the second proof took shape gradually
in the course of time.

Hasse in his first proof, while working with the reduction modulo P of the
(π − 1)-division field (see page 115), observed that the quadratic integer
π ∈ M after reduction acts on Γ such that π−1 kills precisely the K-rational
points of Γ. This induced him to build his new proof as follows:

Step 1. Algebraic construction of the endomorphism ring of the Jacobian of
an elliptic function field over an arbitrary base field, in particular over
fields of characteristic p > 0. (Hasse says “ring of multipliers” of the
elliptic curve as it was usual in the classical case.) Creation and defini-
tion of the necessary algebraic notions which are to replace the analytic
notion of multiplier.

Step 2. Clarification of the structure of the endomorphism ring as far as neces-
sary. In particular proving that this ring is Z or imaginary quadratic.
In the latter case it is an order in an imaginary quadratic number field
or, in some special cases, an order in a quaternion skew field.

Step 3. Conclusion: In the case of finite base field, definition of the Frobenius
endomorphism π and using it to complete the proof of the RHp.

In the first two steps Hasse assumes that the base field K is algebraically
closed. In the third step only he considers function fields with a finite base
field; the results of the first two steps will then be applied to the base field
extension with the algebraic closure of the base field. Note that the genus of
a function field does not change under base field extensions – provided the
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new base field is separable over the original base field. (See Remark 2 on
page 64.)

Let us begin with step 1.

7.4.1 Meromorphisms and the Jacobian

Let F |K be an elliptic function field with algebraically closed base field K
of arbitrary characteristic. The task is to give an algebraic definition of
the notion of endomorphism ring of the Jacobian of F |K. In the classical
case, as I have mentioned in section 7.3, such endomorphism was defined by
means of a “multiplier”, i.e., a complex number µ which, when multiplied
with the lattice w of periods, maps w into itself: µw ⊂ w. This defines an
endomorphism of the additive factor group C/w, the latter being bijectively
related to the points of the elliptic curve via the Weierstraß ℘-function (see
(7.9), page 112). But in the algebraic environment there is no period lattice
and hence no multiplier. One has to look for an algebraic analogue of the
group C/w which is to carry the endomorphisms.

Hasse found it in the divisor class group C0 = C0(F |K) of degree 0, i.e.,
the group of divisors of degree 0 of F |K modulo principal divisors. The
group operation in C0 is written here as multiplication whereas in C/w it
was written as addition, but this is of no importance. There is a bijection of
C0 with the set of primes P of F |K as follows:

Fix a prime of F |K and call it P∞. Then, for every C ∈ C0 the divisor class
C·P∞ is of degree 1 and therefore, by the Riemann-Roch Theorem it contains
excactly one integer divisor. This is necessarily a prime P . (Recall that here
F |K is elliptic, i.e., the genus is g = 1.) The map

C 7→ P

is a bijection from the divisor classes C ∈ C0 to the primes P of F |K. It
can be used to impose a group operation on the set of primes, written as
addition, such that

(7.10)
P1 + P2

P∞
∼ P1

P∞
· P2

P∞



7.4. THE SECOND PROOF 125

(Recall that I use ∼ as the sign for divisor equivalence modulo principal
divisors, see page 19). The chosen prime P∞ acts as the zero element of that
group.

The addition (7.10) can be explicitly described by means of coordinates,
according to the well known addition formulas known from classical algebraic
geometry. In the classical case the curve is usually given in Weierstraß normal
form, and then the zero element of this addition is usually represented by
the point at infinity (see page 112). This explains my notation P∞ also in
the abstract case. Hasse clearly preferred the abstract intrinsic definition
(7.10) which does not refer to the coordinates of the respective points. In
the introduction of his first paper for the elliptic case he wrote:

“In view of the problem to generalize the whole theory for arbitrary
genus g I deliberately avoid to use special explicit formulas or
knowledge about elliptic fields – even if the proofs may appear
somewhat abstract for those who are only interested in the elliptic
case. In particular I never need to use the explicit formulas for the
Addition Theorem. Instead it is sufficient to look at the very roots
of these formulas, namely the multiplication of divisor classes.
The whole theory has now obtained a purely structural character.”

This did allow him to treat simultaneously the cases of all characteristics,
including characteristic 2. In his eyes this was more adequate to the situation.

In geometrical language, what Hasse did was in fact the construction of the
Jacobian J = J(F |K). Since the genus is 1 the function field of the Jacobian
of F |K is isomorphic to the original field F |K. The K-rational points of
J can be identified with the primes P of degree 1 of F |K, provided one of
them is chosen to be the zero element. The group operation in J is written as
addition, and J is essentially the same as the multiplicatively written group
operation of C0 in view of (7.10).

All this and also the following constructions were standard in classical alge-
braic geometry but in Hasse’s time it was unknown whether and how they
could be transferred to characteristic p . The work of Hasse in the 1930s
on the RHp implied to a large extent the transfer of the classical algebraic
geometry of curves from characteristic 0 to characteristic p.
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But Hasse did not think in geometric terms. His mathematical background
was algebraic number theory which he was familiar with (and to which he
had given important outstanding contributions). His objects which he had
worked with were number fields, rings, ideals and valuations. In particular
he had successfully used p-adic number fields. He was convinced that these
ideas are also helpful for the RHp – which after all turned out to be the case
as we shall see. As far as I know he never anticipated to deal with problems
of algebraic geometry as such. He did not foresee the merging of number
theory and algebraic geometry to what today is called “arithmetic algebraic
geometry”. This was done by later generations of mathematicians.

After having defined the “Jacobian”, Hasse’s next task was to give an al-
gebraic definition of “endomorphism” of the Jacobian in the framework of
function fields.

To this end Hasse created the notion of “meromorphism” of an elliptic func-
tion field, defined as an isomorphism µ of F |K into itself. In this connection
he wrote µ as a right operator, thus for x ∈ F its image is denoted by xµ
and similarly for divisors, divisor classes etc. The image of F is Fµ. The
degree [F : Fµ] is finite. Consider the map for divisors A of F |K:

(7.11) A 7→ NF |Fµ(A) · µ−1

where NF |Fµ denotes the norm operator from F to its subfield Fµ.

F

NF |Fµ

��
Fµ

µ−1

OO

This defines an endomorphism of the divisor group of F |K, which respects
principal divisors and divisor degrees. In particular we get an endomorphism
of the divisor class group C0 of degree 0.

Hasse denotes the map (7.11) also by µ but this time as operator from the left.
Thus µA denotes the image of A under the map (7.11). This is a divisor of
F |K whereas Aµ is a divisor of Fµ|K. This somewhat subtle notation, Hasse
says, had been proposed by Witt. At that time Witt was in Göttingen and
belonged to the small group of Hasse’s seminar; he had already a reputation
for his elegant style and notations. In Witt’s notation, if P is a prime of F |K
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then from (7.11) we have for x ∈ F

(7.12) xµ · P = x · µP

which says that the element xµ ∈ Fµ ⊂ F is mapped modulo P onto the
same element as x ∈ F modulo µP . This associativity allows to write xµP
without dot.

A meromorphism is said to be “normalized” with respect to P∞ if µP∞ = P∞.
If this is the case then a glance at (7.10) convinces us that

(7.13) µ(P1 + P2) = µP1 + µP2 .

In other words: If the meromorphism µ is normalized then it induces an
endomorphism of the Jacobian J as an additive group. Every meromorphism
can be normalized by multiplication with a suitable automorphism of F |K
which leaves C0 elementwise fixed.

These “suitable automorphisms” are the translation automorphisms of F |K.
The group of translation automorphisms is isomorphic to the divisor class
group C0 of degree 0. The translation τC belonging to the class C ∈ C0 has
the property that PτC ∼ PC for every prime P of J . If we write C ∼ A/P∞
then PτC = P +A for all P . Nowadays the existence of those translation au-
tomorphisms is more or less evident since, as said above, F |K can be viewed
as the function field of the Jacobian which is an abelian variety. However, at
that time the notion of abelian variety had not yet been established in char-
acteristic p. Hence Hasse had to construct those automorphisms explicitly.
In a letter dated 21. February 1933 his friend Davenport asked:

“Are you going to get new automorphisms or birational transfor-
mations from your method ?”

And Hasse had to explain him that the translation automorphisms can be
constructed as products of two reflections.

Hasse said that his idea of using the notion of meromorphism to define endo-
morphisms of the Jacobian came from the analogy to the classical case. (See
page 112.) There, every multiplier µ defines a meromorphism of the function
field F = K(℘(z), ℘′(z)) by

(7.14)
(
℘(z), ℘′(z)

)
7→

(
℘(µz), ℘′(µz)

)
.
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One has to use the fact that every analytic function with period w is a
rational function of ℘(z), ℘′(z) . But in the algebraic case there do not exist
multipliers and ℘-function to construct meromorphisms. Hence Hasse had to
build his theory directly on the abstract algebraic notion of meromorphism
as defined above.

Today the terminology of “meromorphism” is not in use any more. Instead,
one says “isogeny” of an elliptic curve to itself. Nevertheless I shall use
here Hasse’s old terminology of “meromorphism”. This terminology was
new and unusual at that time, thus it will provide us a glimpse into the
feeling of the times of the 1930s, namely that this is the beginning of some
new development.

Remark: Looking at (7.14) we can understand how Hasse and Witt arrived
at that “subtle” notation, as we have called it above. (See page 122.) If I
denote the function z 7→ ℘(z) just by ℘ then the function z 7→ ℘(µz) should
be written as ℘µ, and similar for ℘′ and for all f ∈ F = K(℘, ℘′). Thus in the
classical case, the multiplicator µ : w→ w defines a meromorphism f 7→ fµ
of the function field, written as right operator. This led Hasse in the abstract
case also to write the meromorphism µ : F → F as right operator. And then
the map µ : P 7→ µP defined by the diagram on page 122 corresponds in the
classical case to the multiplication z 7→ µz and therefore also in the abstract
case was written as left operator.

As explained above, every meromorphism µ of F |K (in the abstract sense)
induces an endomorphism of the group C0 of divisor classes of degree 0; if
it is normalized then it induces an endomorphism of the Jacobian J , if J is
understood as the additive group of primes of F |K given by (7.10).

But there is more to do: these endomorphisms should constitute a ring.
Given two meromorphisms µ1, µ2 of F |K with corresponding endomorphisms
of J it has to be verified that the endomorphisms µ1 + µ2 and µ1µ2 of J are
also coming from meromorphisms of the function field.

This is evident for the product since the product of two meromorphisms is
just the successive application of the two maps. For the sum it is somewhat
more involved, although Hasse’s way to deal with this problem looks quite
natural and easy for us.
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7.4.2 The double field

Geometrically speaking, if F = K(Γ) is regarded as the function field of a
curve Γ over K then Hasse considers the function field of Γ over a field E
isomorphic to F , i.e., the field F = E(Γ). This is a function field of two
variables over K, regarded as a tower of two function fields of one variable.
Hasse calls F the “double field” (Doppelkörper) belonging to F . It can be
realized as the independent compositum of F |K with E|K:

F := F · E = Quot(F ⊗K E)

where Quot(. . . ) denotes the field of quotients.

Geometrically, F can be viewed as the function field over K of the surface
Γ× Γ, the direct product of Γ with itself, where the graphs of endomorphisms
are located. But Hasse preferred to work with function fields of transcendence
degree 1; so he introduced his “double field” F and considered it as a base
field extension of F |K with E as the new base field. See the diagram below.

F

~~~~~~~~~~~~~~~~

P, M

@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@

F

P

@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@ E

~~~~~~~~~~~~~~~~

K

Every prime P of F |K extends uniquely to a prime of the base field extension
F|E , and that extension will likewise be denoted by P . But there are more
primes of F|E, namely those for which the valuation is trivial on F . The
residue map of such a prime induces an isomorphism of F into the residue
field. These primes M are called “transcendental” because the image of F
under the residue map is transcendental over K. The other primes P as
above are then called “algebraic”.

Let M be a transcendental prime and FM its residue field. Let µ : F → FM
denote the isomorphism of F induced by the residue map modulo M . We
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have

(7.15) FM = Fµ·E .

(The residue map of F|E modulo M is usually normalized such that the
base field E is kept elementwise fixed.) This is the field compositum of
the two fields Fµ and E which are both transcendental over K. This field
compositum (7.15) is not independent overK; its degree over each component
Fµ and E is finite. We have [FM : E] = degM . In particular, if degM = 1

then the map µ : F → E, followed by a fixed K-isomorphism E
≈−→ F is a

meromorphism of F |K.

In this way Hasse interprets the meromorphisms of F as the transcendental
primes of degree 1 of F|E.

The study of the divisor class group of F|E then leads to the verification that,
indeed, the endomorphisms of J as defined above form an addtive group.
In fact, if two meromorphisms µ1, µ2 are represented by the transcendental
primes M1,M2 then, Hasse shows, their sum µ1 + µ2 is represented by the
prime M1 +M2 given by

(7.16)
M1 +M2

P∞
∼ M1

P∞
· M2

P∞

which is the same relation as in (7.10) but now to be read in the elliptic
function field F|E. (Well, if µ1 + µ2 = 0 then this is not represented by a
transcendental prime but by the algebraic prime P∞. In some sense the alge-
braic primes can be regarded as improper meromorphisms. In the following
I will not always mention this exceptional case explicitly.)

Let us denote the ensuing ring by M = M(F |K), similar as we did in the clas-
sical case. Hasse calls it the “ring of multipliers” of the elliptic function field
F |K, in analogy to the terminology used in the classical theory of complex
multiplication. But here let us use “ring of endomorphisms” of the Jacobian
J(F |K).

7.4.3 Norm Addition formula

Hasse’s abstract construction of the endomorphism ring M is neither difficult
nor quite surprising to us, although it may have looked somewhat unfamiliar
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to his contemporaries. But the construction does not prove anything yet, it
is only the first step, providing us with the algebraic framework in which the
proof of the RHp can be executed.

Now I will turn to Step 2. (See page 119.)

Every meromorphism µ ∈ M has a degree which Hasse called “norm”:

N (µ) := [F : Fµ].

This name will be justified later only, for M will turn out to be (isomorphic
to) a subring of an imaginary quadratic number field or skew field, in such
a way that N (µ) equals the norm of the algebraic number µ in this field. In
view of this I have denoted Hasse’s norm by the calligraphic sign N (µ) as I
had done above in the classic case. I put N (0) = 0 and note that

(7.17) N (µν) = N (µ)N (ν)

since the product µν is just the successive application of the meromorphisms
µ and ν. Hasse’s key result is the important

Norm Addition Theorem:

(7.18) N (µ+ ν) +N (µ− ν) = 2N (µ) + 2N (ν) for µ, ν ∈ M .

Looking at this formula we get the impression that N (µ) is a quadratic form
on M. This can indeed be verified, the corresponding bilinear form being
given as

(7.19) (µ, ν) :=
1

2

(
N (µ+ ν)−N (µ)−N (ν)

)
.

The bilinearity of this symbol is a consequence of the norm addition formula
(7.18). From the product formula (7.17) we see that M has no zero divisors.
Per induction one verifies from the norm addition formula that N (n) = n2

for n ∈ Z. Hence M is of characteristic 0. For each µ ∈ M consider the
quadratic polynomial over Z:

f(X) = X2 − 2(µ, 1)X +N (µ) .

Using repeatedly the above mentioned properties of N (. . .) one computes
N (f(µ)) = 0, hence f(µ) = 0, showing that either µ ∈ Z or µ is a quadratic
integer. Since N (µ) > 0 it follows that Z[µ] is imaginary quadratic.

Hence:



7.4. THE SECOND PROOF 132

Lemma: Let M be any ring with unit element 1, and assume that
to every µ ∈ M there is assigned a natural number N (µ) such that
(7.17) and (7.18) hold. Then either M = Z and N (n) = n2 for
every n ∈ Z, or M is an order in an imaginary quadratic number
field or quaternion algebra and N (µ) is the norm of µ from this
field. (In case of a quaternion algebra one has to take the reduced
norm.)

We see that, using this elementary lemma, the norm addition formula (7.18)
leads quite formally to the imaginary quadratic structure of M and hence to
the RHp for elliptic function fields (for this see the following section 7.4.4).

Hasse talked about this lemma in his Göttingen seminar 1935. As he reports
in his paper, some participants of the seminar provided a number of simpli-
fications of his proof of the lemma. The first was Teichmüller. More was
given by Hasse’s student Behrbohm whose proof was published in Crelle’s
Journal 1935 [Beh35].2 Witt refereed Behrbohm’s article in the Zentralblatt
and on that occasion provided further simplifications. Thus the final form
of the proof of this lemma was the result of a teamwork of Hasse’s seminar
group in Göttingen 1935.

But how did Hasse get the idea for the norm addition formula, and how
did he find its proof? We are in a good position to be able to follow this
development by reading the letters which were frequently exchanged between
Hasse and Davenport in those years. On 29. January 1934, the day before
Hasse’s departure for Hamburg to deliver his lecture series on the invitation
from Artin, he had written to Davenport:

“I am very troubled at present because I found a gap in my proofs
about the elliptic case while drawing up my lectures for Hamburg.
The whole thing seems too sensible for being wrong. But it may
be that the proof of the actual result lies a bit deeper than my

2Hermann Behrbohm is mentioned in the list of Hasse’s doctoral students, a list that
was written down by Hasse himself. But finally Behrbohm switched to aircraft industry
and did his Ph.D. in applied mathematics 1944. Behrbohm had only two papers in number
theory: Besides of his above mentioned publication in the Göttinger Nachrichten there is
one about the euclidean algorithm in quadratic fields [BR36], jointly with the Hungarian
mathematician L. Redei who in 1934/35 was visiting Hasse in Göttingen as a Humboldt
fellow.



7.4. THE SECOND PROOF 133

argument went so far. The possibility I have to exclude is that the
operation π is transcendental. I can prove that if it is algebraical
it must be imaginary quadratic, because a unit operation cannot
exist.”

(Hasse means that a unit operation of infinite order does not exist.)

Thus even at this stage, when Hasse was going to present in Hamburg a
sketch of his new proof, he had not yet fully cleared up the structure of the
meromorphism ring. He did not yet know the Norm Addition Theorem, he
even did not know whether the meromorphism ring may contain transcenden-
tal elements. Even the Frobenius meromorphism π was not yet established
as being algebraic over Z . After all, π is the most important object in the
RHp project (see the following section 7.4.4). Fortunately Hasse was able to
overcome this flaw, at least in the case of π, as he informed his friend shortly
after his return to Marburg. On 12. February 1934 he wrote:

“Hamburg was a full success from every point of view. I was
able to fill up the gap in my proof shortly after I wrote you how
depressed I was. The new proof is, as Artin meant, even more
adequate than the old would have been, were it consistent . . . ”

Hasse continued his letter with the explanation of his new arguments which
showed that π is algebraic, i.e., as an element in the endomorphism ring it
satisfies an algebraic equation with integer coefficients. From this he could
deduce that if π /∈ Z then, using Dirichlet’s Unit Theorem, the ring Z[π]
is imaginary quadratic since it contains finitely many units only. For, if
a normalized meromorphism induces a unit of M then it is necessarily an
automorphism of the function field F |K, and normalization means that it
leaves P∞ fixed. It is well known that there are only finitely many such
automorphisms of an elliptic function field. According to Dirichlet’s Unit
Theorem this can happen only if Z[π] is an order in an imaginary quadratic
field (or π ∈ Z).

But in the course of time Hasse abandoned this argument which is based on
the Dirichlet Unit Theorem, in favour of the above Norm Addition Theorem.

The idea for the Norm Addition Theorem came about through Davenport.
During the years 1934-35 many of their letters which they exchanged con-
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tained remarks on the structure of elliptic function fields in characteristic p .
Hasse often informed Davenport about his progress, and Davenport gave
his comments and sometimes also his own proofs. Davenport’s proofs were
of quite different style as Hasse’s since Davenport preferred explicit com-
putations with coordinates whereas Hasse tried to use abstract arguments
if possible. Davenport could never quite agree with Hasse’s dictum that in
mathematics not only the result is important but also its proof, and the way
how that proof is embedded into a more comprehensive theory.

During August and September of 1935 there were no letters between Hasse
and Davenport. For in that time Davenport stayed in Göttingen with the
Hasses. (By the way, in spring time that year Hasse had been in England
with Davenport.) Back in England, Davenport wrote to Hasse and sent his
“heartiest thanks for the splendid time in Göttingen”. This letter, dated
4. October 1935, started an exchange of particular high frequency: 20 letters
until the end of the year and many more thereafter. The dominant theme
was the proof of the RHp in the elliptic case.

Davenport informed Hasse that he had obtained the following formula for
Hasse’s norm:

(7.20) N (µ+ ν) ≤ 2N (µ) + 2N (ν) .

He had obtained it in the course of proving the commutativity and algebraic-
ity of the whole meromorphism ring M.(As to commutativity, Davenport’s
result turned out not to be correct and hence he had to modify it. Somewhat
later Hasse discovered the “supersingular” fields, which are elliptic function
fields of characteristic p with non-commutative ring of endomorphisms.)

In reply Hasse wrote on 21. November 1935 that this is a very remarkable
progress. He had tried to obtain Davenport’s inequality in his own way and
on the way found out that it can be improved to an exact equality, viz. the
norm addition formula. This, Hasse wrote, changed completely his approach
since it immediately provided the positive definite quadratic form. When
Hasse informed Davenport about it, the latter seems to have hesitated to
submit his own proof for publication, with the argument that it had already
been improved by Hasse. But Hasse protested; he wrote on 27. November
1935:

“My dear Harold, of course you must publish your proof! I have
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mentioned that you first had the idea of considering N (µ) as a
sort of absolute value and proved the algebraicity and commu-
tativity of normalized meromorphisms on this basis, in both my
preliminary paper for the Göttinger Nachrichten and my detailed
account for Crelle’s Journal. . . ”

Upon this Davenport decided to publish his paper, not in Crelle’s Journal
which Hasse had offered him but in the proceedings of the Cambridge Philo-
sophical Society [Dav36]. He had motivated this choice already in an earlier
letter dated 14. November 1935 as follows:

“As regards my proof of commutativity + algebraicity, I must
say that I should like to publish it in England . . . assuming it is
O.K. Firstly, because it is definitely in my interest at present to
publish as many moderately good papers in England as possible;
secondly because I should not like to see it buried (if you will
forgive the word) in a paper whose main emphasis will not be on
new results but on new exposition. You know my prejudice that a
new exposition is o(a new result).”

(The small o refers to Landau’s notation.)

This sounds quite harsh but it reflects the disagreement between Hasse and
Davenport concerning basic views on the presentation of mathematics. Many
years later, when Davenport was already established as one of the great
masters of Number Theory, he used to say that although he had learned a
great deal from Hasse, he had learned not nearly as much as he could have
done if he had been “less pig-headed”. This is reported by Halberstam in his
comments to Davenport’s Collected Works [Dav77].

Hasse himself said that he had got the idea of the Norm Addition Theorem
and its proof from the classic theory of complex multiplication. For, there
one knows how to find the poles and zeros of ℘(µz) − ℘(νz) where ℘(z) is
the Weierstrass ℘-function. In the algebraic situation one has to replace ℘(z)
by an element x in the function field with pole divisor P 2

∞ and then find the
prime decomposition of the element xµ− xν in F . It turns out that

(7.21) xµ− xν ∼=
P∞(µ+ ν)·P∞(µ− ν)

(P∞µ)2 ·(P∞ν)2
.
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(I am using Witt’s notation as explained on page 122. In particular, if we
write for brevity % = µ + ν then P∞% is a prime in the field F% , it is the
image of the prime P∞ under the meromorphism % . Since F% ⊂ F the
divisors of F% can be considered as divisors of F (conorm). – Remember
that the symbol “∼= ” indicates the decomposition of the element xµ − xν
into divisors of F |K.)

Since the principal divisor on the left hand side has degree 0, the Norm
Addition Theorem follows by comparing the degrees of numerator and de-
nominator on the right hand side.

Hasse’s algebraic proof of (7.21), valid in every characteristic, is given in
[Has36c]. It is straightforward but somewhat lengthy since a number of
special cases had to be treated separately. (For instance, when µ+ ν = 0 or
µ− ν = 0.)

The following result about the norm N (µ) is almost obvious:

The norm N (µ) equals the order of the kernel of µ as an endo-
morphism of the Jacobian – provided the algebraic field extension
F |Fµ is separable.

For, remember that N (µ) = [F : Fµ]. If µ(P ) = P0 then by definition
NF |Fµ(P ) = P0µ , which is to say that the prime P of F lies over the prime
P0µ of Fµ. Since the base field K is supposed to be algebraically closed,
there are precisely [F : Fµ] such primes P of F . Note that the separable
extension F |Fµ is unramified since both fields have genus 1.

Remark: A little closer look into the situation shows that the Galois group
of F |Fµ consists of the translation automorphisms τP where P belongs to
the kernel of µ. If F |Fµ is not separable then the same arguments apply to
the maximal separable intermediate extension. Hence the above statement
remains true if N (µ) is replaced by its separable part Nsep(µ) := [F : Fµ]sep.

7.4.4 The Frobenius operator

After developing all this machinery, Hasse finally comes to the point, i.e., to
the proof of RHp for elliptic function fields.
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The RHp is concerned with function fields over a finite base field. But in
the foregoing sections it was assumed that the base field K is algebraically
closed. Since I do not want to change notations at this point, let me denote
by Fq|Kq a function field with finite base field Kq of q elements. Let K
denote the algebraic closure of Kq and F = FqK the corresponding base field
extension of Fq|Kq. Note that the genus of Fq|Kq is the same as the genus
of F |K.

Every prime P of F |K is of degree 1. It induces in Fq a prime with residue
field FqP . The degree of that prime is [FqP : K]. The RHp to be proved is
concerned with the primes of degree 1 of Fq, i.e., for which FqP = K. We
have denoted the number of these primes by N .

One of Hasse’s basic discoveries was what today is called the Frobenius op-
erator belonging to Fq. Actually, the word “Frobenius” in this context was
introduced later only, perhaps by André Weil ? Hasse used to say simply
“meromorphism π”. Its definition is as follows:

F = FqK

mmmmmmmmmmmmmmm
π
��

Fq

q

��

F q = F q
qK

mmmmmmmmmmmmmmm

F q
q

K

lllllllllllllllll

Kq

Since Fq and K are linearly disjoint over Kq there is one and only one mero-
morphism π of F |K which in Fq induces the map x 7→ xq. (Note that raising
to the power q leaves the elements of Kq fixed.) We have Fπ = Fq

qK = F q

and hence

N (π) = [F : F q] = [Fq : F q
q ] = q .
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Let x ∈ Fq. We compute, using Witt’s notation (see (7.12), page 122):

(7.22) xπP = xqP = (xP )q

{
= xP if xP ∈ Kq

6= xP if xP /∈ Kq

(provided xP 6= ∞). We conclude that πP = P if and only if FqP = Kq,
i.e., if the induced prime of P in Fq is of degree 1. Thus, the number N of
primes of degree 1 of Fq equals the number of primes P of F which are fixed
by π, i.e. which are in the kernel of π − 1. Hence, using what I have said on
page 132 we conclude

(7.23) N (π − 1) = N

since π − 1 is separable.

Recall that π ∈ M is contained in an imaginary quadratic number field due
to the norm addition formula (see the lemma on page 128). This solves the
problem (7.4) on page 109. In this way Hasse had completely “knocked the
bottom” out of the RHp for elliptic fields, if I am allowed to use the words
of Mordell in his letter of 9. March 1933.

Today the notion of Frobenius operator is well established in arithmetic ge-
ometry when it comes to counting the number of rational points over a finite
field (of a curve or higher dimensional variety). But it seems not widely
known that and how Hasse had introduced it in this context. For, originally
the notion of “Frobenius map” had been coined for another situation, namely
for elements of the Galois group of an algebraic number field. I have indicated
on page 115 the relation between the notion of Frobenius automorphism in
algebraic number theory and Frobenius operator of function fields with finite
base fields.

Remark: The Frobenius map π is considered as a meromorphism of the
elliptic field F |K with K algebraically closed of characteristic p. But the
definition as given above depends on the choice of q and Fq|Kq and therefore
I should have written πq instead. The number q has to be chosen such that
there exists a function field Fq|Kq with base field extension F = FqK. The
equation (7.23) should be written as

(7.24) N (πq − 1) = Nq
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with Nq denoting the number of primes of degree 1 of Fq|Kq. If q is replaced
by qr and Fq by Fqr = FqKqr then πqr = πrq which is in accordance to Artin’s
general observation for arbitrary genus (see page 70).

The smallest q which can be chosen in this way is the number of elements of
the field Fp(j) where j = jF |K denotes the absolute invariant of the elliptic
field F |K. (For a discussion about invariants see section 8.4.1.)

7.5 Some Comments

7.5.1 Rosati’s anti-automorphism

The concept and proof of Hasse’s norm addition formula (7.18) was a formidable
task, considering that previously nothing was known about the arithmetical
structure of elliptic function fields in characteristic p . It constituted a fun-
damental step in Hasse’s proof the RHp in the elliptic case.

However, as we observe often also in other situations of mathematics, in the
course of later development the norm addition formula lost its importance
and was reduced to a side remark, at least for the proof of RHp in the elliptic
case. This is the consequence of the work of Deuring in his second paper on
correspondences [Deu40]. Deuring had discovered the algebraic version of
Rosati’s anti-automorphism µ 7→ µ′ of the ring M of endomorphisms. This
is obtained by interchanging F and E in the double field, see section 7.4.2.
In the elliptic case this satisfies

µµ′ = µ′µ = N (µ).

Since N (µ) > 0 if µ 6= 0, we see that µ 7→ µµ′ is a positive definite quadratic
form on M. In particular ππ′ = q and (π − 1)(π − 1)′ = (π − 1)(π′ − 1) =
N (π − 1) = N .

Actually, already in 1934 Hasse had had a similar idea, just before his lec-
ture in Hamburg in January. There is a letter of Hasse to Davenport dated
12. February 1934 where he explains in detail his ideas for his new proof.
There he constructed a meromorphism π′ with

ππ′ = q and π + π′ = q + 1−N .
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This however worked only in characteristic 6= 2, 3 since he heavily relied
on explicit and somewhat involved computations with Weierstrass normal
form. Perhaps his wish to obtain a complete and more lucid proof of what
he called “complex multiplication in characteristic p ” induced him not to
stop already in 1934 with the elliptic case. Surely he also wished to include
characteristics 2 and 3.

Summary

Parallel to his joint work with Davenport which I have discussed in the fore-
going chapter, Hasse investigated elliptic function fields F |K with finite base
fields K, with the aim of proving the RHp. He obtained his first proof in
early March 1933. For an elliptic field (or, equivalently, an elliptic curve) the
genus is 1 and hence F. K. Schmidt’s polynomial L∗(t) is quadratic. Artin’s
criterion requires that its discriminant is ≤ 0, i.e., its roots are imaginary
quadratic. Hasse’s first proof proceeds by lifting the given elliptic curve Γ over
K to a suitable elliptic curve Γ∗ defined over an algebraic number field and
admitting complex multiplication. By carefully controlling the lifting process
Hasse could achieve that the ring of multipliers of Γ∗ (which is a subring of
an imaginary quadratic field by the classical theory of complex multiplication)
contains an element π , such that its quadratic equation equals F. K. Schmidt’s
polynomial of the original function field F = K(Γ). The proof uses class field
theory within the theory of complex multiplication, in particular Artin’s reci-
procity law.

This first proof of Hasse was never published but preliminary announcements
appeared. From several documents of Hasse’s legacy the proof can be recovered
in all details. It is, however, not quite complete since for technical reasons
Hasse had to exclude some cases which he could not cover in the first attempt.
While writing up the manuscript for publication he tried to eliminate those
restrictions and during this activity he found a simpler proof, valid quite
generally, and working without detour over characteristic zero.

For the new proof Hasse had to algebraize the theory of complex multiplica-
tion, such as to become applicable to the case of finite base fields . He defines
the “multipliers” of an elliptic function field by what today is called “isogeny”
(but he uses the word “meromorphism”) of the elliptic function field. These
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form naturally a ring without zero divisors and of characteristic 0. Hasse
succeeds to find within this ring an element π, the so-called “Frobenius mul-
tiplier” which is a zero of F. K. Schmidt’s quadratic polynomial. The crucial
theorem is that this ring carries a positive definite quadratic form, showing
that π is imaginary quadratic. In later years Deuring could simplify Hasse’s
proof by using the so-called Rosati anti-automorphism of the ring of multi-
pliers, which he had defined algebraically for arbitrary function fields.
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Chapter 8

More on elliptic fields

While Hasse worked on the RHp for elliptic fields he and his team discovered
several properties of elliptic fields in characteristic p which were new and
important although they were not absolutely necessary for the proof of RHp.
In this chapter I am going to discuss some of them.

8.1 The Hasse invariant A

I have already mentioned the Hasse invariant A of an elliptic function field
F |K at former occasions. (See pages 110, 113.) Now here is Hasse’s defini-
tion:

Consider an elliptic function field F |K of characteristic p > 0 . It is as-
sumed that the base field K is algebraically closed. Let ω denote the integer
differential of F |K (“differential of the first kind”).

Remark: It just occurs to me that I have not yet discussed the notion of “dif-
ferential” in a function field. Today this belongs to the standard prerequisites
of the theory of function fields, and hence I may be allowed to use it freely
here. But in Hasse’s time the differentials were not yet firmly established as
algebraic objects. Hence Hasse had to write another paper where he defined
differentials algebraically and proved their relevant properties [Has34d]. In
particular he defined the local expansions of a differential, the divisor of a

143
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differential (which belongs to the canonical class), the residue of a differen-
tial at a prime P , and he proved the Residue Theorem which says that the
sum of these P -adic residues of a differential, for all P , vanishes (Cauchy’s
theorem). The integer differentials form a K-space of dimension g.

For an elliptic field F |K we have g = 1 and hence the integer differential ω
is unique up to a nonzero constant factor. ω has no zeros or poles. Choose
a prime divisor P of F |K. It does not matter which one since all primes are
conjugate under the automorphism group of translations. For instance one
can choose P as the prime P∞ which acts as zero element of the Jacobian
(see page 120). Consider the P -adic development

(8.1) ω = (c0 + c1t+ c2t
2 + · · · ) dt

with respect to a prime element t for P . The coefficients ci are in the base
field K, and c0 6= 0 since ω has no zero. If the base field would be of
characteristic 0 one could integrate∫

ω = c0t+
c1

2
t2 +

c2

3
t3 + · · · =: u

so that ω = du becomes an exact differential (locally at P ). But if the
base field K is of characteristic p > 0 this integration process is not possible
because of the appearance of p in the denominators of coefficients. Hasse
uses a certain approximation. He takes the following prime element u for P :

u := c0t+
c1

2
t2 +

c2

3
t3 + · · ·+ cp−2

p− 1
tp−1

i.e., he integrates as far as it is possible in characteristic p . Then

ω ≡ du mod P p−1(8.2)

ω ≡ (1 + Aup−1) du mod P p with A =
cp−1

cp0
∈ K .(8.3)

These congruences between differentials are to be understood locally, as dif-
ferentials in the P -adic completion of F . If u′ is another prime element for P
such that u′ ≡ u mod P p then one obtains the same constant A. If ω is re-
placed by c ω with 0 6= c ∈ K then A is replaced by c−(p−1)A. Thus A is not
really an invariant of the elliptic field but it is “homogeneous of dimension
−(p− 1)” as Hasse says. Since here K is assumed to be algebraically closed
we see that A can be normalized such that A = 1 or A = 0.
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After dividing by up it is seen from 8.3 that A appears as the coefficient of
u−1 in the expansion of the differential ω

up
. Thus A is its residue:

(8.4) A = resP

( ω
up

)
.

In terms of an arbitrary prime element t at P this can be written as

(8.5) A =
1

cp0
resP

(ω
tp

)

This is the original definition of A by Hasse in [Has34b]. I have found it
already in one of his letters to Davenport which is dated 5. November 1933.
It turned out to be important since it governs the structure of the endo-
morphism ring of the Jacobian in characteristic p . It has no analogue in
characteristic 0. In my opinion its discovery was a historic achievement.

But where and how did Hasse discover this invariant?

8.2 Unramified cyclic extensions of degree p

In his paper [Has34b] Hasse studied unramified cyclic extensions of degree p
of an elliptic function field. On this occasion he found:

Theorem A: Let F |K be an elliptic function field of character-
istic p with algebraically closed base field. There exists an un-
ramified cyclic extension F ′|F of degree p if and only if Hasse’s
invariant A 6= 0. If this is the case then F ′|F is unique.

The proof is simple and straightforward. Nevertheless I believe it is worth-
while to have a look at it.

The starting point of the proof is the observation that a cyclic extension F ′|F
of degree p is generated by an Artin-Schreier equation

(8.6) F ′ = F (y) , yp − y = z ∈ F ,
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as shown by Artin and Schreier [AS27a]. The element z in (8.6) is uniquely
determined up to a transformation

(8.7) z → z + (sp − s) with s ∈ F .

The second observation is that a prime P of F is unramified in F ′ if and
only if s in (8.7) can be chosen such that vP (z + sp − s) ≥ 0 . If P is a
pole of z then this implies that vP (z) ≡ 0 mod p. This was one result in
Hasse’s earlier paper [Has34e] on the arithmetic behavior of Artin-Schreier
extensions. I have already mentioned that paper in section 6.3.3 on page 99.

Let P1, . . . Pn denote the poles of z. If F ′|F is unramified then for each
Pi there exists si ∈ F with vPi(z + sPi − si) ≥ 0. By approximating the si
simultaneously we find s ∈ F such that vPi(z+sp−s) ≥ 0 for all i = 1, . . . , n.
We may also apply the Strong Approximation Theorem (“Chinese Remainder
Theorem”) to the Dedekind ring which is the intersection of all the valuation
rings OP ′ for P ′ 6= P , and find s such that vP ′(z + sp − s) ≥ 0 for all P ′

different from one fixed prime P chosen in advance. In other words: After
suitable choice we may assume that z in (8.6) has P as its only pole.

Let vP (z) = −r so that z ∈ L(P r). Again, P is unramified and hence
r ≡ 0 mod p. If r > p consider r/p > 1. By the Riemann-Roch Theorem
L(P r/p) is of K-dimension r/p and there exists s ∈ L(P r/p) with the precise
denominator P r/p. If s is suitably normalized by a factor from K then we
have that z + sp − s has pole order < r. Replacing z by z + sp − s and
repeating this process we may finally assume that r = p , i.e., vP (z) = −p .
Conclusion:

Every unramified cyclic extension F ′|F of degree p is generated
by an Artin-Schreier equation (8.6) where z has only one pole P
which may be fixed in advance, and vP (z) = −p. Moreover, there
exists s ∈ F such that

(8.8) vP (z + sp − s) ≥ 0.

This implies vP (s) = −1, hence s = c
u

+ · · · where 0 6= c ∈ K and u is the
P -adic prime element appearing in the definition of A above. We now have

z +
cp

up
− c

u
= a with vP (a) ≥ 0 .
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Multiplying with the integer differential ω and taking residues gives:

resP (ωz) + cp resP (
ω

up
)− c resP (

ω

u
) = resP (ωa).

Here,

resP (ωz) = 0 by the Residue Theorem for differentials,

resP (
ω

up
) = A by definition of A, see (8.4),

resP (
ω

u
) = 1 by definition of residue, see (8.3),

resP (ωa) = 0 since vP (ωa) ≥ 0.

It follows cpA− c = 0, hence A = c−(p−1) 6= 0.

Conversely, assume A 6= 0. Fix a prime P of F |K. Consider the module
L(P p) in the sense of the Riemann-Roch Theorem. Since F |K is elliptic, the
dimension of L(P p) is p . In fact, dimL(P i) = i for i ≥ 2. Choosing the
prime element u as above, every element z ∈ L(P p) admits an expansion of
the form

z ≡ cp
up

+
cp−1

up−1
+ · · ·+ c2

u2
+
c1

u
mod OP

with coefficients ci ∈ K . (OP denotes the valuation ring of P .) If vP (z) = −i
then ci 6= 0 while cj = 0 for j > i. Disregarding the last term c1

u
for a moment,

that expansion defines a surjection of K-modules

L(P p) −→
∑

0≤i≤p−2

K
1

up−i

with kernel K. Hence there exists z ∈ L(P p), uniquely determined modulo
K, which is the preimage of 1

up
. That is, z has the expansion

(8.9) z ≡ 1

up
+
c1

u
mod OP

with c1 ∈ K. Multiplying by the differential ω and taking residues as above
yields

(8.10) 0 = A+ c1 .
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This time we know that A 6= 0, hence c1 6= 0. Choose b ∈ K such that
bp−1 = −c−1

1 . Then (8.9) can be written in the form

bpz ≡ −sp + s mod OP with s = − b
u
.

Replacing z by bpz we see that (8.8) holds.

The uniqueness of the unramified cyclic extension F ′|F is seen by inspection
of the above proof which yields the element z unique modulo K.

8.2.1 The Hasse-Witt matrix

Although this Chapter 8 is devoted predominantly to elliptic function fields
let me briefly report here about the generalization of Theorem A to function
fields of higher genus. This is contained in the joint paper of Hasse and Witt
[HW36].

First I have to give the definition of A of a function field F |K of genus g > 0.
This time A will be a g× g matrix with coefficients in K. For simplicity the
base field K is assumed to be algebraically closed. Let ω = (ω1, . . . , ωg) be
a basis of the integer differentials of F |K. Let P1, . . . , Pg be different prime
divisors such that their product A = (P1P2 · · ·Pg) has dim(A) = 1. Such
divisor is called “non-special”. The existence of a non-special divisor can be
proved as a consequence of the Riemann-Roch Theorem, provided the base
field is infinite. (If not then there exists a finite base field extension which
carries a non-special divisor.) Developing each ωi with respect to a Pj-adic
prime element tj in the form:

ωi ≡
∑

0≤ν≤p−1

b
(ν)
i,j t

ν
jdtj mod P p

j ,

one obtains g × g matrices Bν = (b
(ν)
i,j ) with coefficients in K.

Definition : A = B−1
0 Bp−1 .

(Compare with (8.3) for g = 1). This matrix A is unique up to the substitu-
tion

A −→ SAS−p
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with a regular matrix S over K. In this connection Sp denotes the matrix
whose entries are the p-th powers of the entries of S (and not the p-th matrix
power).

A is called the “Hasse-Witt matrix” of the function field F |K. The main
result of Hasse and Witt is

Theorem A for arbitrary genus: Let F |K be a function field
of characteristic p of genus g > 0 with algebraically closed base
field, and A its Hasse-Witt g×g-matrix. The number of indepen-
dent cyclic unramified extensions of F equals the rank γ of the
matrix AApAp

2 · · ·Apg−1
.

In particular it follows γ ≤ g, and γ = g if and only if detA 6= 0.

The Hasse-Witt matrix A has been later investigated in more detail, e.g., by
Ju. I. Manin [Man65] .

8.3 Group structure of the Jacobian

Hasse’s main idea for his second proof of RHp was the algebraic definition
and investigation of the endomorphism ring of the Jacobian of a function field
F |K. In this connection it is understandable that one of the first questions
which came up was about the group structure of the Jacobian group J itself
– although in retrospective it turned out that this is not really necessary for
the proof of the RHp.

Suppose for simplicity that the base field K is algebraically closed.

Algebraically the Jacobian J of a function field F |K is defined as
the group C0 of divisor classes of degree 0.

In the framework of algebraic geometry J carries a unique structure of abelian
variety whose dimension is g, the genus of the function field. But in the
present context it will suffice to consider J as a group only.
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Consider a function field F |K of genus g = 1, i.e., F |K is elliptic. The
base field is assumed to be algebraically closed. Let Jfin be the group of the
elements in the Jacobian which are of finite order. (If the base field K is the
algebraic closure of a finite field then Jfin = J .) First note that J and hence
Jfin is a divisible group. In fact, for every meromorphism µ : F → Fµ ⊂ F
the induced map µ : J → J is surjective with finite kernel. (Compare the
definition (7.11) on page 122.)

Let hn denote the number of the elements in Jfin whose order divides n. In
the classical case when K = C is the complex number field it is known that

(8.11) hn = n2

for all natural numbers n. The exponent 2 is due to the fact that the periods
of integrals form a 2-dimensional lattice w which in turn mirrors the homol-
ogy of the corresponding Riemann surface of genus 1. The Jacobian group J
is isomorphic to the factor group C/w which is isomorphic to R/Z × R/Z
(see section 7.3). This implies (8.11) for all n .

Does (8.11) also hold for elliptic function fields F |K of characteristic p > 0 ?

Hasse had early investigated this question. On 6. October 1933 he wrote to
Davenport:

“I have proved that the automorphism group given by the Addition
Theorem is of ‘dimension 2’.”

Here Hasse refers to the group of translation automorphisms of the elliptic
field F |K. (See page 123.) By definition this group is isomorphic to the Ja-
cobian J of the function field. Hasse puts ‘dimension 2’ in quotes in order to
indicate something like (8.11), but not quite the same since the prime num-
ber p (the characteristic) behaves differently than the other primes. Hasse
writes that

“J fin is isomorphic to the additive group of all pairs (r1, r2) of ra-
tional numbers with denominator prime to p , considered mod 1.”

In other words: He claims that (8.11) holds for those n which are prime to the
characteristic p , whereas hn = 1 if n is a power of p. This statement however,
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written on 6. October 1933, turned out not to be correct with respect to the
contribution of the characteristic p . Soon Hasse discovered that there do
exist elliptic function fields F |K , the Jacobians of which admit non-trivial
elements of p-power order. He explains this to Davenport in his letter of
5. November 1933. He gives to Davenport the definition of the invariant A
in the way I have done it in section 8.1. And Hasse remarks that for q = 5
and F = K(x, y) given by the Weierstrass normal form

(8.12) y2 = 4x3 − g2x− g3 with ω =
dx

y

one has A = g2. Hence both cases A = 0 and A 6= 0 are possible. In the
published paper [Has36c] he states the correct general result:

(8.13) hn =


n2 if n 6≡ 0 mod p

n if n = pr and A 6= 0

1 if n = pr and A = 0

Thus again, the Hasse invariant A comes into the play, it governs the group
structure of the p-part of the Jacobian.

The relations (8.13) are an immediate consequence of Hasse’s norm addition
formula (7.4.3). For, let µn denote the meromorphism inducing in J the
multiplication by n. The norm addition formula implies [F : Fµn] = n2. If
n 6≡ 0 mod p then F |Fµn is separable and therefore [F : Fµn] equals the
order of the kernel of µn in J , i.e., n2 = hn (see page 132).

If n is a power of p then hn equals the separability degree of F |Fµn (see
page 132). It suffices to discuss the case n = p since then (8.13) for n = pr

follows by induction. (Recall that C0 is divisible.) We have to use Hasse’s
Theorem A of the foregoing section. Fµp is isomorphic to F and hence
there exists at most one cyclic unramified subextension of F |Fµp of degree p.
This implies that F |Fµp is inseparable. If the separability degree is p then
there exists a cyclic unramified subextension of F |Fµp and hence A 6= 0 by
Theorem A. And conversely.

The statement (8.13) is to be found in ([Has36c]) which contains Hasse’s final
proof of the RHp. That paper is divided into three parts with the following
title and subtitles:
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On the theory of abstract elliptic function fields.

I. The structure of the divisor classes of finite order.

II. Automorphisms and meromorphisms. The Norm Addition Theorem.

III. The structure of the ring of meromorphisms. The Riemann hypothesis.

The statement (8.13) and a proof of it are contained in Part I. But Hasse’s
proof which I have presented above uses the Norm Addition Theorem, and
that comes later in Hasse’s trilogy, namely in Part III. So why did Hasse
publish two different proofs, one in Part I and a second one in Part III ? The
following words in the introduction to Part I provide an explanation. Hasse
wrote there:

“At present I am not sure whether the proof in this first part, based
mainly on computations, can perhaps be entirely omitted. But for
the time being I cannot do without it in certain arguments in the
next parts.”

This suggests that at the time when Hasse had finished Part I the other parts
were not yet complete. In fact, the manuscript for Part I had been submitted
to Crelle’s Journal on 16. October 1935 whereas Hasse had discovered his
norm addition formula later, namely on 20. November 1935 according to his
letter to Davenport the following day. (See page 130.) Hasse wrote that he
had found the norm addition formula “to my own great surprise.”

It appears that Hasse quickly rewrote his Part III and based it on the Norm
Addition Theorem but left Part I unchanged since it had been submitted
already. The manuscript for Part III was submitted on 22. November 1935
– two days after Hasse had found the norm addition formula. This hurry
may be explained in part by the fact that Hasse wanted his proof of the RHp
to appear prior to the International Congress in Oslo which was scheduled
in September 1936. For he had been invited to give an 1-hour talk in Oslo
about his results on the RHp.

Thus the proof of (8.13) given in Part I is to be considered as being superseded
by application of the norm addition formula.
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Remark: For function fields F |K of arbitrary genus g ≥ 1 the formula (8.13)
reads:

(8.14) hn =


n2g if n 6≡ 0 mod p

ng if n = pr and the Hasse-Witt matrix A is regular

nγ with γ < g else.

Here γ ≤ g is determined by means of the Hasse-Witt matrix A as described
in section 8.2.1. The case n = pr in (8.14) follows (by class field theory) from
the result of Hasse-Witt and was known at least since the appearance of their
paper [HW36]. However the case n 6≡ 0 mod p seems not to have been known
yet at the time. Of course it was well known in the classical case due to the
analytic theory of integrals and their periods. But an algebraic proof which
would apply for every characteristic was not yet available. Hasse suspected
its validity and I am quite sure that he tried to find a way how to prove it
since he had settled it for the case g = 1. Today we could lift the function
field F |K to characteristic 0 such that it becomes a good reduction in the
sense of Deuring. Then we have to observe that the divisor classes of order
6≡ 0 mod p are mapped injectively under good reduction. But this argument
had not been available at the time. Perhaps Hasse finally did not care too
much about it since his experience in the elliptic case had shown that the
RHp could be proved without knowing the group structure of the Jacobian.
The essential feature is the structure of the ring of endomorphisms of the
Jacobian which, as he had shown in the elliptic case, carries a positive definite
quadratic form given by the “Norm Addition Theorem” (page 127). Now
Hasse’s investigations concentrated on constructing such a positive definite
form also in the case of higher genus (see page 191).

8.3.1 Higher Derivations

I have said that Hasse’s proof of (8.13) had been superseded by the Norm
Addition Theorem. Nevertheless the method developed by Hasse for the
proof in Part I is of historic interest. Namely, Hasse worked with so-called
“differential determinants”. Such determinants had been commonly used in
the classical case in characteristic 0. (Hasse refers to the book by Hensel and
Landsberg [HL02].) But they do not work in characteristic p . Hasse had to
modify the theory such as to be applicable also in characteristic p . To this
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end he wrote a separate paper about higher derivations in characteristic p
[Has36a]. The date of submission of that paper is given as 15. October 1935
– one day before he submitted Part I.

Let F |K be a function field. An additive K-map D : F → F is called a
derivation if

(8.15) D(yz) = yD(z) +D(y)z .

In characteristic 0 one iterates. Let Di denote the i-th iteration of D. If
M ⊂ F is a K-module with basis y0, . . . , yn−1 the differential determinant

(8.16) ∆(M) := det

∣∣∣∣∣∣∣∣
D0(y0) D1(y0) · · · Dn−1(y0)
D0(y1) D1(y1) · · · Dn−1(y1)
· · · · · · · · · · · ·

D0(yn−1) D1(yn−1) · · · Dn−1(yn−1)

∣∣∣∣∣∣∣∣
is sometimes called the “Wronski determinant” of M . It is independent of
the choice of basis up to a constant factor c ∈ K.

But in characteristic p > 0 this is not much useful since the p-th iteration
Dp annihilates every power yk with k ≥ p. Therefore Hasse introduced
a modified notion of higher derivation. Hasse replaced the i-th iteration

Di by
1

i!
Di. Changing notation and calling this again Di the determinant

(8.16) with the new Di turns out to be useful also in characteristic p > 0.
More precisely, a system Di of K-linear maps F → F (i = 0, 1, 2, . . .) with
D0(x) = x is called a “higher derivation” if

Di(xy) =
∑

0≤j≤i

Dj(x)Di−j(y)(8.17)

Di(x) =

(
i

j

)
DjDi−j(x) if j ≤ i .(8.18)

(Nowadays this is called a “hyperderivation”.) Formula (8.17) is the analogue
for the newDi of the well known “Leibniz rule” for the 1

i!
Di in characteristic 0.

Formula (8.18) is just the analogue of the iteration rule for the old Di. Of
course, it is required in addition that the elements c in the base field K are
“differential constants” in the sense that Di(c) = 0 for all i > 0.
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If x ∈ F is a separating element then there exists one and only one higher
derivation Di

x(y) of F |K (in the new sense) such that

D1
x(x) = 1 and Di

x(x) = 0 for i > 1.

This is the analogue to
1

i!

diy

dxi
in characteristic 0. If t is another separating

element then one can express Di
t(y) by the Dj

x(y) and the Dj
t (x) for (j ≤ i).

This is called the “chain rule”. I do not write down the explicit formulas
for the chain rule; they are obtained from the ordinary chain rule in char-

acteristic 0 by replacing the operators
1

i!

di

dxi
by the new Di

x and similarly

for Dj
t .

The essential fact which Hasse had observed is that with these differential
determinants (8.16) in the new sense one can work quite in a similar way as
with the Wronski determinants in characteristic 0.

In his Part I [Has36c] he considers the case of an elliptic function field F |K
with algebraically closed base field. The elements of the Jacobian J are
represented by the prime divisors P of F |K. (See page 120). In order to
prove (8.11) Hasse shows that the primes P 6= P∞ annihilated by n are
contained in the numerator of the differential determinant for the module
L(P n

∞), the K-module of multiples of P−n∞ . (Remember: P∞ denotes the
prime of F |K which represents the zero element of the addition of points.)
By a detailed study of the prime decomposition of this determinant he gets
(8.13).

Today it seems not to be widely known that the theory of higher derivations
in characteristic p had been developed by Hasse just for the purpose of his
proof of (8.13) in Part I. Hasse reveals to us how he got the idea to use those
differential determinants. He says in [Has36c]:

“Here I am employing a method which is well known from the
theory of Weierstrass points, namely the use of differential de-
terminants . Thereby I am relying on the theory of higher differ-
entials which is freed from restrictions due to the characteristic,
as developed in the foregoing article.” (Hasse refers to his paper
[Has36a].)
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Hasse’s foundation of higher differentials was later simplified and generalized
by Teichmüller [Tei36], and once more by F. K. Schmidt [Has37c] who devel-
oped the theory for arbitrary fields of characteristic p. Moreover F. K. Schmidt
used these new differential determinants to develop the theory of Weierstrass
points for function fields of genus > 1 in characteristic p [Sch39]. He found
the situation quite different from the classical case in characteristic 0. As to
the latter he, like Hasse, refers to Hensel–Landsberg [HL02] in characteris-
tic 0.

8.4 The structure of the endomorphism ring

After Hasse had proved the RHp for elliptic fields he was working on function
fields of higher genus and left the elliptic case aside. But Deuring continued
the work on the elliptic case, which he published in a series of papers between
1940 and 1949. (For biographical facts on Deuring see section 9.2.1.) He
determined completely the structure of the endomorphism ring of elliptic
function fields. It appears appropriate to report here already about these
results although this means a jump in time from 1935 to the 1940s. In
between Deuring delivered two other important papers towards the RHp for
function fields of genus g > 1, these will be discussed in the next chapter.

As above, F |K denotes an elliptic function field with base field K alge-
braically closed of characteristic p , and let M denote the ring of endomor-
phisms of its Jacobian J . Hasse had proved that M has no zero divisors and
is of characteristic 0. Every element µ ∈ M satisfies a monic quadratic equa-
tion over Z with constant term N (µ) > 0. (See section 7.4.3.) Consequently,
its field of quotients Quot(M) is of one of the three following types, and M
consists of integers in this field:

I. Quot(M) = Q.

II. Quot(M) is an imaginary quadratic number field over Q.

III. Quot(M) is a definite quaternion algebra over Q.

Whereas the appearance of types I and II was familiar from the theory of
complex multiplication in characteristic 0 already, type III appears in char-
acteristic p > 0 only. Hasse comments in [Has36b] on this as follows:
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“The example p = 3, y2 = x3− 2x− 1 shows that type III does in
fact occur.”

But Hasse didn’t say more. The available evidence points to the conclusion
that Hasse at that time did not know much more about type III, besides this
example and maybe some others.

8.4.1 The supersingular case

Deuring in his 1941 paper on endomorphism rings called the fields with en-
domorphism ring of type III “supersingular”. His motivation for this termi-
nology was as follows:

In the classical case, when the base field K = C is the field of complex
numbers, any elliptic function field F |C can be generated by an equation of
Weierstrass form (7.5). Let

(8.19) j = 123 g
3
2

∆
, ∆ = g3

2 − 27g2
3

be the invariant of F |C. It is well known that F |C is uniquely determined (up
to isomorphisms) by j, and that every j ∈ C is the invariant of some elliptic
field F |C. Now, in the classical case the invariant j was called “singular” if
the endomorphism ring of the corresponding elliptic field is an order in an
imaginary quadratic field, i.e., of type II. From classical complex multipli-
cation it was known that these singular invariants j are algebraic numbers,
and they are abelian over the corresponding imaginary quadratic field. Thus
they are very special complex numbers. Classically the terminology “singu-
lar” expresses the fact that these numbers are quite special, in contrast to
the “general” case in which j may be a “general” complex number and the
ring of endomorphisms is Z.

In characteristic p > 0, Deuring used essentially the same terminology. He
called an elliptic field F |K (or its invariant j) “singular” if the endomorphism
ring is of type II. But in characteristic p > 0 the endomorphism ring may
be even larger, namely non-commutative of type III. These fields, or their
invariants, are somewhat more singular than the others, and so Deuring called
them “supersingular”.
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This was the motivation for Deuring to introduce the word “supersingular”.

As to the invariant j of an elliptic function field of prime characteristic p , it
is defined for p > 3 by the same formula (8.19) as above. Note that for p > 3
every elliptic function field F |K admits a Weierstrass normal form (7.5) (if
K is algebraically closed). I will discuss below the definition of the invariant
in characteristics p = 3 and p = 2 .

In his paper [Deu40] Deuring shows that if j is supersingular then the
p-torsion of the Jacobian vanishes. We know that this is equivalent to the
vanishing of the Hasse invariant A, see (8.13). But it was not yet clear
whether, conversely, A = 0 would imply j to be supersingular. This is in-
deed the case, and it is one of various results which Deuring proved in his
long 1941 paper on endomorphism rings for elliptic fields [Deu41a].

Hasse was well aware of the fact that the abstract definition of A as given
in section 8.1, would be of no use if one could not compute his invariant A
directly. In principle, of course, this can be done by computing the coefficients
of the expansion (8.1). For this purpose, one has to start with an explicit
expression of the integer differential ω. Suppose for the moment that p > 3
so that F can be generated in the form F = K(x, y) with x, y related by an
equation in Weierstrass normal form (7.5). Then the integer differential ω
can be chosen as ω = dx

y
. Expanding this at the point at infinity with respect

to the prime element t = −2x
y

we get the coefficients ci in (8.1) as functions

of the coefficients g2, g3 in (7.5). Now, Hasse in his 1934 paper on unramified
cyclic extensions [Has34b] had found that A can be put into the following
form, where ∆ denotes the discriminant and j the invariant (8.19):

If p > 3 the Hasse invariant A defined by (8.3) is of the form:

(8.20) A =


∆

p−1
12 P (j) for p ≡ 1 mod 12

g2 ∆
p−5
12 P (j) for p ≡ 5 mod 12

g3 ∆
p−7
12 P (j) for p ≡ 7 mod 12

g2g3 ∆
p−11
12 P (j) for p ≡ 11 mod 12

where P (X) is a polynomial, depending on p only, with coefficients in the
prime field Fp , of degree at most equal to the exponent of ∆ in the formula.

But Hasse adds:
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“I suspect that P (X) is always of this degree. But the preced-
ing arguments do not even show whether P (X) is never identical
zero.”

It is with this question that Deuring begins in his 1941 paper on endomor-
phism rings [Deu41a]. There he proves the following

Theorem:

1. The relation A = 0 is not only necessary but also sufficient
for j to be supersingular.

2. As conjectured by Hasse, the polynomial P (X) has precisely
the degree which is given by the exponent of ∆ in the for-
mulas (8.20), and its roots are mutually different. Con-
sequently, the number of supersingular invariants j equals
that degree, plus one additional invariant in the cases p ≡
5, 7 mod 12 and two additional invariants if p ≡ 11 mod 12 .
These additional invariants correspond to the cases g2 = 0
(hence j = 0) and g3 = 0 (hence j = 123) respectively.

3. Supersingular invariants j satisfy jp
2

= j, hence they are
contained in Fp2, the quadratic extension of the prime field
Fp. (Ogg has later proved that there are precisely 15 primes
for which all supersingular invariants are contained in Fp
already: 2 ≤ p ≤ 31 and p ∈ {41, 47, 59, 71}. See [Ogg75]
and also [Mor07].)

4. If j is supersingular then the corresponding endomorphism
ring M is isomorphic to a maximal order in the quaternion
division algebra H∞, p which is ramified at ∞ and p only.
Conversely, every maximal order in H∞, p appears as the en-
domorphism ring M for some supersingular invariant. If the
prime ideal of p in M is principal then there is exactly one
supersingular invariant j belonging to M, and j is contained
in the prime field Fp. If not, then there are exactly two such
supersingular invariants j, they are contained in Fp2 and
they are conjugate to each other.

5. The number of supersingular invariants equals the class num-
ber of H∞,p .
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In addition, Deuring writes down an explicit formula for the polynomial P (j)
which, he says, is useful to compute the values of the supersingular invariants
for small p .1 In fact, his paper contains a list of all supersingular invariants
for primes p < 100. (In the paper [BM04] the authors state that they have
checked the entries in Deuring’s table and found only two errors, for p = 73
and 97.)

These results on the supersingular case are very precise and complete. Al-
though in our discussion we had assumed p > 3, it turns out that the theorem
holds also in characteristic p = 3 and p = 2, except of course its second sec-
tion which refers to the Weierstrass normal form (7.5). The definition of the
invariant j for p = 2 and p = 3 is as follows:

Classically, besides the Weierstrass normal form there is another normal form,
called Legendre’s, which is as follows:

(8.21) y2 = x(x− 1)(x− λ) with λ 6= 0, 1 .

Then

(8.22) j = 28 (1− λ(1− λ))3

λ2(1− λ)2

This works also in all prime characteristics p ≥ 3.

Referring to the Legendre normal form, Deuring gives a formula for the
computation of the Hasse invariant A by means of the parameter λ, namely:

(8.23) A = (−1)
p−1
2

∑
0≤i≤ p−1

2

(p−1
2

i

)2

λi .

For p = 3 this reduces to A = −(1 + λ) and we see that this vanishes for
λ = −1 only which gives j = 0 in characteristic 3. Thus in characteristic 3

1The investigation of those polynomials for the supersingular invariants has produced
a number of highly interesting papers, some of them connecting to the theory of modular
forms. See, e.g., the list of references in [Mor06]. I would like to thank Patrick Morton for
pointing out to me that those papers arose from the interest generated by Deuring’s paper.
In particular the question of determining directly the number of roots of P (j) was solved,
which Deuring could solve only indirectly by means of Eichler’s class number formula for
quaternions [Eic37].
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there is only one supersingular invariant, j = 0. This belongs to the example
which Hasse had found in characteristic 3 and which we have mentioned on
page 152.

In characteristic 3 it is sometimes easier to work without Legendre’s normal
form, and use instead two possible normal forms in the style of Weierstrass:

(8.24) y2 =

{
x3 − x2 − g3 if j = g−1

3

x3 − x if j = 0 .

In characteristic 2 the situation is quite different. Before Deuring, there did
not exist a definition of an absolute invariant j of an elliptic function field F
of characteristic 2. In this case he obtained the normal forms

(8.25) y2 − y =

ax2 +
1

ax
with a 6= 0

x3

and Deuring defines j = a or j = 0 respectively in these cases.

8.4.2 Singular invariants

In his 1941 paper Deuring also treats singular invariants in characteristic p,
i.e., those invariants where the endomorphism ring is an order in an imaginary
quadratic field. Perhaps, from a systematic point of view I should have
reported about the singular case first before discussing the supersingular
case. But I have decided to start with the supersingular case because those
results are particularly interesting in view of the fact that non-commutative
endomorphism rings do not appear in the classical case and hence represented
new discoveries in the 1930s.

Deuring’s results on singular invariants are as follows. Recall that F |K is
assumed to be an elliptic function field of characteristic p > 0 with the base
field K algebraically closed. Again, j denotes the absolute invariant of F |K
and M its endomorphism ring.

Theorem:
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1. j is singular if and only if it is absolutely algebraic (i.e.,
algebraic over the prime field Fp) and A 6= 0 .

2. If j is singular then the corresponding endomorphism ring
M is isomorphic to an order in an imaginary quadratic field
K = Quot(M) with the following specifications : p splits in
K into two different prime ideal factors, and the conductor
of M is prime to p. Conversely, every order M of an imag-
inary quadratic field K with these properties appears as the
endomorphism ring belonging to some singular invariant j
in characteristic p. The number of singular invariants be-
longing to M equals the class number of M.

3. Let p denote one of the two prime ideal factors of p in M.
If f is the order of p in the class group of M (i.e., f is
the first exponent such that pf is a principal ideal) then j is
of degree f over the prime field, i.e., Fp(j) = Fpf . The f
conjugates of j are also singular invariants belonging to the
same endomorphism ring M.

Recall that the conductor of M is defined to be the smallest positive number
m ∈ Z such that every integer α ∈ K with α ≡ 1 mod m is contained in M. It
is well known that M is uniquely determined by m, and consists of all integers
α ∈ K which are congruent modulo m to some a ∈ Z. The (fractional) ideals
of M which are relatively prime to the conductor form a group. The class
group (modulo principal ideals) is finite, and the number of its elements is
the class number of M.

Whereas in characteristic 0 every order in an imaginary quadratic field is the
endomorphism ring of some elliptic function field, Deuring had discovered
that in characteristic p > 0 this is not so. The restriction concerns the be-
havior of the characteristic p as an ideal in M . This is the result of Deuring’s
detailed study of the `-adic representation of M for every prime number `
including ` = p when the representation is 1-dimensional.

The remaining invariants in characteristic p > 0, i.e., those which are neither
singular nor supersingular, are the transcendental ones. They are precisely
the invariants with endomorphism ring M = Z.
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8.4.3 Elliptic subfields

I will not give here a detailed report on Deuring’s proofs of the above cited
two theorems. These proofs, although not particularly difficult, are some-
what roundabout and not straightforward. But I wish to present here the
main ideas of Deuring because they are quite remarkable. Moreover they are
essential tools for Deuring’s further investigations concerning the algebraic
foundation of classical complex multiplication (starting 1949 in the Ham-
burger Abhandlungen [Deu49]).

One of those main ideas is to study the elliptic subfields of the given elliptic
field F |K.

Recall that for 0 6= µ ∈ M we have denoted by Fµ the image of F under the
normalized meromorphism µ. (See page 122.) Now, if 0 6= a ⊂ M denotes
any left ideal of M, let Fa denote the field theoretic compositum of all Fµ
with µ ∈ a. This is an elliptic subfield of F . Deuring showed:

The field degree [F : Fa] equals the norm N (a) of the ideal a. The
Galois group of F |Fa consists of all translation automorphisms
τP with P in the kernel Ja ⊂ J of the ideal a. The endomorphism
ring of Fa is the right order of a in M.

Since F may be inseparable over Fa, the Galois group is to be interpreted
as the Galois group of the maximal separable subextension. The right order
of a consists of all elements ρ in the quotient field of M for which aρ ⊂ a.

These theorems exhibit a close relationship between the subfield structure
of F and the ideal structure of its endomorphism ring M. Moreover:

If F is supersingular then every elliptic subfield of F is of the
form Fa for some left ideal a ⊂ M.

This turns out to be the main reason for the validity of the theorem in section
8.4.1 in the supersingular case (page 155).

In the singular case there are more elliptic subfields. Note that every elliptic
subfield F ′ ⊂ F defines (by means of the norm NF |F ′) an endomorphism
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from the Jacobian J(F ) to the Jacobian J(F ′). The field F ′ is uniquely
determined by the kernel of this endomorphism, together with the degree
of inseparability of F |F ′. The kernel is a finite subgroup of J(F ), and the
translation automorphisms τP with P in this kernel constitute the Galois
group of F |F ′. Conversely, given any finite subgroup of J(F ) the transla-
tion automorphisms belonging to this subgroup determine a subfield F ′ of F
consisting of the elements fixed by those automorphisms; this is an elliptic
subfield of F , as well as any purely inseparable subfield of F ′.

Based on these facts, combined with a detailed study of the local represen-
tations of M (including the p-adic representation for the characteristic p),
Deuring shows:

Suppose F is singular, i.e., M is an order in an imaginary quadratic
field K. If F ′ ⊂ F then the endomorphism ring M′ of F ′ is an
order in the same field K. Conversely, any order M′ of K is the
endomorphism ring of some elliptic subfield F ′ ⊂ F – provided
that M′ satisfies the condition set forth in the theorem of section
8.4.2, i.e., the conductor of M′ is prime to the characteristic p.

The above result is used by Deuring for the existence proof of singular el-
liptic fields F in characteristic p with prescribed endomorphism rings in a
given imaginary quadratic field K. For, by the above result he needs only to
construct one elliptic field F with an endomorphism ring being contained in
K; then among its elliptic subfields there will appear one with the prescribed
order in K. Of course, K has to satisfy the condition set forth in the theorem
of section 8.4.2, namely that p splits in K in two different prime ideals. And
the prescribed order has to have conductor prime to p .

8.4.4 Good reduction

In characteristic 0 it is well known from analytic uniformization that every
order M in an imaginary quadratic field is the endomorphism ring of some
suitable elliptic function field. One has to view M as a 2-dimensional lattice
in C and then take F to be generated by that Weierstrass function ℘(u)
which has period lattice M, and its derivative ℘′(u).
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In characteristic p one has to assume that M satisfies the specifications set
forth in the theorem stated in section 8.4.2. But there is no direct way yet
of proving the existence of an elliptic field F with a given such M as its
endomorphism ring – except to construct F as a good reduction of a suitable
function field in characteristic 0. In order to be able to do this, Deuring had
to establish the necessary tools from the theory of good reduction.

More precisely, he had to develop the theory of good reduction since until
that time no systematic way of reducing curves was known. It is true that
Hasse in his first proof already used the idea of lifting an elliptic curve in
characteristic p suitably to characteristic 0 and then studying the behavior
of the lifted curve by reducing it again. But he had no general theory of re-
duction at his disposal; therefore he had to check directly every detail in the
reduction process. Since he relied on explicit computations with generating
equations, this resulted in several restrictions which he had to impose, e.g.,
the characteristic should be p > 3, and the invariant j of the elliptic curve
should have odd degree over Fp. (See section 7.3.) But also in Hasse’s second
proof which works solely in characteristic p , he had to use several construc-
tions which today we would subsume under the theory of good reduction.
(See section 7.4.2.)

Now, Deuring wished to systematize all those arguments by a general theory
of good reduction; he did it in his 1942 paper [Deu42]. Although that paper
appeared one year later than his 1941 paper [Deu41a] on endomorphism
rings, it was completed at the same time, and Deuring relies on it in his 1941
paper. What are the main results which Deuring had achieved?

Deuring’s theory of good reduction refers to the following situation: Given an
algebraic function field F |K (or curve) whose base field K is equipped with a
prime p, i.e., valuation, or place. The characteristic of K may be 0 or p > 0.
Deuring assumed that the valuation is discrete but a straightforward check
shows that this assumption is not really necessary. p can be any valuation,
or place, in the general sense of Krull. Accordingly we may keep our general
assumption that the base field K is algebraically closed, whereas Deuring
worked with discrete valuations only and therefore had often to perform
a finite extension of the base field in order to ensure the validity of his
argument. The residue map (place) of K belonging to p is denoted by z 7→ zp.
We also write z instead of zp.
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Suppose that p can be extended to a place P of F with the following prop-
erties:

1. The residue field F = FP is an algebraic function field with base field
K = Kp.

2. There exists a separating element x ∈ F such that x = xP is transcen-
dental over K and [F : K(x)] = [F : K(x)].

3. The genus of F equals the genus of F .

(Recall that we have assumed K and hence K to be algebraically closed.
Much of Deuring’s theory remains true without this assumption; then one
has to add the condition that F |K and F |K are conservative, i.e., their genus
should be preserved under extensions of the base field.)

In the above situation F |K is called a “good reduction” of F |K at p. Ac-
tually, Deuring did not use the terminology of “good reduction” which was
introduced later. Deuring spoke of a “regular reduction”, and P was called
a “regular extension” of p to F . For a given F |K, almost all primes p of K
(i.e., all but the poles of finitely many elements) admit a regular extension P

to F . Deuring in [Deu42] did not yet know that the regular extension P of
p, if it exists, is unique if the genus of F |K is > 0. For genus g = 1 he proved
it later in [Deu55], and for arbitrary g > 0 this was shown by Lamprecht
[Lam57]. In the following let us assume that g > 0 .

If F |K is a good reduction of F |K in the above sense then this leads, accord-
ing to Deuring, to a “reduction map” of the divisor group Div(F |K) to the
divisor group Div(F |K) such that the relations between divisors, elements
and divisor classes are preserved. In particular this means that integer di-
visors are mapped to integer divisors, the image of a divisor has the same
degree as the divisor itself, principal divisors are mapped to principal divi-
sors, etc. More precisely, if A is a principal divisor in Div(F |K), say A = (z)
with 0 6= z ∈ F then z can be normalized by a factor from K such that
its residue z = zP 6= 0,∞, and then the image A of A equals the principal
divisor (z).

(Deuring’s theory of good reduction was later generalized by Shimura [Shi55],
in the framework of algebraic geometry to varieties of arbitrary dimension.)

This being said, Deuring in his 1941 paper on endomorphism rings shows:
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Suppose F |K to be elliptic. Then:

(1) F |K admits good reduction at p if and only if its invariant
j is p-integer, i.e., jp 6= ∞. If this is the case then the absolute
invariant of F |K is the image j = jp ∈ K.

(2) If F |K admits good reduction at p then there is a natural
isomorphism µ 7→ µ of the endomorphism ring M of F into the
endomorphism ring M of F such that µP = µP for any point P
of F and its reduction P of F .

M may be identified with its image in M so that

M ⊂ M ,

and then the formula in (2) appears as

µP = µP .

M may be larger than M. If F is singular then F is either singular or super-
singular. If both F and F are singular then M and M have the same quotient
field. If in addition M is a maximal order in its quotient field then M = M.

The following theorem can be used to lift an elliptic function field from
characteristic p to characteristic 0.

Theorem: As above, suppose K equipped with a place p, and
let K = Kp be its residue field. Let F |K be a given elliptic
function field, and µ one of its endomorphisms. Then there exists
an elliptic function field F |K admitting F |K as a good reduction
modulo p such that its endomorphism ring M contains µ.

In other words: The elliptic function field F |K, equipped with a given endo-
morphism, can be lifted from the residue field K to K.

This is an important result. It explains and systematizes Hasse’s procedure
in his first proof of the RHp (see section 7.3). Consider the situation of the
RHp, i.e., an elliptic curve defined over a finite field with q = pr elements
(see section 7.4.4). Hasse, in his first proof not yet being aware of the no-
tion of Frobenius operator on the Jacobian, succeeded somehow to lift the
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elliptic function field to characteristic 0 such that after lifting, q splits in the
endomorphism ring into two factors, one of them called π. Using class field
theory and reduction modulo a prime divisor of p , Hasse verified that this π
has the properties which we now use to define the Frobenius operator.

8.5 Class field theory and complex multipli-

cation

Deuring’s proof of the above theorem contains an interesting detail. In order
to lift an elliptic function field with a given endomorphism from characteris-
tic p > 0 to characteristic 0 one has to know beforehand that there exists a
singular curve (or invariant) with an endomorphism ring belonging to a given
imaginary quadratic field. Classically this is easy by using the Weierstrass
function ℘(z|w) with w in the given imaginary quadratic field, as explained
on page 112. But this argument uses the theory of analytic functions.

Deuring’s achievement consists of a purely algebraic argument for this pur-
pose. That is, he does not use analysis. Once this is achieved, the classical
theory of generating class fields over imaginary quadratic number fields can
be completely reformulated in algebraic terms. Instead of generating class
fields by “singular” values of analytic functions one can now find the genera-
tors essentially as points on the Jacobian of the corresponding algebraically
constructed curve.

In other words: Deuring had freed the class field theory of complex multipli-
cation from analysis and gave a purely algebraic treatment. His final proof is
published in the year 1949 in the “Hamburger Abhandlungen” [Deu49]. But
already in 1939 he had given a colloquium talk in Hamburg about this topic.
The publication had been delayed in war time.

I do not wish to go into more detail of Deuring’s work in this direction because
this would lead us too far from the RHp. But I would like to mention on this
opportunity the following citation.

For, already in 1936 Deuring had been in the possession of this theory, and
Hasse mentioned this in his letter to Weil dated 12. July 1936 (see section
9.4). The last paragraph of that letter reads as follows:
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“By the way, Deuring has still another application of his theory.
He wants to solve Hilbert’s problem of constructing class fields
of algebraic number fields . In the elliptic case he has already
been able . . . to do this. He even manages this with purely alge-
braic methods, without using the theory of elliptic functions as
functions of a complex variable, i.e., solely using the arithmetic
theory of algebraic functions. This is very appealing to me. I have
nothing against using the beautiful theory of abelian functions of
complex analysis, but I do prefer a ’methodenrein’ justification of
purely arithmetical facts . . . ”

Remark: For arbitrary number fields this was wishful thinking. In fact,
Deuring considered imaginary quadratic number fields and their class fields
only. The algebraic theory of class fields over so-called CM-fields, related to
abelian varieties, was established much later by Shimura, Weil, and others.

I have cited the above text since here appears the word “methodenrein”.
I have not found an English translation of this word. It expresses what Hasse
had said also on other occasions, that he considers a mathematical theorem
and its proof as a unit and hence they should fit together in a natural way,
and should be adequate to the problem. Of course, it cannot be absolutely
defined which methods are “adequate” in this sense; this depends very much
on the mathematical background and the psychology of the respective person.
For example, Hasse preferred the theory of algebraic function fields whereas
Weil tended to algebraic geometry in this connection.

But it should not be overlooked that Hasse did not insist on “methodenrein”
proofs. In fact, he says explicitly that he has nothing against using abelian
functions of complex analysis in this context. In fact, he had several times
expressed his view that classical complex multiplication is a beautiful exam-
ple of the cooperative interrelation of the three main mathematical fields,
namely Analysis, Algebra and Arithmetics (the three Gaussian “A”s).

By the way, Hasse himself had foreseen that through his algebraic treatment
of complex multiplication in characteristic p it would eventually be possible
to algebraize the whole classical body of analytically based complex multi-
plication in characteristic 0. In his lecture 1934 in Hamburg (mentioned in
section 7.4) Hasse had said:
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“Starting from the analytic theory of elliptic functions I have
already last year . . . sketched a proof of the Riemann hypothe-
sis based on the class field decomposition law of extension fields
of imaginary quadratic number fields, namely those extensions
which are generated by the division values of the elliptic func-
tions. From this viewpoint it is understandable that an alge-
braically based proof of the Riemann hypothesis leads, in the other
direction, to a proof of the said class field decomposition law . . .
Moreover, this kind of reasoning appears much more natural.”

This was just a vision, for at the time of writing this text Hasse had not yet
worked out all details, as we have seen above. Finally it turned out to be
Deuring who completed this project of Hasse’s.

Summary

While Hasse worked on the RHp for elliptic function fields he and his team
discovered several properties of elliptic function fields in characteristic p > 0 ,
which were new and important although they not all of them were necessary
for the proof of RHp. The first and most important is the so-called Hasse-
invariant of an elliptic function field F |K which is usually denoted by A.
This is an element in the base field K. It has no analogue in characteristic 0.
Actually A is not really an invariant of the function field, but it is determined
up to a substitution A→ c−(p−1)A with 0 6= c ∈ K. If K is algebraically closed
then the alternative A = 0 or A 6= 0 is an invariant of the function field. A
is defined as the first obstacle when trying to integrate the integer differential
ω of the elliptic function field (ω is unique up to a nonzero factor of the base
field).

This invariant A of an elliptic function field F |K controls, among others, the
existence of unramified extensions of degree p , the structure of the p-subgroups
of the Jacobian, and the structure of the endomorphism ring of the Jacobian.
For instance, A = 0 signifies that the endomorphism ring is non-commutative
– a phenomenon which was not expected and aroused some curiosity. In fact,
if A = 0 then the endomorphism ring is isomorphic to a maximal order of
the quaternion algebra which is ramified at p and ∞ only. Deuring has called
such elliptic field F |K “supersingular”. The invariant A can be computed
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with the help of an explicitely given polynomial P (j) where j is the absolute
invariant of the elliptic field F |K. (If p > 3 then this invariant j can be de-
fined and computed by the coefficients of the Weierstrass normal form in the
usual way, but for p = 2 and p = 3 this does not work and j has to be defined
differently.) The degree of the polynomial P (j) depends on p. For given p
there are only finitely many j for which A = 0, and they can be explicitly
computed.

With the help of these and more results Deuring was able to give a simple,
structural proof of Hasse’s lifting theorem which had been used in Hasse’s
first but unpublished proof of the RHp for elliptic fields. This gives a purely
algebraic proof also of the theory of classical complex multiplication in charac-
teristic 0. Hasse had foreseen this possibility already in his Hamburg lectures
in January 1934.



8.5. CLASS FIELD THEORY AND COMPLEX MULTIPLICATION 172



Chapter 9

Towards higher genus

9.1 Preliminaries

As I have told in section 6.2 Hasse originally was interested in the estimate of
solutions of diophantine congruences. It was Artin who in November of 1932,
when Hasse was visiting Hamburg, told him that the estimating problem was
pointing to the RHp. It appears that at that time Hasse did not yet believe
in the general validity of the RHp for all function fields with higher genus
g > 1. (See page 87.)

But shortly thereafter Hasse had changed his mind. On 6. March 1933 when
he reported to Mordell that he had found his (first) proof of the RHp for
elliptic fields (see page 106) he closed his letter with the words:

“Obviously the general congruence f(x, y) may be treated the same
way, “only” with the “slight” generalization of the elliptic func-
tions into abelian functions quite analogous to Siegel! Do it! ”.

Here Hasse refers to Siegel’s work on diophantine approximations which he
had studied one year earlier together with Mordell. I have mentioned this
already on page 114.

But Mordell threw the ball back to Hasse. In his reply (dated 9. March 1933)
he wrote:

173
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“I think the results for y2 ≡ fn(x) etc. should follow without
infinite difficulty, but the zeta fn. theory will not be so simple
now. Obviously you are now the one to try it.”

A little later, on 14. April 1933 in Hasse’s preliminary announcement to the
Göttingen Society of Science he again pointed to the possible generalization
to higher genus [Has33a]. He said that the proof in the general case could
probably be achieved through

“. . . uniformization of binary diophantine congruences by general
abelian functions.”

This refers to his first proof in the elliptic case where he had established
some kind of uniformization of elliptic congruences by means of the complex
Weierstrass ℘-function. However, Hasse continues,

“. . . it would first be necessary to develop complex multiplication
for general abelian functions if not the arithmetic-algebraical meth-
ods of A. Weil would be already sufficient.”

Here, Hasse refers to Weil’s thesis [Wei29] which contained the so-called
Mordell-Weil Theorem about the finite basis of the rational points of a Ja-
cobian variety over a number field.

It appears that Hasse’s ideas were still somewhat vague at that time, without
any definite plan how to attack those problems. In a letter from Hasse in
Marburg to Davenport in Göttingen dated 24. July 1933 1 we read that “Weil
came over for a day”. There is no doubt that on this occasion Hasse and
André Weil had discussed problems of the RHp for higher genus. I do not
know whether Weil’s visit was the answer of a letter from Hasse, or perhaps
he had heard of Hasse’s ideas and came over to obtain more information.

1In the summer term of 1933 Davenport stayed in Göttingen with a stipend he had
got from his College. Thus he became a witness of the dissolution of the Göttingen
mathematical scene due to the disastrous policy of the Nazi government. On weekends
he often went to Marburg, which is not far from Göttingen, in order to meet Hasse. But
sometimes there were letters exchanged.
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Observe that this happened in the summer of 1933 when Hasse still worked
on his first proof in the elliptic case, using classic complex multiplication over
an imaginary quadratic number field. It seems that also for higher genus he
had in mind the classic theory of abelian functions based on ϑ-functions.

But next year, when Hasse in February 1934 gave a series of lectures in
Hamburg about his second proof in the elliptic case, he mentioned in the
introduction the possibility of an algebraic theory of abelian function fields,
valid also in characteristic p . He said:

“In the following I am developing the essential features of the
theory for the simplest non-trivial case, i.e., the case of elliptic
function fields. This seems similar to Hilbert’s theory of relative
quadratic fields which he developed 36 years ago as the simplest
case of the relative abelian fields which he sketched later – but he
always had this generalization in mind.”

Hasse refers to Hilbert’s paper from the year 1898 [Hil98].

Well, without comparing Hasse with Hilbert, we shall see below that the
solution of the problem would finally not be given by Hasse, like in Hilbert’s
case where the final building of class field theory was not given by Hilbert.
In Hilbert’s case, class field theory was completed by Takagi and Artin, while
in Hasse’s case we shall see that the proof of the RHp for arbitrary genus was
finally completed by A. Weil. But like Hilbert in the case of class field theory,
Hasse in the case of the RHp had already envisaged the essential tools which
would lead to the goal.

During Hasse’s stay in Hamburg he discussed with Artin the possible gener-
alization to function fields of genus > 1. He reported on this to Davenport
in his letter dated 12. February 1934 as follows:

“From what Artin and I found when considering the possibilities
of generalization to higher genus, it will be only a matter of pa-
tience to do this. The general line is fully obvious now. The
addition theorem is generalizable in a purely algebraic form. If
f(x, y) = 0 has genus g , then for each two sets of g solutions

(x11, y11) , . . . , (x1g, y1g)
(x21, y21) , . . . , (x2g, y2g)
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there exists a third such set (uniquely determined, except the ar-
bitrary arrangement )

(x31, y31) , . . . , (x3g, y3g)

with all the algebraic properties of an “addition” of the two sets.
The number of automorphisms of the field of all symmetrical func-
tions of g independent solutions

(x1, y1) , . . . , (xg, yg)

is finite.2 This gives the fact that the abstract operation π (defined
as pth power) is algebraic of degree 2g , and that the field of π as
an algebraic number contains only g − 1 independent units, i.e.,
is totally–imaginary. I am going to carry through all the details
without bothering about any more special cases now.”

The “special cases” which Hasse has in mind seem to be the generalized
Fermat fields and the Davenport–Hasse fields (see section 6.3).

Here, Hasse expressed clearly his plan what he was going to do in the case
of higher genus, following Artin’s suggestion. It was necessary to give an
algebraic construction of the Jacobian function field of the curve f(x, y) = 0,
defined by symmetrization of g algebraically independent generic points of
the curve. And then to study the action of the Frobenius operator π as
an endomorphism of the Jacobian variety, with the aim of proving that the
algebra generated by π is behaving somewhat like being totally imaginary.

But Hasse’s words do not give any evidence that he was aware of the various
details of the work ahead. It seems that he had discussed with André Weil
his new ideas, i.e., working directly in characteristic p instead of reduction
from characteristic 0. I do not know whether and where the two met in the
summer of 1934, but the first sentences of Weil’s letter, dated 18. June 1934,
may be interpreted that such meeting had taken place:

2It appears that Hasse had those automorphisms in mind which respect the “addi-
tion” of two point sets. He knew already from the elliptic case that there are more field
automorphisms, namely the translations. See page 123.
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“I have again thought about your problem. According to my ex-
periences on this matter it cannot be expected to arrange feasi-
ble computations without the theta function. Using homogeneous
functions, which we had discussed, is useful to avoid the places
of indetermination but yet it is not a tool for computations. In
my opinion, you are left with operating with the theta function as
usual, after having defined it algebraically. For, the theta function
is nothing else than a divisor on the Jacobian variety: the divisor
ϑ(u1 − a1, . . . , ug − ag) = 0 is a (g − 1)-dimensional variety; its
points correspond to those divisors X on the basic curve in ques-
tion which are not uniquely determined by their divisor class

(
X
A

)
.

The algebraic content of the periodicity properties of the theta-
function is nothing else than a necessary and sufficient condition
for the quotient ∏

µ ϑ(mµu− aµ)∏
ν ϑ(nνu− bν)

to be an abelian function, which is to say that the correspond-
ing divisor on the Jacobian variety is principal. These proper-
ties can probably be proved without great effort, as well as the
few additional properties which are used in the computations with
theta-functions. In this way you will rediscover the only useful
computational apparatus which so far exists in this theory.”

We see that Weil saw very clearly the possibilities and necessities for Hasse’s
project. He appears to have been keenly interested in the further progress
since he concluded his letter as follows:

“Please do inform me occasionally about the progress of your in-
vestigations. You may always use my address in Paris.”

9.2 The years 1934-35

The documents which we have cited above indicate that Hasse was planning
to investigate the Jacobian and its endomorphism ring in an algebraic setting.
These documents are dated in 1934. But I have no indication that Hasse
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really started to implement his ideas within the near future. What was the
reason?

In the years 1934-35 Hasse was busy writing up his second proof of the
RHp in the elliptic case. The final paper in Crelle’s Journal consisted of
three parts I,II,III and was completed at the end of 1935 when he submitted
the manuscript to Crelle’s Journal. In November 1935 he reported about
it to the Göttingen Society of Science [Has35]. (I have discussed this in
Chapter 7.) Parallel to this, Hasse jointly with Davenport studied what
today are called generalized Fermat fields and Davenport–Hasse fields (See
section 6.3.) In addition, Hasse and his collaborators were able to establish
a number of basic results for arbitrary function fields (or curves) over finite
fields, including class field theory, L-series, differentials and their residues,
higher derivations, p-extensions, and more. Certainly, this amounted to a lot
of work and it may be that Hasse first wished to complete this before turning
to the projected algebraization of the Jacobian for genus > 1. In the Hasse
papers in Göttingen I have not found any indication for work towards the
Jacobian from those years.

We also have to take into account the difficulties of political nature which
Hasse had to face after May 1934, when he had changed from Marburg
to Göttingen. Those years were the first years of the Nazi government in
Germany. Due to the expulsion of the Jewish professors and those who
appeared to be in opposition to the government, the mathematical scene was
severely hit. Hasse had accepted the offer to Göttingen with the intention to
rebuild Mathematics there. From Hasse’s correspondence in particular with
Davenport I infer that he had been quite aware that he was to face political
troubles from the Nazi students and colleagues in Göttingen. In his letter to
Davenport of 17. February 1934 he wrote:

“I very much hope that I shall have a quiet summer here before I
am called upon the battle field. Otherwise I doubt whether I shall
be able to think on f(x, y) = 0 for higher genus before long.”

Hasse’s hope for a quiet summer was in vain. Hasse had to start in Göttingen
already in the summer semester. There he met strong and hateful opposition,
and also faced perpetual difficulties with the governmental agencies. Much of
his energy was absorbed by dealing with those problems. The general story
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is fairly known and need not be repeated here in detail. (See, e.g., [Sch87].
Compare also the revised online version.)

One of the greater issues, in Hasse’s opinion, was the appointment of mathe-
maticians to the Göttingen Institute. Originally Hasse had insisted that only
the mathematical standing of the applicant should be relevant, and this was
assured him by the representative of the government. However Hasse could
not carry his point since in reality the rules of the Nazi government required
that also the political standing should be taken into consideration. Let us
cite from a letter of Hasse to Toeplitz in Bonn dated 18. April 1935:

“What I find highly depressing is the fact that, on the one hand, I
am carrying the responsibility, towards the world of mathematics,
for the rebuilding of Göttingen as a high-ranking mathematical
site, but on the other hand I have almost no decisive influence
on the personnel side of staff appointments, due to the existing
political rules.”

From the correspondence Hasse-Toeplitz of that year we can see that Hasse
even contemplated to leave Göttingen and change to Bonn, precisely be-
cause of these obstructions to his activities which he mentions in this letter.
Toeplitz, although himself being hit by the Nazi regulations, had seen to it
that the University of Bonn proposed to offer Hasse a position in Bonn, which
means that the name of Hasse appeared first on their “Berufungsliste”. How-
ever the ministry in Berlin did not follow this proposal from Bonn University,
perhaps because they wished to keep Hasse in Göttingen as a prominent fig-
ure.

Also, the attempts of Hasse to get Nevanlinna and van der Waerden perma-
nently to Göttingen would turn out not to be realizable. (Finally, Nevanlinna
came to Göttingen as a visiting professor in 1936-37.) But the immediate
cause for Hasse’s complaint in his letter to Toeplitz was connected with his
attempt to install Deuring as a Dozent (associate professor) in Göttingen.
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9.2.1 Deuring

Max Deuring (1907-1984) had been a student of Emmy Noether in Göttin-
gen. He was her “Lieblingsschüler”, as she once called him. He was allowed
to call her with the familiar “Du”, which at that time was quite unusual in
Germany since the usual form of addressing in German was the somewhat
more formal “Sie”, also among students and colleagues. As a student Deur-
ing had spent one year in Rome. In 1930, when he was 22 of age, he got
his Ph.D. in Göttingen. One year later he obtained a position as assistant
professor in Leipzig with van der Waerden. In the academic year 1932/33 he
stayed at Yale University with Øystein Ore. When he returned to Leipzig
he wished to apply for a teaching position (Dozent) at the university there.
In German universities this is a traditional procedure called “Habilitation”;
the candidate has to present a thesis to the Faculty and to deliver a lecture
to the faculty in order to qualify as Dozent.

But in the meantime the Nazis had come to power in Germany and Habilita-
tion had become possible only when the candidate appeared to be politically
in line with the government. Deuring had the strong support of van der Waer-
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den in Leipzig but nevertheless he was not admitted to apply for Habilitation
there since he failed to obtain the approval of the local Nazi authorities. In
this situation Hasse who held a high opinion about Deuring, advised him
in agreement with van der Waerden, to apply for Habilitation in Göttingen.
But this turned out not to be easy. In the letter to Toeplitz of 18. April 1935
(from which I have cited above already) Hasse wrote:

“Deuring is not yet habilitated. Just now he intends to do this
here. I shall have a hard fight for him here. For, his quiet schol-
arly personality is not of the type which one would prefer here.
Mathematically he is first class.”

Indeed, in the years 1935-1937 the young Deuring had 10 publications, each
of first class quality, among them the beautiful book on algebras [Deu35]
and his work on function fields, in particular the paper on correspondences
[Deu37] which will be discussed below.

From the letters exchanged between Hasse and Deuring it can be seen that the
date for Deuring’s Habilitation lecture in Göttingen had originally been set
for 24. April 1935. But this date was repeatedly postponed by the university,
for reasons unknown to me. It may well have been that the authorities waited
for background information about the political standing of Deuring. Finally
the date was set to 11. December 1935. But the result was negative: The
faculty committee did not admit Deuring as Dozent in Göttingen. This was
due to the massive opposition by the Nazi colleagues, in particular Tornier
and Teichmüller, as well as by the University Rector (President). Hasse
was deeply disappointed, and he wrote to van der Waerden in a letter of
16. December 1935:

“Everyone here who had supported him [Deuring] was deeply dis-
appointed about the outcome. Mr. D. has lost a battle for us, so
to speak . . . ”

When Hasse wrote that Deuring had lost a battle “for us” then apparently
he interpreted the decision of the faculty committee as opposition against
himself and also against van der Waerden since both, in the eyes of the
fervent Nazis, were not in line with the official Nazi Weltanschauung.
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In fact, there exists a document (Gutachten), signed by Tornier and dated
2. May 1935, in which Hasse is denounced as not being suitable for the posi-
tion as chairman of the Göttingen Mathematical Institute, the main reason
being his “Jewish decent” and, consequently, his lack of appreciation of the
Nazi ideology. (I have found this document in the Bundesarchiv in Berlin.)
Moreover, Tornier says, Hasse is not able to judge the mathematical skills of
young people which he tries to support. Although the name of Deuring is
not mentioned it seems obvious, in view of the date of this document, that
it was written in connection with the Deuring affair in Göttingen. I do not
know to whom this paper was addressed. Evidently Tornier wished Hasse to
be removed from the position as chairman with the hope that he, Tornier,
would then be installed in this position.

After the refusal of Deuring in Göttingen, Hasse met van der Waerden in
order to discuss with him how Deuring could be supported in the future.
Van der Waerden wrote on 17. December 1935:

“It will be of great value to me to have an opportunity to speak
with you about Deuring’s failure, about his future and what we
now have to do. I am grateful to you that you are even willing to
come to Leipzig for this, and I am at your disposal the whole day
of 4. January.”

The outcome of their meeting was that for the time being Deuring remained
as assistant professor with van der Waerden in Leipzig. But the possibility of
a new application of Deuring for a position in Göttingen was also discussed.
In a letter of Hasse to Deuring of 11. June 1936 he reported that the ministry
of education had assured him (Hasse) there would still remain the possibility
for a new application. Perhaps it would be wise to wait with this for, say,
one year. But Hasse adds:

“In my opinion it would not be worthwhile to make a new appli-
cation as long as the present Rector3 is in office . . . Moreover I
cannot guarantee that the Fachschaft4 will not oppose your appli-
cation as long as Mr. Teichmüller is still here.”

3President of the University.
4The official organization of mathematics students which at that time was dominated

by Nazi students.



9.2. THE YEARS 1934-35 183

But Deuring did not send a new application, although in the next year Teich-
müller left Göttingen. Later (1938) Deuring obtained, with recommendation
also by Hasse, a position as Dozent (associate professor) at the University
in Jena where F. K. Schmidt was full professor. After the war Deuring got
a professorship in Marburg (1947), Hamburg (1948) and finally Göttingen
(1950).

Remark: I have been advised to say a few words about the role of Teich-
müller (1913-1943) in relation to Hasse. Teichmüller was known to be a
fervent follower of the Nazi ideology. On the other hand, he was also known
as a very gifted mathematics student. He participated in the Arbeitsge-
meinschaft which was led by Witt, an assistant of Hasse. The subjects of
the Arbeitsgemeinschaft were set by Hasse who regularly participated in the
sessions. Hasse was mathematically accepted by Teichmüller but not po-
litically. Some sources say that Teichmüller had been a Ph.D. student of
Hasse. But this was not the case. Teichmüller had conceived and written his
thesis completely by himself, its subject belonged to functional analysis and
seems to have been inspired by Rellich’s seminar 1933/34. When T. finally
submitted his thesis to Hasse then Hasse did not feel competent himself for
this subject and he asked Köthe to referee it. The latter sent his report to
Hasse dated 18. February 1935 and recommended T’s thesis. I have taken
the above information from the article [SS92] where more details about the
life and mathematical work of Teichmüller can be found.

9.2.2 More political problems

In a letter to Siegel dated 19. December 1935, Hasse admits that in the past
year he had not been able to continue his research as planned, and only
recently he had returned to his work on Jacobian function fields. This letter
was written as a reply to an earlier letter from Siegel who had asked Hasse
for news on function fields of genus g > 1. In the preceding year Siegel had
been in Princeton (USA) and had met Emmy Noether who was still there.
(She died on 14. April 1935 in Bryn Mawr.) She had told him that Hasse
was working on this topic, but she was not able to give details. Hasse writes
to Siegel:

“Unfortunately, I am still at the beginnings with the abstract func-
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tion fields of genus g > 1. For, I was forced to interrupt my
scientific work thoroughly since May 1934, and not until October
this year I was able to return to my research.”

May 1934 was the time when Hasse had moved to Göttingen. In October
1935 he had finished the first part of his 3-part paper on elliptic function
fields and their RHp.

In his letter to Siegel Hasse describes first what he had been doing in the
elliptic case. He had obtained essential simplifications of the proof, he wrote,
so that it has become much clearer in view of the intended generalization
to higher genus. Obviously Hasse refers to his second proof in the elliptic
case. And then he talks about his plans for Jacobian function fields. Given
two endomorphisms µ, ν and a function ϕ on the Jacobian, he wrote, one
has to be able to determine, by algebraic means, the number of poles and
zeros of the difference ϕ(µz) − ϕ(νz). Hasse had in mind his proof in the
elliptic case of what he had called “Norm Addition Formula” which, he said,
indeed constituted the key to his proof of the Riemann hypothesis. (See
section 7.4.3, in particular formula (7.21) on page 131.) In the general case,
the poles and zeros of a function on the Jacobian are to be divisors which, as
Hasse knew at least since his discussion with A. Weil, have to be considered
as the algebraic equivalent of the ϑ-functions. But his remarks in the letter
to Siegel do not give any hint that so far he has made any essential progress
towards a suitable algebraic definition and study of these ϑ-divisors beyond
the elliptic case.

Even after October 1935 which Hasse had mentioned to Siegel as the time
of a new start of his research activities, there lingered a lot of problems of
political kind which he had to deal with. I have already mentioned the affair
with Deuring’s Habilitation in December 1935. Early in 1936 Hasse’s col-
league Tornier in Göttingen, in addition to having recently barred Deuring’s
appointment, started a new campaign against Hasse. On the outside it was
directed against the German Mathematical Society (DMV) which Tornier
openly accused of tolerating Jewish mathematicians among its members. But
since Hasse was active in the governing board (Vorstand) of the society it
is evident that again this move was the attempt to disqualify Hasse, in the
eyes of the Nazi authorities, as the chairman of the Göttingen Institute.
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This time Hasse went to the ministry of education in Berlin and told them
categorically that he will resign from Göttingen University if working con-
ditions would not be improved and, in particular, if Tornier would not be
stopped in poisoning the mathematical atmosphere in Göttingen. This time,
as a consequence of Hasse’s move, Tornier had to leave Göttingen and was
assigned to the University of Berlin in April 1936.5

Let us cite from a letter of Hasse to F. K. Schmidt dated 25. June 1936:

“Two years ago, when I signed my contract , I harbored the hope
that the unsettling troubles would slow down soon. But you know
that this happened only in mid-April of this year. Until then, as
you can imagine, my working power was quite paralyzed. Any
time when I started to intensify my work, after a short time there
arose new problems which hampered my work.”

(Hasse refers to his contract with Springer Verlag about his planned book
“Zahlentheorie”. F. K. Schmidt at that time was the managing editor of the
“yellow series” of mathematical monographs, in succession to Courant who
had been forced by the Nazis to emigrate.)

The reference to “mid-April” refers to the removal of Tornier from Göttingen.
But this time again, Hasse’s statement that the politically based problems
in Göttingen had ceased by mid-April 1936 or at least slowed down, was
wishful thinking. Even without Tornier poisoning the atmosphere at the
mathematical scene in Göttingen, there remained political trouble there.

I have mentioned all this in order to point out that during the years 1934/35
and later Hasse was seriously hampered in his mathematical research by

5An additional reason for removing Tornier from Göttingen may have been that he
permanently produced financial trouble. He had pawned a large part of his future salary
and also had asked for and received high sums from the university as advance payment.
It appears that he had fallen back to his addiction to drugs (morphine) which Hasse had
mentioned in a letter to Fraenkel of 10. July 1927. (At that time Hasse had believed
that Tornier had been able to overcome this.) But at Berlin University Tornier did not
stop this behavior and in 1938, when he was caught in financial fraud he had to leave
the university and also the Nazi party. More precisely, in order to avoid public scandal
he was “advised” to leave the party and the university on his own application. He then
retreated to a psychiatric clinic in Silesia. These facts are documented in the personal files
for Tornier at the archive of Humboldt University in Berlin.
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difficulties which originated in the political situation of the time. The ques-
tion arises why Hasse had shouldered the “responsibility for the rebuilding
of Göttingen as a high-ranking mathematical site”, as he had written to
Toeplitz (see page 175). It had been clear from the outset that he would
run into heavy difficulties. Hasse had been warned by several of his friends
not to trust the words of assurance by the government authorities, and had
been advised to remain in Marburg or even to emigrate from Germany. One
of those friends was F.K. Schmidt. His letters to Hasse are preserved. It
appears F. K. Schmidt had contacted Courant and inquired about whether
Hasse would possibly have a chance at some place in the USA. Hasse’s friend
Davenport had written on 20. February 1934, somewhat doubtfully:

“What I feel about G [öttingen] is that if it is in the power of one
man to restore the prestige of G., you are the man. But perhaps
it is not within the power of one man.”

But on the other side, Hasse had also been encouraged to accept the Göttin-
gen job, for instance by Hermann Weyl who expected precisely what Hasse
had written to Toeplitz, namely that he should rebuild Göttingen as a math-
ematical center. Even Fraenkel from Jerusalem had sent a letter to Hasse
wishing success in this endeavor.

It is not the place here to analyze or even evaluate Hasse’s political opinions,
expectations and deeds during the Nazi regime in Germany. This would make
sense only after carefully scrutinizing, without prejudice, all the relevant doc-
uments of the time. Hasse himself has contributed to this by depositing his
complete Nachlass at the University Library in Göttingen where it is acces-
sible to historians. Certainly Hasse believed what he wrote to Davenport,
“that reason will come back in due course”.6

9.3 Deuring’s letter to Hasse

We have seen in section 9.2.1 that against Hasse’s recommendation, Deuring
had been rejected for a position as Dozent in Göttingen, because of political

6That was what apparently many people at those times still expected or at least hoped.
And not only at those times.
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opposition against Hasse from the side of the dominant Nazi functionaries in
the faculty committee. In view of Deuring’s mathematical capacity this was
a blatant mistake of the committee. Already on 9. May 1936, five months
after this negative decision, Deuring wrote to Hasse announcing a manuscript
which contained new and important ideas how to attack the RHp in the case
of higher genus g > 1.

In fact, Deuring had found the algebraic setting which seemed suitable for
carrying the proof. He provided an algebraic construction of the endomor-
phism ring of the Jacobian of an algebraic curve, without explicitly regard-
ing the Jacobian as an algebraic variety of dimension g. He worked directly
within the function field of the curve, where the Jacobian is situated as the
divisor class group of degree 0. Deuring created the algebraic notion of what
had been called “correspondence” in classical complex analysis and algebraic
geometry. (Here, the word “correspondence” is to be understood as a mathe-
matical term, like “field” or “group” etc. It should not be confused with the
meaning of “correspondence” in colloquial language, where it means, e.g.,
the exchange of information by means of letters. I hope that there will not
arise misunderstandings.)

Let me cite from Deuring’s letter:

“Dear Mr. Hasse, in the recent weeks I have tried to generalize
your results for elliptic function fields to fields of higher genus .
In this endeavor I have been successful up to the construction of
the multiplier ring and the proof that it is algebraic. Perhaps you
have already more results on this topic, therefore I am sending
you the introduction of a paper which I am planning. There, the
algebraic results are stated only. The complete proofs are already
obtained but are still in a monstrous state.”

Deuring uses the name “multiplier” for what nowadays is called “endomor-
phism” of the Jacobian. In this he followed Hasse and his team who had
used “multiplier” in the elliptic case.

The proof that the “multiplier ring” is algebraic (i.e., that every element
satisfies an algebraic equation over Q) does not appear in Deuring’s paper
[Deu37]. Perhaps there was a flaw in Deuring’s original proof which he was
not able to correct at the time ?
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Hasse answered two days later. He was on the brink to travel to Königsberg
to give a colloquium talk there and hence had not yet been able to look at
the details of Deuring’s manuscript, but he already had a glimpse into it.
Hasse wrote:

“. . . In any case I am sure that you have now obtained the base
for handling the Riemann hypothesis in arbitrary function fields.
I am convinced that I will be able to obtain a proof of the RHp,
linking your results with my own Ansatz which I have been think-
ing about during the past weeks. I plan to look after this as soon
as possible, also with respect to streamlining your proofs.”

It appears that Hasse, although he wrote he “had been thinking about it”, did
not yet have “more results” as Deuring suspected. In any case Hasse fully
acknowledged Deuring’s achievement.

There followed an exchange of several letters between Deuring and Hasse.
Deuring sent the first part of his paper for publication and Hasse, as he
usually did with submitted papers, went over it, editing and simplifying the
manuscript. For this he enlisted the help of his assistant H. L. Schmid. The
paper was published 1937 in Crelle’s Journal [Deu37]. It appears that the
editing had been quite extensive, in particular the (well written) introduction
shows unmistakably Hasse’s style. Unfortunately I did not find Deuring’s
original manuscript and so I have not been able to compare both versions.
A second paper followed later in 1940 [Deu40].

9.3.1 Correspondences

Now, what were the new ideas of Deuring?

In a sense, Deuring’s ideas were not “new” but rather they are to be regarded
as a continuation of Hasse’s ideas in the same vein. He generalized Hasse’s
“Step 1” (see page 119), i.e., the algebraic construction of the endomorphism
ring of the Jacobian of a function field, now for the case of arbitrary genus
g ≥ 1.

In the elliptic case, Hasse had worked with the “double field” F = FE, the
compositum of two algebraically independent but isomorphic function fields
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F |K and E|K, the base field K being algebraically closed.7 Deuring too
worked with F but he did not assume that F |K and E|K are isomorphic.
For, it turned out that the theory of correspondences J(E) → J(F ) can
be developed for arbitrary function fields F |K and E|K without assuming
that they are isomorphic. The only difference is that in this general case
the correspondences do not form a ring but a group only; let us denote it
by M = M(E,F ). The group operation in M may be written as addition or
multiplication.

More precisely let
F := FE = Quot(F ⊗K E) .

F is considered as a function field with base field E. Like Hasse, Deuring
works with the transcendental primes M of F|E. The residue map modulo
M induces an isomorphism µ : F → FM , and we have the situation of (7.15)
on page 125.

But now, unlike Hasse, Deuring considers transcendental primes M of ar-
bitrary degree [FM : E] whereas Hasse in the case g = 1 got away with
transcendental primes M of degree 1 , i.e., for which Fµ ⊂ E. In Deur-
ing’s more general situation consider the following maps of divisors which
are indicated by arrows:

FM = Fµ·E

norm

��~~~~~~~~~~~~~~~~ __

embedding

>>>>>>>>>>>>>>>>

F oo
µ−1

Fµ E

If M is of degree 1 this diagram reduces to the diagram on page 122.

There results a homomorphism of the divisor group Div(E|K) into Div(F |K),
composed of three steps as indicated in the diagram. Accordingly every
divisor B of E|K is mapped as

(9.1) B 7→ NFM |Fµ(B) · µ−1 .

This looks similar to the formula in the elliptic case (7.11) on page 122. But
there Fµ ⊂ F whereas here B has first to be considered as a divisor of the

7As to the terminology and the description of the situation see page 124 ff.
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extension FM before the norm operator is applicable. Note that the divisor
group of E|K embeds injectively into the divisor group of the finite extension
FM |K and will therefore be considered as a subgroup of the latter. (Some
people use the name “conorm” for this injection.)

As in the elliptic case, the map (9.1) is denoted by µ again but as left operator.
Thus µB is the image of the divisor B of E|K in the map (9.1). This
map is called a “correspondence” from E to F . The map preserves divisor
equivalence and divisibility of divisors. However it does not preserve the
degree as it does in the elliptic case (7.11) where one works with primes M
of degree 1 only. In the present situation the degree of B is multiplied by the
field degree [FM : E] = degM , for this happens in the process of embedding
whereas the norm operator preserves the degree. That is, we have

deg µB = degM ·degB .

Here the degrees are to be understood in the function field of the respective
divisors: µB is a divisor of F |K while M is a divisor of F|E and B is a
divisor of E|K.

If degB = 0 then deg µB = 0, hence µ induces a homomorphism of the
divisor class groups of degree 0, i.e., the Jacobians:

(9.2) µ : J(E|K) −→ J(F |K) .

Note: In the elliptic case, Hasse had introduced the Jacobian of F |K as an
additive group, consisting of the prime divisors P of F |K with the addition
given by (7.10) on page 120. In the case of higher genus g > 1 one could try
to do the same by using the integer divisors of degree g instead of the prime
divisors. But it turns out that an integer divisor of degree g representing
a divisor class of degree 0 is not always unique. Thus one would run into
unnecessary troubles if one tries to work similarly as in the elliptic case. For
the present purpose it is more convenient to define the Jacobian J just as the
group C0 of divisor classes of degree 0, as we have done in (9.2) already. The
group operation in J may be written as multiplication or as addition, what-
ever convenient in the special situation. Historically the additive notation is
used in classical algebraic geometry or analysis. Whereas the multiplicative
notation is preferred if the analogy to number theory should be pointed out.
For the time being I shall stick to the multiplicative notation which was used
by Hasse and Deuring.
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I am also writing M(B) for µB. For an algebraic prime divisor P of F|E
Deuring defines

(9.3) P (B) = P degB

(in multiplicative notation). By linearity every divisor A ∈ Div(F|E) is now
represented as a homomorphism B 7→ A(B) from Div(E|K) to Div(F |K).
Restricted to the Jacobians (= divisor class groups of degree 0) we find
Div(F|E) represented as a group of homomorphisms J(E) → J(F ). These
homomorphisms are also called correspondences and the maps belonging to
the transcendental primes M are now called prime correspondences.

From (9.3) we see that an algebraic prime P acts trivially on the Jacobian
J(E) since there deg(B) = 0. It follows that every algebraic divisor, i.e., a
divisor which is composed of algebraic prime divisors only, also acts trivially
on J(E). Deuring shows that principal divisors too act trivially on J(E),
i.e., we have

(9.4) A ∼ 1 =⇒ A(B) ∼ 1 for all divisors B of E|K.

Perhaps it is not without interest to point out the reason for this. It is
sufficient to verify this when B = Q is a prime divisor of E|K. The prime Q
extends uniquely to a prime divisor of F which is trivial on F . The extended
prime will also be denoted by Q. The residue map modulo Q maps F|E
onto F |K and as such is a good reduction of F|E. Together with this goes
a divisor reduction map Q : Div(F|E) → Div(F |K) which preserves degree
and equivalence of divisors. Let us denote for a moment the image of a divisor
A ∈ Div(F|E) by A . Then

A ∼ 1 =⇒ A ∼ 1 .

Now, if M is a transcendental prime divisor of F|E then the definition of its
reduction M coincides precisely with M(Q) = µQ as defined by (9.1). And
similarly for an algebraic prime divisor in view of (9.3). It follows that for
any divisor A ∈ Div(F|E) we have A(Q) = A. Hence (9.4).

I have said already that the theory of good reduction had been systematically
developed later only. But in Deuring’s paper [Deu37] he already performed
the necessary computations which later he systematized in his reduction the-
ory [Deu42]. By the way, Deuring used the terminology “regular reduction”
for what today is called “good reduction”.
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Two divisors A1, A2 of F|E are called coarsely equivalent if they are equiva-
lent in the ordinary sense up to an algebraic divisor. We have seen that the
action of A as a correspondence J(E) → J(F ) depends only on the coarse
equivalence class of A.

The main result of Deuring is:

The group of coarse equivalence classes acts faithfully as corre-
spondences J(E)→ J(F ), i.e., it is isomorphic to M(E,F ).

M(E,F ) does not contain all group homomorphisms of J(E) into J(F ) in
the abstract sense. It contains precisely those homomorphisms J(E)→ J(F )
which are generated by prime correspondences as defined above. In the clas-
sical case when the base field K = C is the complex number field, then M
coincides with the group of correspondences in the sense of algebraic geom-
etry. But this interpretation is irrelevant in the algebraic setting of Hasse
and Deuring. The main point in Deuring’s paper is to establish an algebraic
theory of correspondences, valid in every characteristic. He refers to an old
paper by Hurwitz [Hur86] where correspondences of Riemann surfaces are
investigated from the analytic point of view, and he says that this had in-
spired him to translate it into the algebraic setting. In the introduction of his
paper [Deu37] he also refers to Severi’s book [Sev26] where correspondences
are treated within classical algebraic geometry. But Deuring’s theory was
conceived independently, and the reference to Severi was inserted afterwards
only, after Weil and Lefschetz had pointed this out to Hasse. (See page 195
below.)

Recall that in the 1930s algebraic geometry in characteristic p > 0 had not
yet been established, at least not in a form which could have been used for
Hasse’s problem of RHp.

Remark: If E is isomorphic to F then, by means of a fixed such isomor-
phism M can be regarded as an (additive) group of operators on J(F ). As
such it is in fact a ring, the product being the successive application of two
correspondences. One has to prove that the successive application of two cor-
respondences is again a correspondence in the sense defined above. Deuring
does this but the proof is somewhat involved, different from Hasse’s case of
genus 1 where correspondences are given by meromorphisms of the function
field.
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9.4 Hasse’s letter to Weil

In the year 1936 there were a number of letters exchanged between Weil
and Hasse, about varying topics.8 Here we are interested in those letters in
which the RHp was discussed. One of these was Hasse’s letter of 12. July
1936, written as a reply to Weil’s of 8 July where Weil had written:

“Finally I did neither go to the Caucasus nor to Oslo, mainly
because I want to work quietly on my mémorial-book about group
theory which should have been completed long ago. . . Please do
inform me occasionally about the number theoretic news which
you will hear in Oslo! ”

Weil refers to earlier letters where he had told Hasse that he plans to do a
hiking tour in the Caucasus together with Delaunay. On the way he would
pass Göttingen and would like to visit Hasse. Later he wrote that he could
not realize the appointment with Delaunay but he would meet Hasse at the
International Congress of Mathematicians in Oslo which was scheduled for
July 1936. Now, in the present letter he regrets that the meeting with Hasse
will not be possible, neither in Göttingen nor in Oslo, but he is asking for
information about number theoretic news from there.

Hasse replied immediately, one day before his departure to the Oslo congress
which started on 13 July. Instead of news from Oslo he sent number theoretic
news from Göttingen.

Indeed, in Hasse’s seminar and in the Arbeitsgemeinschaft (workshop) of
the summer semester 1936 in Göttingen, quite a number of important new
results had been obtained. Several of these are documented in volume 176
of Crelle’s Journal which contains twelve papers of high level of the number
theory group around Hasse, among them Ernst Witt, H. L. Schmid, Martin
Eichler and Oswald Teichmüller. It appears that Hasse was quite proud about
this and he wanted to communicate it to his correspondence partners. While

8Among them was the work of Weil’s student Elizabeth Lutz at Strassbourg on the
structure of the group of rational points of an elliptic curve over a p-adic field (p-adic
uniformization). Weil had proposed to have Lutz’s paper published in Göttingen as a
“sign of continued cooperation”. Hasse gladly agreed; he accepted Lutz’s paper for Crelle’s
Journal [Lut37].
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Hasse’s efforts to “rebuild Göttingen as a high-ranking mathematical site”
had failed on a larger scale, he had been successful with his small algebra
group of young people. In his letter to Weil he reports only on three of those
new results:

“First of all you will certainly be interested to know that Mr. Witt
has now proved the functional equation for the L-series in congru-
ence function fields. He used a very nice analogue of the classical
proof with theta functions. I am enclosing a short sketch of his
proof.”

For the terminology of “congruence function fields” see page 28. When Hasse
mentions L-series he refers to L-series L(χ, s) in the sense of class field theory,
belonging to divisor class characters χ. These are not to be confused with
F. K. Schmidt’s L-polynomial for which the functional equation had been
already established, see section 4.4.

Hasse continues:

“Furthermore, I myself have explicitly determined the group of
pn-primary numbers of a p-adic number field. I introduced a gen-
eralized notion of exponentiation and applied the beautiful theory
of Witt on the cyclic generation of degree pn in characteristic p .
You will find a sketch of this on a second sheet.”

Here Hasse refers to Witt vectors which are also among the results achieved
in the Göttingen Arbeitsgemeinschaft. Witt’s paper appeared in [Wit36]. It
seems not to be widely known that Witt vectors were first encountered by
Hasse’s Ph.D. student H. L. Schmid on the occasion of discovering explicit
reciprocity laws for cyclic extensions of degree pn of function fields in char-
acteristic p. See [Sch35b]. Witt’s contribution was the introduction of the
so-called ghost-components by which the computations become much clearer
and better to handle, thus universally applicable also in other mathematical
situations.

Hasse’s result on pn-primary numbers was indeed a very important result
in connection with explicit formulas for the reciprocity law. In the 1920s
Artin and Hasse had eagerly searched for it but without success for n > 1.
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See [FR08]. But now, with the theory of Witt vectors at hand, Hasse had
found a solution [Has37b]. In later years Shafarevich took up the case [Sha51]
and, based on Hasse’s result, obtained a general explicit reciprocity law as a
comprehensive addition to Part II of Hasse’s class field report [Has30].

Finally Hasse mentions what interests us in the present context:

“Finally, Deuring has had the crucial idea which led to the genera-
lization of my theory in the elliptic case to arbitrary genus g ≥ 1.
It is the algebraization of the theory of correspondences between
two algebraic function fields, hence not, as I always had thought,
using the field of abelian functions which has g variables.”

And Hasse proceeds with a sketch of Deuring’s main ideas and methods,
similarly as I have reported it in the foregoing section. He closes this with
the comment:

“In order to reach the proof of the Riemann hypothesis from here,
two items are still missing: First, a theory describing the behavior
of the differentials of the first kind under these correspondences.
Secondly, the generalization of the theory of the norm which here
is related to the field degree [Fµ·E : Fµ].” (The notation is ours,
it refers to the diagram on page 185.)

When Hasse here refers to his theory of the “norm” he means his norm
function which he had defined in the elliptic case as N (· · · ) = [F : Fµ], see
page 127. Hasse ends this part of his letter as follows:

“Since I got to know Deuring’s theory only very recently I have
not yet found time to think over these two generalizations . In
any case it is roughly seen, also in this general case, that the
Riemann hypothesis is reduced to the abstract analogue of the fact
that the well known Hermitian form belonging to the period matrix
is positive definite.”

A similar text is found at the end of Hasse’s report on his lecture at the ICM
in Oslo [Has37d].
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Thus Hasse was giving the direction for the work ahead:

Problem: Find a positive definite quadratic form on the endo-
morphism ring M of the Jacobian of a function field F |K, which
is the algebraic equivalent of the positive definite Hermitian form
in the classical situation.

9.5 Weil’s reply and Lefschetz’s note

Hasse’s letter to Weil was quite long: 8 typewritten pages plus some hand-
written notes. As said above, Hasse wrote it just before his departure to
the International Mathematical Congress in Oslo. Upon his return he found
Weil’s answer in his mail, dated 15. July 1936, thus 5 days after Hasse had
dispatched his letter. Weil’s answer was also long, about 5 pages. He con-
centrated on Deuring’s work on correspondences, he did not comment on the
other information which Hasse had sent him. He pointed out the connec-
tion of Deuring’s theory with what was known in Italian algebraic geometry.
Weil’s letter started as follows:

“Dear Mr. Hasse, I have read your letter and the enclosed notes
with greatest interest. As you may already have guessed, I was
particularly pleased to see the generalization of your theory of
elliptic function fields; and it is fine that due to Deuring’s idea
the solution of that problem seems to be imminent . . . It is a very
fortunate idea to consider the singular correspondences in order
to generalize the algebraic theory of complex multiplication . . . ”

In the former correspondence between Hasse and Weil, the Jacobian J ap-
peared as a g-dimensional abelian variety. This implied that for the RHp one
first would have to develop the theory of abelian varieties of higher dimension
in characteristic p , including their divisors as the analogue of the ϑ-functions,
before turning to the construction of the ring of their endomorphisms. But
here we see that Weil acknowledges the change Deuring’s idea had brought
about in order to avoid the theory of abelian varieties in characteristic p .
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Now the algebraic construction of the endomorphism ring of the Jacobian
was possible by means of Deuring’s correspondences.

But, Weil continues, several of the main ideas for this theory had already
been developed. The transcendental theory of correspondences had been
provided by Hurwitz in his well known paper of 1886 [Hur86]. (This is the
same paper which Deuring had cited as his source for inspiration for his
algebraic theory.) Thereafter the theory had been taken up by the Italian
geometers, in the framework of the old geometry but in a truly algebraic
spirit. Weil refers to Severi’s “Trattato di geometria algebrica” [Sev26]. The
consideration of the field F = FE is classical in this connection, he writes.
Weil points out that the whole of Deuring’s theory can be found in Severi’s
book, in Chapter VI, §§ 60-71, but in the framework of classical algebraic
geometry. He continues:

“Certainly I know how necessary and sometimes how difficult it
is to translate existing results of this kind into the language of
modern algebra. But, in my opinion, it is important in such in-
vestigations never to neglect the connection with the older theories
. . . mainly in order not to throw away irreplaceable guidelines. I
believe that this will also prove true with respect to the problem at
hand.”

Weil adds some general remarks. First, he does not see any discrepancy
between the two viewpoints: that of the correspondences on the one hand,
and of the field of abelian functions on the other hand. He refers to Hur-
witz [Hur86] who already knew that relations between the periods of abelian
functions are related to the existence of singular correspondences. This, he
writes, will easily lead to the solution of the first open problem which Hasse
had stated in his letter, namely the representation of the correspondences
on the space of differentials of the first kind. As to the second problem in
Hasse’s letter, namely the behavior of the norm function, Weil believes that
the norm can only be defined via the field of abelian functions.

Remark: This is not in contradiction to Hasse’s statement that the norm
is related to the field degree [Fµ·E : Fµ] (see page 191). Whereas Hasse’s
“norm” refers to the envisaged positive definite quadratic form on M (some-
times one speaks of a “normed space”), Weil’s “norm” refers to what today
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is called the degree of an isogeny of the Jacobian variety of the curve. As
it turned out, Hasse’s statement is the one which is essential for the proof
of RHp, see section 10.2, in particular formula (10.27) where d′(M) is the
“norm” in the sense of Hasse. In the elliptic case both these “norms” coin-
cide.

But Weil was not the only one who saw the connection to algebraic geometry.
At about the same time Hasse received a note from Lefschetz with similar
content. Hasse had met Lefschetz in Oslo and they had a discussion about
Deuring’s theory. The following note was apparently written by Lefschetz
right after the Congress while both were still in Oslo.

“Oslo, den 20–VII–1936 Dear Prof. Hasse:

I have thought about the Theorem of Deuring which you commu-
nicated to me, and am now almost certain that it is quite old. It
is probably implicit in some of Severi’s early papers, and explicit
in some paper of Carlo Rosati who devoted his whole work to al-
gebraic correspondences. I am certain that I could give you the
exact reference upon my return to Princeton. I should say that
it is at least 15 years old. It may even be implicit in the work
of A. Hurwitz. Deuring’s result should not be published before he
has the opportunity to verify this. It is n years since I have dealt
with these questions, hence I cannot tell you much more now. I
am certain however that I could prove the theorem very rapidly
even now.

Auf Wiedersehen Lefschetz

We are leaving Tuesday morning −→ Bergen.”

With this information by Weil and by Lefschetz at hand Hasse immediately
informed Deuring who replied on 10. August 1936:

“I have at once checked with Severi’s book. Weil (and hence Lef-
schetz) are completely right. Everything can be found quite ex-
plicitly in Severi, however with completely different proofs. But
it appears to me that my proofs are not superfluous. For they
show that it is possible to approach those problems and solutions
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also from the arithmetic viewpoint (not to mention the fact that
the old proofs have to be checked whether they are valid also in
the general case [in arbitrary characteristic] which however I do
expect). But first I have to familiarize myself with it.”

As a consequence, Deuring in the introduction of his paper [Deu37] added
a reference to Severi’s book, but he pointed out that his paper was written
independently. (I have mentioned this already on page 188.)

Later, in September of that year Hasse received a letter from his former
student O.F.G. Schilling who at that time studied in Princeton at the Insti-
tute for Advanced Study. Schilling participated in Lefschetz’s seminar on
algebraic geometry at Princeton University, and Lefschetz had asked him to
transmit to Hasse some references to papers on the theory of correspondences
in Italian algebraic geometry. Schilling wrote on 25. November 1936:

“During a preliminary discussion for a seminar on algebraic ge-
ometry Professor Lefschetz told me that in Oslo he had talked
with you about certain new results by Mr. Deuring on the theory
of complex multiplication. Mr. L. was of the opinion that the def-
inition of the commutator algebra of a Riemann matrix belonging
to a given Riemann surface with the help of algebraic correspon-
dences is already known . . . See the well known paper by Hurwitz.
By chance I found today an article by Mr. L. in which those ques-
tions are discussed, with references to literature . . . I would like
to mention that I am sending this bibliographic reference at the
instigation of Professor Lefschetz . . . ”

Schilling means Lefschetz’s article [Lef28] on correspondences of curves.

Hasse in his reply to Schilling explained to him the importance of Deuring’s
construction. For, Deuring’s results are obtained algebraically without using
the integrals of the first kind, and hence valid in arbitrary characteristic. He
closes his letter with the words:

“I hope that Mr. Lefschetz will revise his decree “very old” when
he reads Deuring’s paper in detail.”
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Well, I have some doubts whether Hasse’s hope did realize. I have no infor-
mation that Lefschetz even had looked at Deuring’s paper. In the “MacTutor
History of Mathematics archive” I have found the following text about Lef-
schetz:

“. . . if something was to him clearly true, he would consider it at
best a waste of time producing a rigorous argument to verify it.”

Side remark: Otto F. G. Schilling (1911-1973) had been a student of Emmy
Noether in Göttingen. When Noether was forced to leave Göttingen she
asked Hasse to take over. Hence Schilling went to Marburg where he got his
doctoral degree in the year 1934 under the supervision of Hasse, with a thesis
about the role of algebras in the theory of algebraic number fields [Sch35a].
In the summer of 1935 he stayed in Cambridge with Davenport and Philip
Hall. Thereafter he went to the Institute of Advanced Study in Princeton
where he was accepted as a member on the recommendation of Hasse to
Hermann Weyl. From there he held contact with Hasse by mail until 1937.
Schilling belonged to the well known Schilling family who since more than 100
years ran a bell foundry in the state of Thuringia (Germany). The Schilling
bells were known worldwide due to the quality of their tone and harmony.
In the year 1936 Otto had his 25. birthday and at this point in his life he
had to decide whether to follow the family tradition and join the business of
his father, i.e., bellfounding. There is a letter of Schilling from Princeton to
Hasse, dated 13. February 1936, asking for his advice on the matter. He would
like to stay with mathematics, but did Hasse believe that his, Schilling’s,
mathematical skills would be sufficient for an academic career? Of course,
Hasse in his reply could not give a definite advice but wrote a somewhat
conditional recommendation to stay with mathematics. This helped Otto
Schilling to decide his way. (The family business of bell founding was taken
over by Otto’s brother.) In Princeton he met A. A. Albert who in 1939 got
him a position as professor at the University of Chicago. Schilling’s book
on valuation theory [Sch50] was the first book which contained a systematic
theory of general valuations in the sense of Krull. 1961 Schilling accepted an
offer from Purdue University where he remained until his retirement.
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9.6 The workshop on algebraic geometry

Both letters, by Weil and by Lefschetz, pointed to classical algebraic geome-
try where Hurwitz’s theory of correspondences had been further developed.
These two hints made Hasse wish to look more closely into the concepts and
methods of algebraic geometry, in order to find ideas how to construct the
positive definite quadratic form which, as he had written to Weil, he was
looking for (see page 192).

Classical algebraic geometry (i.e., over the complex numbers as base field)
had seen a fast development in the first decades of the 20th century, notably
by Italian geometers such as Castelnuovo, Enriques, Rosati, Severi. But by
the 1930s this “Italian” algebraic geometry had somewhat come into disre-
pute. The proofs were criticized to have no precise foundation, so that the
arguments used could not always be checked. The point was not that there
were some erroneous results produced; errors do occur not infrequently in
mathematical treatises. But it is strictly required that in a mathematical
publication the arguments used in proofs should be clear and susceptible to
checking by any person with sufficient mathematical knowledge.

Well, by writing down these words I get some doubts whether this is indeed
so in reality. When we read a mathematical paper then it is necessary also to
understand what the author does not say but tacitly assumes the reader to
be acquainted with, namely certain prerequisites which have not been spelled
out. Whenever the author says “obviously” or “it is easy to see” or something
of this sort, we are invited to accept some facts, unspecified by the author,
and to apply them in the situation at hand. And many times we have to
do this even without the author mentioning anything at all in this respect.
In view of this, the relation between the Italian algebraic geometry and the
general mathematical scene in the 1930s may to some extent be described
as a “clash of cultures of scientific publishing”.9 The desire to overcome this
situation and to develop a universally accepted language in particular for
algebraic geometry was beginning to rise. But at that time there were only
few people who were able and willing to start this job. (For instance van der
Waerden, Zariski and later A. Weil.)

In any case, Hasse too seems to have had difficulties with the way in which

9I have found this expression in Schappacher’s survey [Sch07].
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Italian algebraic geometry was presented. He wished to understand what Sev-
eri in his book [Sev26] had said about correspondences of curves. As I have al-
ready indicated, never before Hasse had met any occasion to work in algebraic
geometry. So he planned a small conference on algebraic geometry, today we
would say “workshop”. As he wrote to Blaschke on 24. December 1936:

“Originally this [the conference] was planned as a comfortable
method for us ignorant people in Göttingen to be introduced into
the various branches of algebraic geometry. Therefore we have
invited the main representatives of the various branches and asked
them for introductory lectures.”

But he adds what could be said about so many “workshops” even today:

“However, everybody wished rather to talk about recent research
results and hence our program has become somewhat different
from what we originally intended.”

The first choice of speaker on algebraic geometry was of course van der Waer-
den who at that time held a position as full professor in Leipzig. During the
last years he had written, originally inspired by Emmy Noether, quite a
number of papers with important contributions to the foundation of alge-
braic geometry. (See, e.g., [vdW83].) But van der Waerden appears to have
been quite busy at that time. He would only come to Göttingen if this travel
could be combined with a visit to Hamburg where he had been invited too.
Finally, on 2. December 1936 he wrote to Hasse:

“My talk in Hamburg is scheduled for Saturday 9 Jan. Hence I
would be able to talk in Göttingen one of the days before that, i.e.,
Wednesday, Thursday or Friday. . . I would like to talk about the
general notion of multiplicity, in particular of points of intersec-
tion, and also about multiple points on algebraic surfaces.”

In accordance to van der Waerden’s wish Hasse then timed the Göttingen
workshop for Wednesday 6. January to Friday 8. January 1937.
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I have not found any document showing the program of this conference.
But from various letters of Hasse and his colleagues I was able to extract
the following information about the speakers and the topics of their talks:
(These may not have been the final titles.)

1. Van der Waerden: General notion of multiplicity, in particular of points
of intersection. (2 hrs.)
Modules of algebraic curves. (2 hrs.)

2. H.E.W.Jung: Arithmetic theory of algebraic functions of two variables.
(4 hrs.)

3. H. Geppert: Introduction to the way of thinking in Italian algebraic
geometry. (4 hrs.)

4. M. Deuring: Algebraic theory of correspondences. (3 hrs.)

Hasse had also invited W. Krull who at that time held a position at the
University in Erlangen. Krull had worked on what today is called “com-
mutative algebra”; his survey on ideal theory had become a very influential
book [Kru35]. But he could not come to the Göttingen workshop although he
was very interested in the program. Also, André Weil wrote on 21. December
1936 that he would gladly try to come to the conference in Göttingen but just
on 6. January 1937 he had to board the boat for the USA where he intends
to stay at the Institute for Advanced Study for one year.

In addition to the invited speakers there participated a number of young and
brilliant people at the conference. Blaschke announced in a letter to Hasse
that he will be accompanied by Zassenhaus, Bol, Maak and Petersson. From
Göttingen there were in all probability the participants of Hasse’s seminar
and the Arbeitsgemeinschaft present, in particular Witt, H. L. Schmid and
perhaps Behrbohm. I do not know whether Teichmüller participated. In
January 1937 he was still in Göttingen, changing to Berlin later in April 1937.
But his interests at that time were directed towards the theory of conformal
functions where he was to give essential contributions. We should also note
that Hasse recently had been able to get H. Rohrbach as assistant professor
to Göttingen10, hence probably he participated too. Similarly Hanna von

10Rohrbach had held a position at Berlin University but had got there into trouble
because of political reasons.



9.6. THE WORKSHOP ON ALGEBRAIC GEOMETRY 204

Caemmerer (later Hanna Neumann) who at that time studied with Hasse as
her Ph.D. advisor.11

One can see from these names that there were good prospects for the confer-
ence to be successful, in the sense that there may have emerged useful ideas
pointing the way to the construction of the envisaged quadratic form, hence
to the proof of the RHp. After all, van der Waerden was a specialist for
the notion of intersection multiplicity, which turned out to be an essential
ingredient of the positive definite quadratic form which Hasse was looking
for. Jung had worked all his life on function fields of two variables; note
that the field F = F ·E of Hasse and Deuring is of that kind. Geppert
knew Italian well (for family reasons) and had close contacts to the general
Italian mathematical scene; he worked on algebraic geometry and was well
acquainted with the way of doing algebraic geometry in Italy. And there
were several young and interested participants who may have taken up the
torch and proceed to the goal.

However, in the literature of 1937 and the following years I could not find any-
thing new of substance referring to this conference. According to my present
knowledge the Göttingen conference had not been helpful for the RHp.

Perhaps Hasse had expected from this conference a similar outcome as he had
experienced 6 years before, in February 1931, with his workshop on algebras.
At that workshop he had brought together mathematicians who had been
active in the theory of algebras, of class fields and group representations, in
order to join forces to attack his main conjectures on cyclic simple algebras
over number fields. This had been successful insofar as immediately after
that workshop he had succeeded to prove the local-global principle for cyclic
algebras and thus complete his theory of cyclic algebras over number fields
[Has32]. And some time later he could show the cyclicity of arbitrary simple
algebras over number fields, jointly with Emmy Noether and Richard Brauer

11She too came from Berlin. There she did not like the Nazi dominated atmosphere
and therefore she had asked Rohrbach where to go for her Ph.D. Rohrbach suggested to
come to Göttingen too and study with Hasse. The latter proposed to her to work on
the foundation of arithmetics in higher dimensional function fields. But one year later
von Caemmerer suddenly left Göttingen and went to Britain where she married Bernhard
Neumann with whom she had been secretly engaged in Berlin already. He was Jewish and
therefore had to leave Germany. Both Hanna and Bernhard grew to become well known
group theorists.
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who had participated in that workshop. I have told that story in [Roq05].

But nothing like this emerged from the Göttingen workshop on algebraic
geometry in 1937. It appears that there was nobody who was able and willing
to continue what Deuring had started, namely translating the mathematical
language used in Italian algebraic geometry into the language of algebra used
by Hasse and his work group.

In fact, the work needed was like a translation from one (mathematical)
language into another, i.e., from the language of algebraic geometry into that
of algebraic number theory. André Weil has expressed this in his beautiful
letter which he wrote to his sister in 1940 from the military prison “Bonne
Nouvelle”. The letter is published in [Wei79a]. Weil had been imprisoned
as a conscientious objector to military service, and while waiting for the
court trial he used his time there to think about attacking the RHp which he
knew Hasse had not yet captured. (Later I shall report more about Weil’s
mathematical activity at that time, see Chapter 12.) In the letter Weil
talks about the role of analogy and intuition as impetus of mathematical
discoveries. He compares his work with the decipherment of a text in three
languages:

(1) Number Theory,

(2) Riemann’s Theory of (complex valued) Functions,

(3) Algebraic Theory of Functions over a finite base field.

He did not explicitly mention Algebraic Geometry but from the context it can
be seen that somehow he considered Algebraic Geometry as a development
of Riemannian Geometry in the algebraic spirit.

If I may use Weil’s picture of a text in three languages, then what I have re-
ported until now was the translation of a problem from language (1), namely
counting solutions of diophantine congruences initiated by Davenport and
Mordell, into a problem from language (3), namely the RHp. This transla-
tion was started by Artin and continued by Hasse. What was needed now,
i.e., in 1937, was to obtain a translation from (2) to (3). Deuring had started
this but it was necessary to continue.

If only someone at the workshop had been willing and able to look into the
Italian literature on correspondences, in particular into Severi’s book [Sev26]
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which had been mentioned by Weil in his letter to Hasse, and if he would
have been able to translate it into the mathematical language developed and
used by Hasse and Deuring – then the positive definite quadratic form which
Hasse was looking for could well have been constructed right then and there,
during the conference or shortly after. All the prerequisites for this were
available.

Summary

Already in 1934 Hasse contemplated the possibility of generalizing his work
to function fields of higher genus g > 1. A. Weil pointed out to him that
this may perhaps be achieved by studying the Jacobian of a curve and their
ϑ-functions. But there are no signs that Hasse did anything definite in this
direction. On the one side he was still heavily absorbed by working on his
second proof in the elliptic case and by establishing the algebraic theory of
function fields in general. On the other side his work was severely impeded
by political difficulties which he had to face after changing from Marburg
to Göttingen in 1934. He even thought of leaving Göttingen after Toeplitz,
in the year 1935, had been able to induce the University of Bonn to offer
him a position there. But the ministry in Berlin did not give the necessary
permission.

When Hasse in 1935 tried to have Deuring get a position in Göttingen, this
was rejected heavily and made impossible by the Nazi colleagues and the uni-
versity rector. Nevertheless, some months later Deuring in a letter to Hasse
developed an algebraic theory of correspondences for function fields of arbi-
trary genus g ≥ 1. This was a decisive step towards the RHp for arbitrary
function fields. When Hasse informed Weil about this then Weil pointed out
in his reply that similar ideas are to be found in Italian algebraic geometry, in
particular he referred to Severi. Consequently Hasse wished to obtain more
information about the Italian algebraic geometry; to this end he organized a
small workshop in Göttingen where competent speakers should report on al-
gebraic geometry. But it turned out that this workshop did not reach its goal,
namely producing ideas how to construct algebraically the positive definite
quadratic form which in the classical case is given by the commutators of the
period matrices.



Chapter 10

A Virtual Proof

In this chapter I would like to interrupt the historic line in order to put into
evidence what I just said, namely that the proof of RHp could have been
found already in 1937, in the framework of the theory of function fields. I will
present here such a proof. In principle it can be regarded as a translation
of Severi’s proof from the language of algebraic geometry into the language
of algebra. But I will not use any knowledge of the terminology and results
of algebraic geometry. I shall use those notions and facts from the theory of
function fields which were available to and preferred by Hasse at the time of
the Göttingen workshop which I have discussed above.

Since such a proof did not materialize at that time I have called it a “virtual”
proof.

The essential notion to be borrowed from classical algebraic geometry will be
the intersection multiplicity of two prime divisors on a surface. I am going
to point out that this notion does have its analogue also in classical algebraic
number theory, namely in Hilbert’s definition of different and discriminant
divisors. Certainly Hasse knew Hilbert’s Zahlbericht where these notions had
been defined and used.

207
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10.1 The quadratic form

10.1.1 The double field

Let F |K be a function field and g ≥ 1 its genus. The base field K is supposed
to be algebraically closed. In the spirit of Hasse and Deuring I choose an
auxiliary function field E|K to be specified later. (This will be done in section
10.3 where E|K is chosen to be isomorphic to F |K. But for a moment it will
be useful not yet to specify E, this will simplify certain details in the proof.)
I consider the “double field” F = FE, the independent compositum of the
two function fields F |K and E|K. (See sections 7.4.2 and 9.3.1.) This field
F is considered as a function field of one variable over E, and as such it is
a base field extension of F |K. This is indicated in the diagram by double
lines.

F = FE

F

xxxxxxxxxxxxxxxxxx
E

FFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFF

K

FFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFF

xxxxxxxxxxxxxxxxxx

The divisor theory of this function field is based on those primes (=valua-
tions) of F which are trivial on E. Following Deuring we have to distinguish
two kinds of prime divisors of F|E:

1. The transcendental primes M which are trivial on both E and F . The
residue map modulo M induces in F an isomorphism into the residue
field. Usually the residue map is normalized such that it is the identity
on E. Then the residue field appears as a finite extension of E, gen-
erated by the image of F . The group generated by the transcendental
primes is denoted by Divtr(F). The divisors of Divtr(F) are called
“transcendental”.
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2. The algebraic primes. Every such prime belongs to a prime P of F |K,
and it is the unique extension of P to F|E. I denote that extension
also by P , which means I identify the divisor group Div(F |K) with
a subgroup of the divisor group Div(F|E), as is usually done for base
field extensions of function fields.

(Deuring [Deu37] speaks of “non-constant” and “constant” primes. Our ter-
minology refers to the transcendence degree of the image field FM |K or
FP |K which is 1 or 0 respectively.)

Thus the divisor group Div(F|E) is the direct product of two groups:

(10.1) Div(F|E) = Divtr(F)×Div(F |K).

If the principal divisors are factored out then one obtains the group of (or-
dinary) divisor classes. If in addition the algebraic divisors Div(F |K) are
also factored out then one obtains the coarse divisor classes in the sense
of Deuring. The coarse equivalence of two divisors A and B is denoted by
A ≈ B. (In algebraic geometry the notation A ≡ B is used.)

According to Deuring the group M of correspondence maps J(E) → J(F )
of the Jacobians is isomorphic to the group of coarse divisor classes of F|E.
(See page 188). But here I need not use the theory of Deuring. Its role here
is solely to provide us with a motivation. The following proof runs entirely
within the group of coarse divisor classes, without any explicit reference to
Deuring’s theory of correspondences. I am going to construct a symmetric
bilinear form σ(A,B) on the divisor group Div(F|E) with values in Z – such
that σ depends on the coarse classes of the divisors A,B only. It will turn
out that the quadratic form belonging to σ is positive definite in the sense
that

(10.2) σ(A,A) > 0 if A 6≈ 1 .

This is the quadratic form which Hasse had envisaged in his letter to Weil but
did not succeed to find within his framework of divisor theory. (See page 191.)
The following lines are to put into evidence that σ can well be constructed
while consistently following Hasse’s ideas. The positive definiteness of σ will
lead to a proof of the RHp by applying it to the group of divisors generated
by the Frobenius correspondence.
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While working with coarse divisor classes we can forget the algebraic divisors
in Div(F |K) since they are factored out anyhow. Accordingly, in view of
(10.1) the group of coarse divisor classes is realized as the factor group of
the group of transcendental divisors Divtr(F), modulo its principal divisors.
Here, a “principal divisor” of Divtr(F) is obtained from an ordinary principal
divisor (x) ∈ Div(F|E) by cutting off its algebraic part. In other words: The
principal divisor (x)tr ∈ Divtr(F) is given by

vM((x)tr) = vM(x) if M is transcendental(10.3)

vP ((x)tr) = 0 if P is algebraic .

10.1.2 The different

The main ingredient for the construction of the quadratic form σ is the
notion of “different divisor”. Consider two transcendental primes M 6= M ′

of F . Assume first that both are of degree 1 over E, then the residue maps
mod M and mod M ′ induce isomorphisms µ 6= µ′ from F |K into E|K.
Hilbert had introduced a divisor D(µ, µ′) of E|K which measures in some
sense the “arithmetic distance” between two isomorphisms and which I call
the “different” of µ and µ′. Its definition is given locally: For any prime Q
of E|K the multiplicity of Q in D(µ, µ′) is given by

(10.4) vQ D(µ, µ′) := min
x
{vQ(xµ− xµ′)}

where x ranges over those elements in F for which xµ and xµ′

are Q-integers.

It is straightforward to verify that this is 6= 0 for finitely many primes Q
only, hence indeed (10.4) defines an integer divisor D(µ, µ′) of E|K. The
condition that xµ is a Q-integer means xµQ 6=∞ (in Witt’s notation which
I have explained on page 122, formula (7.12)). Thus x should be integer with
respect to the prime µQ of F |K. Similarly for µ′Q. The different D(µ, µ′)
contains those primes Q of E|K for which µQ = µ′Q. For, if µQ 6= µ′Q
there exists x ∈ F with xµQ = 0 whereas xµ′Q = 1, hence vQ D(µ, µ′) = 0
by definition. If µQ = µ′Q then vQ(D(µ, µ′)) > 0 , and the minimum on the
right of (10.4) is attained if x is taken as a prime element for µQ . (Recall
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that the base field K is supposed to be algebraically closed, hence there is
no “inertia”.) The relation µQ = µ′Q may be interpreted such that Q is
“ramified” with respect to µ, µ′. In this sense the different D(µ, µ′) contains
precisely the ramified primes.

Hilbert had given this definition in his “Zahlbericht”. (See [Hil97], in par-
ticular §12 there.) Hilbert works in algebraic number fields, and µ, µ′ are
isomorphisms over a subfield. He did not talk about divisors but about ide-
als, as it was usual at that time. Actually, he called D(µ, µ′) an “element”;
he then defined the usual different of a finite extension of number fields F |F0

as the product of those “elements”:

(10.5) D(F |F0) :=
∏
µ 6=1

D(1, µ)

where µ ranges over the isomorphisms of F |F0 into its algebraic closure, and
“1” stands for the identity isomorphism of F . Of course this method works
also for finite separable extensions of function fields.

In the above situation (10.4) of two transcendental divisors I will also write
D(M,M ′) instead of D(µ, µ′). This symbol is now to be extended to ar-
bitrary transcendental primes M 6= M ′ of F|E, which are not necessarily
of degree 1. To do this, observe that the definition (10.4) can be given for

arbitrary isomorphisms µ 6= µ′ of F |K into the algebraic closure Ẽ of E.
This yields a divisor D(µ, µ′) of a finite extension E

′|E which contains Fµ
and Fµ′. It doesn’t matter which field since if E

′ ⊂ E
′′

then we identify
the divisor group of E

′ |K with a subgroup of the divisor group of E
′′ |K

under the natural embedding. (Some people call this “conorm”.) The iso-

morphisms of F into Ẽ correspond to the transcendental prime divisors of
FẼ|Ẽ , all of which are of degree 1 over Ẽ. Thus D(M,M ′) is now defined

for any pair of different transcendental prime divisors M,M ′ of FẼ|Ẽ. We
extend this symbol bilinearly to D(A,B) where the arguments A,B are ar-

bitrary transcendental divisors of FẼ|Ẽ with the stipulation that they do
not have a common prime. Then D(A,B) is a divisor of a suitable extension
field E ′ of finite degree over E.

If the divisors A,B are already defined over E, i.e., if they are contained
in the subgroup Div(F|E) ⊂ Div(FẼ|Ẽ), then it is seen that their different
D(A,B) is a divisor of E|K. For instance consider a transcendental prime M
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of F|E. In FẼ|Ẽ it splits into a product of primes of degree 1:

(10.6) M = M1 · · ·Mm

where m = deg(M). The Mi are precisely the conjugates of M1 over E,
each appearing as often as the inseparability degree of the residue field of
M over E indicates. If M ′ is another transcendental prime of F|E with the
decomposition

(10.7) M ′ = M ′
1 · · ·M ′

m′

then

(10.8) D(M,M ′) :=
∏
i, j

D(Mi,M
′
j)

is indeed a divisor of E|K since it is invariant under conjugation over E and
also the inseparability degree is taken care of.

Thus for all transcendental divisors A,B ∈ Divtr(F|E) the different D(A,B)
is now established as a divisor of E|K, provided that A,B do not have a
common prime divisor. Taking the degree gives a symmetric bilinear symbol

(10.9) χ(A,B) := degE|K D(A,B)

with values in Z.

Our next step is to modify χ(A,B) such that it becomes a quadratic form
on the group of coarse divisor classes. To this end I introduce the “degree
form” ψ(A,B) on Divtr(F) as follows. Observe that a transcendental divisor
of F|E can also be regarded as a divisor of F|F , with F as the base field.
Hence every transcendental divisor carries two degrees: one over E which
I have denoted by deg(A) and will now denote by degF|E(A) if it appears
necessary. The other is the degree over F which is denoted by degF|F (A).
For brevity I will write

(10.10) d(A) = degF|E(A) , d′(A) = degF|F (A) .

The degree form ψ(A,B) is defined for transcendental divisors A,B of F as

(10.11) ψ(A,B) = d(A)d′(B) + d′(A)d(B) .

With this terminology the following important lemma holds.
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Lemma: If at least one of the transcendental divisors A,B of F
is principal in Divtr(F) then

(10.12) χ(A,B) = ψ(A,B) .

Consequently, the form

(10.13) σ(A,B) := ψ(A,B)− χ(A,B)

depends only on the coarse equivalence classes of A and of B, i.e.,
σ appears as a bilinear symmetric form on the group of coarse
divisor classes of F .

Recall that χ(A,B) had been defined under the restriction that A,B should
not have a common prime divisor. The same restriction carries over to
σ(A,B) in view of its definition (10.13). But the Lemma now allows to
wave this restriction, for in any coarse divisor class there exist transcenden-
tal divisors which are relatively prime to any given divisor.

It will turn out that the corresponding quadratic form σ(A,A) is positive
definite; this will lead to the proof of RHp. But first I have to present to you
a proof of the above lemma.

Let E ′|E be a finite extension of degree m. If we consider the divisor D(A,B)
of E as divisor of E ′ then its degree χ(A,B) is multiplied by m. Similarly
ψ(A,B) is multiplied by m; this follows from (10.10) since degF|E stays fixed
and degF|F is multiplied by m. Hence if the relation (10.13) is proved in FE ′
then, after dividing by m the relation follows in F . In other words: For the
proof of (10.13) we may replace E by E ′. Let us choose E ′ such that both
A and B split into prime divisors of degree 1 over E ′. For simplicity let us
change notation (during the following proof) and write again E instead of
E ′. Thus:

It is sufficient to prove (10.12) under the additional assumption
that both A and B split into primes of degree 1 over E.

Remark: In this way I am reducing the proof to the case when the relevant
primes are of degree 1. This method has been applied already in the definition
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of the different, and will again be applied below in the proof of positive
definiteness.

Let A = (x)tr be principal in the group of transcendental divisors. We
decompose B into prime divisors of degree 1 over E. By linearity it suffices
to prove the Lemma for each of these prime factors. Let M be one of them.
As above I denote by µ : F → E the isomorphism induced by the residue
map modulo M .

Since the different had been defined locally, we have to start with local con-
siderations. Let Q be a prime of E|K. It induces in the subfield Fµ ⊂ E
a prime which is the image of some prime P of F |K. In Witt’s notation as
introduced on page 122 we have

P = µQ = NE|Fµ(Q)·µ−1 .

Consider the valuation rings OP ⊂ F and OQ ⊂ E and their tensor product

(10.14) OP ⊗OQ

which is to be understood over the base field K. This is an integrally closed
subring of F , consisting of those elements y ∈ F which are integer for each
transcendental prime divisor as well as for P and for Q.

Every divisor A ∈ Divtr(F) defines a (fractional) ideal of OP⊗OQ, consisting
of those elements y ∈ F for which

vM ′(y) ≥ vM ′(A) for each transcendental prime M ′ of F(10.15)

vP (y) ≥ 0

vQ(y) ≥ 0 .

Recall that the prime P of F |K is identified with its unique extension as a
prime of F|E, and accordingly vP (· · · ) denotes in (10.15) the corresponding
valuation of F . Similarly, Q is identified with its unique extension as a prime
of F|F and vQ(· · · ) denotes the corresponding valuation of F .

This ideal is called the “ideal of multiples” of A and is denoted by [A]P,Q . For
these ideals we have the product formula, valid for arbitrary transcendental
divisors A,B:

(10.16) [AB]P,Q = [A]P,Q ·[B]P,Q
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which can be verified without difficulty.

Well, it appears that the verification of (10.16) is not quite straightforward,
hence I will sketch a proof. This proof is due to Richard Brauer who commu-
nicated the essential idea to me in a letter, back in the year 1953. (My own
proof had been somewhat complicated.) I am presenting Brauer’s proof here
since I know that this was preferred by Hasse. In his Lecture Notes [Has68]
Hasse called it “R. Brauer’s happy idea”.

If OP ⊗OQ is replaced by OP ⊗E, neglecting the prime Q, then one obtains
an integrally closed subring of the function field F|E. Such ring is known to
be a Dedekind ring. The ideal of multiples of A in this ring is described by
the first two conditions in (10.15), neglecting the third which concerns the
prime Q. Let us denote this OP ⊗ E-ideal by [A]P,E. For these ideals in a
Dedekind ring the product formula

(10.17) [AB]P,E = [A]P,E ·[B]P,E

is well known. In fact, if the notion of Dedekind ring is defined by the prop-
erty that the ideals 6= 0 form a group then (10.17) is part of the definition.

Let t = tQ ∈ E be a prime element for Q. If an element y ∈ [A]P,E is
multiplied by a sufficiently height power te then the product tey will satisfy
also the third condition in (10.15) and thus is contained in [A]P,Q. Similarly
for [B]P,E and for [AB]P,E. We conclude: For every element y ∈ [AB]P,Q
there exists e such that

(10.18) tey ∈ [A]P,Q ·[B]P,Q.

Suppose e is minimal with this property. Our claim is that e = 0. We have

tey =
∑
i

aibi

with ai ∈ [A]P,Q, bi ∈ [B]P,Q where i ranges over a suitable finite system of
indices. Consider the residues aiQ ∈ F , and choose one among them with
minimal vP -value, say aQ. Then for each i we have aiQ = aQ · αi with
P -integer elements αi ∈ F . Thus

ai ≡ aαi mod Q .
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It follows

tey ≡ a
(∑

i

αibi

)
mod Q

≡ ab mod Q .

The element b =
∑

i αibi is contained in [B]P,Q since the αi ∈ F are P -integers
by construction. If e > 0 then it would follow ab ≡ 0 mod Q and hence either
a ≡ 0 mod Q or b ≡ 0 mod Q. In each of these cases division by t would
show that (10.18) holds with exponent e− 1 instead of e. Then e would not
be minimal. This shows that the product formula (10.16) holds.

I claim that for A = (x)tr we have

(10.19) vQ D(A,M) := min
y
{vQ(yM)}

where y ranges over the elements in [A]P,Q .

According to our assumption A decomposes into primes of degree 1 over E.
Let M ′ be one of them and µ′ : F → E be the corresponding isomorphism.
The ideal [M ′]P,Q is generated by the elements y = z − zµ′ with z ∈ OP .
Modulo M these are mapped onto yM = zµ − zµ′ and we see that in this
case (10.19) holds for M ′ in place of A. (Remember the definition (10.4)
of the different.) Now the product formula (10.16) shows that (10.19) holds
also for A. Of course, it suffices to let y range over a set of generators of the
ideal [A]P,Q.

We have A = (x)tr. On first sight it may seem that the ideal [A]P,Q is the
principal ideal generated by x. However after looking more closely into the
matter you will realize that in general this is not the case. The OP⊗OQ–ideal
generated by x consists of all elements y ∈ F satisfying

vM ′(y) ≥ vM ′(x) for each transcendental prime M ′(10.20)

vP (y) ≥ vP (x)

vQ(y) ≥ vQ(x) .

Compare this with the description (10.15) of the ideal of multiples of A =
(x)tr. You will see the difference at the contributions of P andQ. Accordingly
the ideal [A]P,Q for A = (x)tr is generated by the element

y = t
−vP (x)
P x t

−vQ(x)
Q
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where tP , tQ are prime elements for P in F and Q in E respectively. The
residue modulo M of this element is

(10.21) yM = (tPµ)−vP (x) ·xM ·t−vQ(x)
Q ∈ E

and hence by (10.19)

vQD(A,M) = vQ(yM).

Summation over all Q gives the degree in E|K. Since the degree of the
principal divisor (xM) in E vanishes we obtain

(10.22) χ(A,M) = − degE|K(Bµ)− degE|K(C)

where I have put

(10.23) B =
∏
P

P vP (x) , C =
∏
Q

QvQ(x) .

Here, P ranges over the primes of F |K and Q over the primes of E|K. Thus
B and C are divisors of F |K and of E|K respectively. In fact, B is the
algebraic part of the principal divisor (x)F|E, and similarly C is the algebraic
part in E|K of (x)F|F .

In order to prove the Lemma 10.12 we have to identify the two terms on the
right in (10.22) with the two terms in the definition of ψ in formula (10.11).

We have (x)tr = A. Hence (x)F|E = AB. Since the principal divisor (x)F|E
has degree 0 we conclude

(10.24) degF |K(B) = degF|E(B) = − degF|E(A) .

The isomorphic image Bµ is a divisor of Fµ and has there the same degree
as B in F |K. In E this degree is multiplied by [E : Fµ] = d′(M), hence

degE|K(Bµ) = −d(A)d′(M) .

Similarly we have (x)F|F = AC and hence

degE|K(C) = − degF|F (A) = −d′(A) = −d′(A)d(M)
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since M is of degree 1 over E. Hence indeed, the right side in (10.22) is
ψ(A,M).

2

The symmetric bilinear form σ(A,B) on the group of coarse divisor classes
is now fully established. I would like to point out again that the essential
idea of the construction consists in building this form around the notion of
different. All other arguments which I have used are algebraic routine and
served only to guarantee the validity of the Lemma. The particular properties
of the different will be used in the following arguments showing that σ(A,A)
is positive definite.

10.2 Positivity

In this section I am going to show that

(10.25) σ(A,A) > 0 if A 6≈ 1

for any transcendental divisor A of F . By definition (10.13) this is to be read
as the so-called

Inequality of Castelnuovo-Severi:

(10.26) χ(A,A′) < ψ(A,A′) if A 6≈ 1 and A′ ≈ A ,

provided A,A′ have no common prime.

I shall first prove this inequality in the case when A = M is a transcendental
prime of degree 1 over E. In this case it will turn out that (10.26) is essentially
equivalent to the well known “Riemann-Hurwitz formula” in function fields.
Thereafter I shall treat the case for arbitrary A. That case will be reduced
to the first case by using a discriminant estimate which follows from the
Riemann-Roch Theorem.

10.2.1 Applying the Riemann-Hurwitz formula

Let M be a transcendental prime divisor of degree 1 over E. As above I
denote by µ : F → E the corresponding isomorphism. I claim that

(10.27) σ(M,M) = 2gd′(M)
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where g ≥ 1 is the genus and d′(M) = [E : Eµ] according to (10.10).

In order to find a divisor M ′ ≈ M which does not contain M choose a
separating element x ∈ F and consider the element x−xµ in the function field
F|E. Its zeros M1, . . . ,Mn are those primes whose residue homomorphism
sends x onto xµ. These are transcendental and mutually different from each
other. Our M is one of them, say, M = M1. After suitably enlarging E
we may assume that each Mi is of degree 1 over E. (See the remark on
page 209.) The pole divisor of x − xµ in Div(F|E) is the same as the pole
divisor of x in F |K , hence algebraic. Thus

(x− xµ)tr ≈MM2 · · ·Mn ≈ 1

and therefore

(10.28) M ′ := (M2 · · ·Mn)−1 ≈M .

For each Mi the corresponding isomorphism µi : F → E coincides with µ
on the rational function field K(x). Consequently µi = µτi where τi is an
isomorphism of Fµ into E which leaves K(xµ) elementwise fixed.

E
d′

tttttttttt

F
µ //________ Fµ

τi //____ Fµτi

K(x)
µ //______

n

K(xµ)

n n

���������������

In the above diagram I have written d′ := d′(M) = [E : Fµ].

The τi are pairwise different and their number is

n = [Fµ : K(xµ)] = [F : K(x)] .

We compute: (The minus sign on the right hand side in the following formulas
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corresponds to the exponent −1 in (10.28).)

χ(M,M ′) = −χ(M,M2 · · ·Mn)

= − degE|K

(
D(µ, µτ2) · · ·D(µ, µτn)

)
= − degE|K

(
D(1, τ2) · · ·D(1, τn)

)
= − degE|K D(Fµ|K(xµ))

= − degF |K D(F |K(x))·d′ .

Here we see the different D(Fµ|K(xµ)) of the extension Fµ|K(xµ) appear,
which is the isomorphic image under µ of the different D(F |K(x)). (Remem-
ber formula (10.5) on page 207.) The factor d′ in the last line is due to the
fact that under the embedding Fµ ⊂ E the degree is multiplied by the field
degree d′ = [E : Fµ].

The degree of the different D(F |K(x)) can be read off from the well known
Riemann-Hurwitz formula:

(10.29) 2g − 2 = degF |K D(F |K(x))− 2n

where g is the genus of F |K. This formula had been transferred to the
algebraic theory of function fields in the paper by F. K. Schmidt [Sch31a]
which I have discussed in Chapter 4. It follows

(10.30) χ(M,M ′) = −2(g − 1 + n)d′ .

In order to compute σ(M,M ′) we have also to consider ψ(M,M ′) which gives
the contribution ψ(M,M ′) = −2(n−1)d′ . (Remember the definition (10.11)
on page 208.) It follows

σ(M,M) = σ(M,M ′) = ψ(M,M ′)− χ(M,M ′)

= −2(n− 1)d′ + 2(g − 1 + n)d′

= 2g ·d′ ,(10.31)

as announced in (10.27).

This holds for every transcendental prime M of degree 1 of F|E. But not
every coarse divisor class 6= 1) contains such a prime – except if the genus
g = 1 in which case the proof of (10.25) is complete.

Remark: In the elliptic case, i.e., if g = 1, the term d′(M) = [E : Fµ]
is what Hasse had called the “norm” N (µ). We see that in this case our



10.2. POSITIVITY 221

quadratic form σ is the same as Hasse’s N , up to the inessential factor 2.
The fact that d′(M) also appears for g > 1 confirms Hasse’s idea that his
“norm” will also play a role for higher genus. (See his letter to Weil of 12. July
1936, cited on page 191.)

10.2.2 The discriminant estimate

Let us now deal with the case of genus g > 1.

Definition: An integer divisor A ∈ F|E is called “non-special”
if dimA = 1 and A has no multiple prime components.

This should also exclude those transcendental primes whose residue field is
inseparable over E. Hence A remains non-special after arbitrary base field
extensions.

I shall have to use the

Lemma: Every coarse divisor class 6≈ 1 of F|E contains a non-
special divisor of degree g.

To verify this, choose a prime divisor Q of E|K. As usual we identify Q
with its unique extension as a prime of F|F . Its residue field is F , thus
Q leads to a good reduction Q : F|E → F |K. With this goes a divisor
homomorphism A 7→ A of Div(F|E) to Div(F |K) which preserves degree
and divisor equivalence, and which leaves algebraic divisors fixed. (Compare
with what I have said about good reduction on page 187. Thus, although
Deuring’s creation of a systematic theory of good reduction had to wait until
1942, its essential content was already known to Hasse and Deuring in the
year 1937, and it was used by them on several occasions.)

Now, starting from an arbitrary divisor A in the given coarse equivalence
class we observe that for any algebraic divisor B ∈ Div(F |K) the divisor
A′ = A(A)−1B is in the same coarse class. We have A′ = B. Choose B
as a non-special divisor of degree g. (It is well known that every function
field F |K with algebraically closed base field K contains infinitely many non-
special divisors of degree g.) Then A′ is of degree g and hence there exists
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an integer divisor A′′ ∼ A′. We have A′′ ∼ A′ = B. Since dim(B) = 1
it follows A′′ = B. From the general theory of good reduction we have
dimA′′ ≤ dimA′′ = dimB = 1. (See page 162.) Hence dimA′′ = 1 and A′′

itself is non-special. By construction A′′ belongs to the same coarse divisor
class as A.

In view of the Lemma we may assume, for the proof of (10.2), that A is non-
special of degree g. Let Atr be its transcendental part and A0 its algebraic
part, so that

A = AtrA0 .

Then σ(A,A) = σ(Atr, Atr). I claim that

(10.32) σ(Atr, Atr) ≥ 2d′(Atr) if Atr 6= 1 .

where d′(Atr) is the degree of Atr over F (see the definition on page 208).

After enlarging E if necessary we may assume that all components of Atr are
of degree 1. (See the remark on page 209.) We write

Atr = M1M2 · · ·Mr with r ≤ g

where the Mi are different transcendental primes of degree 1 with correspond-
ing isomorphisms µi : F → E. We have µi 6= µj for i 6= j. Put

(10.33) d′i = d′(Mi) , d′ =
∑

1≤i≤r

d′i = d′(Atr).

We compute using (10.27): (I assume r > 1 since the case r = 1 has been
discussed already and would be trivial in the following discussion.)

σ(Atr, Atr) =
∑
i

σ(Mi,Mi) +
∑
i 6=j

σ(Mi,Mj)

= 2gd′ +
∑
i 6=j

ψ(Mi,Mj)−
∑
i 6=j

χ(Mi,Mj)

= 2gd′ + 2(r − 1)d′ − χ

(∏
i 6=j

D(µi, µj)

)
.

The divisor
∏

i 6=j D(µi, µj) is called the discriminant of µ1, . . . , µr and is
denoted by d(µ1, µ2, . . . µr), or briefly d(µ). (Here I follow the notation of
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Hasse in his book [Has02] where capital D(· · · ) is used for the different divisor
and lowercase d(· · · ) for the discriminant divisor. In the classical case, when
the µ1, . . . , µr are the isomorphisms of a finite separable extension F |F0 into
its algebraic closure then d(µ) coincides with the usual discriminant d(F |F0)
of this extension.)

Thus the proof of the inequality (10.32) is reduced to the

Discriminant estimate:

(10.34) χ d(µ) ≤ 2(g + r − 2)d′

which then will show (10.32).

Let Q be a prime of E. The local definition of the different on page 206
yields for the discriminant:

(10.35) vQ (d(µ)) = min
x

vQ

(∏
i 6=j

(xµi − xµj)

)

where x ranges over those elements in F for which all xµj are
Q-integer.

Let us write Pj = µjQ (1 ≤ j ≤ r). These primes are not necessarily distinct.
The above condition says that x should be Pj-integral for every Pj.

In the classical case, when discussing the discriminant of a finite separable ex-
tension, it is well known that discriminants can also be computed by suitable
determinants. The same applies here in our more general case:

First we notice that the product appearing on the right side in (10.35) can
be written as the square of a determinant:

(10.36)
∏
i 6=j

(xµi − xµj) = ± det

∣∣∣∣∣∣∣∣
1 xµ1 x2µ1 · · · xr−1µ1

1 xµ2 x2µ2 · · · xr−1µ2

· · · · · · · · · · · · · · ·
1 xµr x2µr · · · xr−1µr

∣∣∣∣∣∣∣∣
2

On the other hand, let u1, u2, . . . , ur be any K-linearly independent elements
in F which are Pj-integer for every Pj . Consider their determinant
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(10.37) dµ(u) := det

∣∣∣∣∣∣∣∣
u1µ1 u2µ1 · · · urµ1

u1µ2 u2µ2 · · · urµ2

· · · · · · · · · · · ·
u1µr u2µr · · · urµr

∣∣∣∣∣∣∣∣
Developing each ui into a local power series with respect to a common prime
element x ∈ F for the Pj one obtains a Q-adic series for dµ(u) having the
determinant appearing in (10.36) as its lowest term (with some coefficient in
K). The other terms are the determinants which appear when replacing
1, x, x2, . . . xr−1 on the right side of (10.36) with xk0 , xk1 , . . . , xkr−1 where
k0 < k1 < · · · < kr−1 (again with coefficients in K). Conclusion:

(10.38) vQ(d(µ)) ≤ 2 vQ(dµ(u)) .

The factor 2 here corresponds to the exponent 2 in (10.36). This leads to
the following statement:

(10.39) vQ(d(µ)) = 2 min
u
vQ(dµ(u))

where u = (u1, u2, . . . ur) range over those r-tuples in F for which
all uiµj are Q-integer. In other words: if we put Pj = µjQ then
the ui should be Pj-integer for 1 ≤ i, j ≤ r.

This statement generalizes what Hasse in his book [Has02] has called “Second
Discriminant Theorem”.

This being said, let B be an integer divisor of degree g + r − 2. This is the
term appearing on the right side of the discriminant estimate (10.34) which
is to be proved. Choose the ui ∈ L(B). Then (10.38) holds for those primes
Q of E for which none of the Pj appear in B. There are only finitely many
exceptional Q, for which at least of the corresponding Pj Pj appears in B.
Choose b ∈ F such that vPj(b) = vPj(B) for each of these exceptions. Then
the bui are Pj-integer for all these exceptions and hence

vQ(d(µ)) ≤ 2 vQ(dµ(bu)) .

for those exceptional primes Q. Note that

dµ(bu) = dµ(u) ·
∏
i

bµi



10.2. POSITIVITY 225

which gives for those exceptional Q:

(10.40) vQ(d(µ)) ≤ 2 vQ(dµ(u)) +
∑
i

vQ(Bµi)

since vQ(bµi) ≤ vQ(Bµi) by construction. Summing over all Q gives the
degree in E. The degree of the principal divisor (dµ(u)) vanishes. The degree
of Bµi equals the degree of B multiplied with d′i = [E : Fµi]. This gives

χ(d(µ)) ≤ 2
∑
i

(g + r − 2)d′i = 2(g + r − 2)d′

which is the discriminant estimate (10.34).

If this would not be the manuscript for a book but if I would present this
proof in a lecture course then I would stop at this point and look expectantly
to the audience, awaiting a reaction, perhaps a comment, or a question, or
protest. I would hope that someone in the audience would have seen that
the proof of the discriminant estimate as given above is not yet complete.
The question I would have waited for is:

What if the determinant dµ(u) = 0 ?

Well, if this would be the case then the proof would break down. So I have
to look for an argument that indeed dµ(u) 6= 0 for a suitable integer divisor
B of degree g + r − 2 and suitable elements u1, . . . ur of L(B). Note that
until now I have not yet used the property of A to be non-special. This will
now come into the play.

Let W be a canonical divisor of F |K. Its degree is 2g − 2. Let us choose a
divisor B of F |K such that

(10.41) B ∼ WA−1
0

where A0 is, as above, the algebraic part of the non-special divisor A. The
degree of A0 is g − r and hence

deg(B) = g + r − 2

as required in (10.34). The Riemann-Roch Theorem shows

dim(B) = r − 1 + dim(A0) = r
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since A0 is non-special as part of A and hence dim(A0) = 1. In particular
we see that B can be chosen to be integer in its class. I claim that for this
divisor B the determinant dµ(u) 6= 0, for any basis u1, . . . , ur of LF |K(B).

Here I have used the index F |K for L in order to indicate that this module
of multiples is to be taken in the function field F |K. Similarly LF|E refers
to the function field F|E. Since

LF|E(B) = LF |K(B)⊗K E

it suffices to exhibit an E-basis u1, . . . , ur of LF|E(B) for which dµ(u) 6= 0.
Recall that the maps µi : F → E are induced by the residue maps of the
transcendental primes Mi which appear in Atr. As such they extend uniquely
to E-linear maps F ⊗E → E and hence to maps µi : LF|E(B)→ E. In this
way dµ(u) ∈ E is well defined for any E-basis u1 . . . , ur of LF|E(B).

Consider those elements from LF|E(B) which are divisible by all but one
of the transcendental primes in Atr, say, by M2M3 · · ·Mr. They form an
E-submodule, namely LF|E(BM−1

2 · · ·M−1
r ) = LF|E(WA−1M1). We have

degWA−1M1 = g − 1 .

By Riemann-Roch we compute

dimWA−1M1 = g − 1− g + 1 + dimAM−1
1 = 1

since AM−1
1 is non-special as part of the non-special divisor A . Let u1 be a

generator of this submodule. By definition u1µi = 0 for i > 1 . But u1µ1 6= 0
since the module LF|E(WA−1) is of dimension 0 by Riemann-Roch. After
multiplying by a suitable factor from E we may assume that u1µ1 = 1.

Similarly for each i we find ui ∈ LF|E(B) with

uiµj =

{
1 if i = j

0 if i 6= j
for 1 ≤ i, j ≤ r .

Hence dµ(u) is the determinant of the unit matrix.

Remark: A detailed investigation of the above determinant dµ(u) shows
that in (10.34) and hence in (10.32) we even have equality “=” instead of
“≥” if r > 1.
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10.3 The RHp

The foregoing sections refer to a function field F |K with algebraically closed
base field K. But the RHp refers to a function field with finite base field. So
let Fq|Kq be a function field with finite base field of q elements. (Sometimes
people write Fq to denote the field with q elements but in the present context I
preferKq in order to reserve the letter F for function fields.) LetK denote the
algebraic closure of Kq and F = FqK the corresponding base field extension.
The results of the foregoing section will be applied to F |K.

The RHp is concerned with the number N of primes of degree 1 of Fq|Kq.
Each such prime P extends uniquely to a prime of F |K which likewise is
denoted by P . The proper object for singling out these primes among all
primes P of F |K is the Frobenius meromorphism π of F |K. By definition,
π : F → F q is the unique K-isomorphism of F into itself which induces in Fq
the operation x 7→ xq. For an arbitrary prime P of F |K consider the prime

πP = NF |F q(P )·π−1 ,

with the notation I have introduced on page 122 and used since then. We
have

(10.42) πP = P ⇐⇒ FqP = Kq ,

i.e., if and only if P induces in Fq a prime of degree 1. I have shown this
already in section 7.4.4 (see page 134) while discussing the elliptic case, and
it is not necessary to repeat this argument here.

Consider the different D(1, π) as defined on page 206. Here “1” stands for
the unit meromorphism which changes nothing. From what I have said on
page 206 it follows that D(1, π) consists precisely of those primes P of F |K
for which πP = P . For each such P choose a prime element t ∈ Fq; then
vP D(1, π) = vP (tq − t) = 1. (See page 206.) Hence P appears in D(1, π)
with multiplicity 1. We conclude that

(10.43) degF |K D(1, π) = N .

This puts into evidence that the different divisor D(1, π) is the proper object
to count the number N of primes of degree 1 of Fq|Kq.
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However, in the foregoing sections we did not talk about meromorphisms
but about transcendental primes. The connection between both notions is
as follows: Take a function field E|K which is isomorphic to F |K. The
isomorphism is denoted by δ : F → E. With this E the “double field”
F = FE is built.

F

F
δ //________________

xxxxxxxxxxxxxxxxxxx
E

EEEEEEEEEEEEEEEEEE

F0

||||||||
F q
!!π

CCCCCCCC
δ //_______ Eq

}}}}}}}}

F q
0

  π

AAAAAAA

}}}}}}}}

K

@@@@@@@@

~~~~~~~~

K0

AAAAAAAA

~~~~~~~~

The isomorphism δ : F → E defines a transcendental prime ∆ of F|E with
degF|E(∆) = degF|F (∆) = 1. (This divisor ∆ can be viewed as a “diagonal”,
this explains the notation. Compare section 10.5.) Similarly πδ : F → Eq

defines a transcendental prime Π with degF|E(Π) = 1 and degF|F (Π) = q.
Hence ψ(∆,Π) = 1 + q. Moreover, the different D(∆,Π) = D(δ, πδ) is just
the isomorphic image under δ of D(1, π) and thus has degree χ(∆,Π) = N .
It follows by definition of σ (see page 209):

σ(∆,Π) = 1 + q −N .

This being said, consider the subgroup of the group of coarse divisor classes
which is generated by the two elements ∆ and Π. The positive definite
quadratic form σ induces in this subgroup a quadratic form which likewise
is positive definite. This implies that the following determinant is positive:

det

∣∣∣∣σ(∆,∆) σ(∆,Π)
σ(∆,Π) σ(Π,Π)

∣∣∣∣ = det

∣∣∣∣ 2g 1 + q −N
1 + q −N 2gq

∣∣∣∣ = 4g2q−(1+q−N)2 ≥ 0 .
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Here I have used the value of σ(Π,Π) as determined in (10.2.1) on page 216 ,
and similarly for σ(∆,∆). This gives

(10.44) |N − q − 1| ≤ 2g
√
q ,

which yields the RHp in view of Artin’s criterion (see page 71).

10.4 Some Comments

10.4.1 Frobenius meromorphism.

First we observe that this proof uses the Frobenius meromorphism π , as did
Hasse’s proof in the case of genus g = 1.

This appears quite natural since π singles out the primes of degree 1 of Fq|Kq .
Hasse had discovered this in the elliptic case (see page 115). Hasse was quite
aware that this fact is not limited to the elliptic case and holds for function
fields Fq|Kq of arbitrary genus. But there is a difference. In the elliptic case
the primes of degree 1 are interpreted as the rational points of the Jacobian,
accordingly their number N appears as the order of the kernel of π − 1, the
latter considered as an endomorphism of the Jacobian J . This had been used
by Hasse in writing down N (π− 1) = N (see page 134). In the case of genus
g > 1 the number N of primes of degree 1 of F |K is in general not the same
as the number of rational points of the Jacobian. Therefore, the action of π
or π − 1 on the Jacobian does not play any role in the above proof of the
RHp. Instead, N appears as the degree of the different D(1, π) (see (10.43)).

(Actually, I should have denoted the Frobenius meromorphism by πq in order
to point out that it depends on the base field Kq. In our proof q was fixed,
but in order to derive the RHp by Artin’s criterion one has to use (10.44) not
only for q but also for base fields with order a power of q. See section 4.5. By
the way, if g > 1 then there exist no other meromorphisms of F |K than π
and its powers, (besides automorphisms). This is the reason why the notion
of meromorphism is not widely known or used in the theory of function fields.
It is of interest in the elliptic case only, due to the fact that for g = 1 the
function field is at the same time the function field of its Jacobian. And
instead of “meromorphism” one now says “isogeny”.)
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In fact, at no point of the “virtual” proof it was necessary to refer to the
action of the coarse divisor classes of F|E on the Jacobian J(F ). Thus Deur-
ing’s theorem was not needed at all. (I mean his theorem that the group of
coarse divisor classes is isomorphic to the (additive) group of endomorphisms
of the Jacobian, see page 188.) The role of Deuring’s theorem is reduced to
merely provide a motivation to construct the positive definite quadratic form
on the group of coarse divisor classes. The Jacobian J(F ) and its endomor-
phism ring did not appear in the proof. Strangely enough this observation
has never been explicitly pointed out in the literature. (But implicitly this
can be seen in the later paper by Mattuck and Tate who derived the quadratic
form from the Riemann-Roch Theorem for surfaces; see chapter 13.) It sug-
gests that the same or similar arguments of this proof can be used also in
other arithmetic problems for function fields, e.g., in fixed point theorems or
in questions of rational points of curves over number fields. Some work in
this direction has already been done. See, e.g., [Roq76], [Kan80].

10.4.2 Differents.

Secondly, we observe that our construction of the quadratic form σ is based
on Hilbert’s notion of “different” as a divisor. I would like to mention again
that Hasse, in his work with elliptic function fields, had already met differents
like (10.4) and determined their prime decomposition. (See formula (7.21)
on page 131.) Hasse had used it in his proof of the essential norm addition
formula. And in his quest for the generalization to function fields of higher
genus, he seems to have guessed that again the different would play a role.
See his letter to Siegel of 19. December 1935 from which we have cited on
page 180. There he wrote that one would have to determine the zeros and
poles of a function like ϕ(µz)− ϕ(νz), given two endomorphisms µ, ν of the
Jacobian. But, although Deuring in 1936 had given him a good pass with
his theory of correspondences, Hasse did not catch the ball. I have not found
any document of those years indicating that Hasse had tried to use differents
in the case of genus g > 1.
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10.4.3 Integer differentials

In his letter to Weil of 12. July 1936 Hasse mentioned that the “behavior of
the differentials of the first kind” under the correspondences was still un-
known. (See page 191.) At that time he did not yet know that Deuring
had already been able to construct the representation of the group of cor-
respondences M as linear maps of the space of integer differentials1 of F |K
to the space of integer differentials of E|K. Deuring informed Hasse about
this in his letter of 16. July 1936 but at that date Hasse was already in Oslo
at the ICM. Deuring’s result appeared in the second part of his paper on
correspondences [Deu40]. This representation is not faithful since the space
of differentials is of characteristic p while M is of characteristic 0. Certainly,
Hasse was well aware of this fact. I do not know what information Hasse
expected to gain from the study of this representation. Anyhow, while prov-
ing the positive definiteness of σ we have seen that some kind of “period
matrix” turned up in the proof, see formula (10.37) on page 220 combined
with (10.41) on page 221. The estimate of that determinant was essential for
the positive definiteness. Did Hasse have this in mind when he spoke about
the abstract analogue of the period matrix ?

10.5 The geometric language

Geometrically, if F = K(Γ) and E = K(B) are interpreted as the function
fields of smooth curves Γ,B respectively then the “double field” F = FE
may be interpreted as the field of functions of the surface Γ× B :

F = K(Γ× B.)

1There is some ambiguity in the use of the words “integral” and “integer”. In analysis
an “integral” means the result of “integrating” a differential f(x)dx, the result being de-
noted by

∫
f(x)dx in the notation of Leibniz. In number theory the attribute “integral” is

sometimes used in the meaning of “being an integer”. In order to avoid misunderstandings
I do not use here “integral” in this meaning. Instead, I use “integer” also as an attribute.
In the theory of function fields this is interpreted as having no denominator or pole; this
can happen not only for divisors but also for differentials. Classically one says “differential
of the first kind” instead of “integer differential.”
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All of the above “virtual proof” can be directly translated into the language
of algebraic geometry in the following way.

Γ×B is a surface without singularities. Its prime divisors are the irreducible
curves on Γ×B. The local ring of such curve is a valuation ring, which means
that the curve is given by a valuation of F . There are three kinds of such
valuations which belong to Γ× B: The first two kinds of valuations we have
already met in section 10.1 on page 204. These are, firstly, the “transcen-
dental” primes which are trivial on F and on E, and secondly those primes
which are trivial on E but not on F . The latter are called the “algebraic
primes in F |K” and are corresponding to the curves P × B on Γ× B where
P is a point of Γ. But now we have also to consider the “algebraic primes
in E|K” which correspond to the curves Γ × Q with Q a point in B. Thus,
if we wish to work on the surface Γ × B then its divisor group is the direct
sum of three groups (instead of just two when we considered F as a function
field over E, see page 205):

(10.45) Div(Γ× B) = Divtr(Γ× B)⊕Div(Γ)⊕Div(B) .

I said “direct sum” since in geometry the group operation on divisors is usu-
ally written as addition whereas until now I had written it as multiplication
in order to point out the analogy to number theory.

An important notion in this geometric environment is that of intersection
multiplicity. In the general foundation of algebraic geometry the intersec-
tion multiplicity of two varieties is not so easy to define. There were quite
a number of attempts to obtain a satisfactory algebraic definition in order
to include all possible cases. Van der Waerden had been active in this en-
deavor (in the 1930s) but also a number of other people, including Weil
in his “Foundations” [Wei46] since he had not been satisfied with van der
Waerden‘s approach. (Weil had written this in his letter to Artin, cited on
page 273.) But in the special situation of curves on a surface of the form
Γ× B the situation had been quite clear all the time:

Let M be an irreducible curve (prime) on Γ× B. A point (P,Q) of Γ× B is
contained in M if and only if its local ring OP,Q is contained in the valuation
ring OM . Here, OP,Q is a two-dimensional regular local ring; its maximal
idealMP,Q is generated by prime elements tP ∈ K(Γ) and tQ ∈ K(B). This
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ring admits unique prime factorization of elements. M is represented in OP,Q
by a prime element tM ∈ OP,Q , and OM is the ring of quotients of OP,Q with
respect to the prime ideal generated by tM . If (P,Q) is also contained in the
irreducible curve N 6= M of Γ×B then the intersection multiplicity of (P,Q)
in the intersection of M and N is defined as:

(10.46) dimK OP,Q/〈tM , tN〉

where 〈tM , tN〉 denotes the ideal generated by tM and tN . And the global
intersection multiplicity I(M.N) is defined as the sum of these numbers over
all the (finitely many) points (P,Q) which are contained in M as well as
in N . The intersection M.N itself is the 0-cycle of Γ×B consisting of all the
above points (P,Q) with the multiplicities given by (10.46).

It is an exercise in commutative algebra to verify that this number I(M.N)
equals what I have denoted on page 208 by χ(M,N) provided M 6= N are
transcendental primes.

Remark: The proof of the product formula (10.14) on page 210 could have
been somewhat simplified if instead of the tensor product Op⊗OQ one would
work with the local ring OP,Q. For, in this ring the ideals of multiples
of divisors become principal. The reason why I have chosen to work with
OP ⊗ OQ is that this would have been more in Hasse’s style, as he himself
has stated in [Has68].

In this way the above “virtual proof” can be entirely translated into the
language of algebraic geometry. In fact, what Weil did in 1941 in [Wei41]
and also later in the final version [Wei48a] is largely identical with our proof –
or better, our proof is largely a translation of Weil’s proof. Such a translation
had been done in the year 1951 in Oberwolfach by a young student of Hasse.
See [Roq53].

What is the conclusion?

As I have said at the beginning of this chapter and shown in the virtual
proof, the RHp could have been obtained already in 1937, in the framework
of Hasse’s theory of function fields on the basis of Deuring’s theory of cor-
respondences, since all the necessary prerequisites were available. But now
we see that this does also hold with respect to the framework of algebraic
geometry. I conclude that the delay in finding the final proof of the RHp was
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not caused by the fact that the protagonists worked in an improper mathe-
matical framework or language, but by the inherent difficulty to find the way
to the envisaged positive definite quadratic form – be it within the theory of
function fields or algebraic geometry.

Summary

In this chapter it is put into evidence that the proof of RHp could have been
given in 1937 already, following the line which Deuring had proposed. All
the prerequisites were available at that time within Hasse’s algebraic theory
of function fields.



Chapter 11

Intermission

If one would compare our story with a concert, then Artin’s thesis together
with F. K. Schmidt’s paper would pass as the first and second part of the
Introduction (chapters 3 and 4). Hasse’s work on the elliptic case (chapter 7)
would be the first movement allegro assai with the theme set by Davenport
(chapter 6). Deuring’s theory of correspondences (chapter 9) would pass as
the second movement sostenuto, covering the attempt towards higher genus.
The insertion of the virtual proof (chapter 10) may go as scherzo allegretto.

But if we look at the years after 1937 then I could compare those years as
intermission only, since nothing of importance towards the solution of RHp
for genus g > 1 can be seen. It was not so that nothing happened towards
the RHp, but the activities happened behind the scene (if I am allowed to
continue this picture). The musicians practiced their part without coming to
the open with a coherent piece. Should I skip this period? I am somewhat
hesitating. On the one hand I suppose that at this point the reader will be
anxious to come to the finale presto, i.e., Chapter 12 describing that and
how Hasse’s project concerning the RHp was taken over and completed by
A. Weil. This would speak in favor of skipping the present Chapter 11. On
the other hand, I believe that also small happenings connected to the RHp
may be of historic interest. In this spirit I shall now briefly report, in this
intermission, on the happenings in the years after Hasse’s workshop in 1937,
as far as they are connected with the RHp.

235
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11.1 Artin leaves

Shortly after the Göttingen workshop which ended on Friday 8. January 1937,
Hasse visited Artin in Hamburg. I do not know the original purpose of this
visit. But it seems not unlikely that he wished to inform Artin about the out-
come of the workshop. After all, Artin had been the first who had formulated
and investigated the RHp. He had provided an important contribution during
Hasse’s visit in Hamburg in the year 1932 (see page 78). Surely Hasse re-
membered also his discussion with Artin in January 1934 when they mapped
a road to the RHp for higher genus, which went via the g-dimensional Jaco-
bian variety (see page 171). And now Hasse may have wished to inform Artin
about Deuring’s concept of correspondences which promised a route circum-
venting the higher dimensionality of the Jacobian variety (see section 9.3.1).
But as said above, I can only speculate why Hasse wished to meet Artin in
January 1937.

I have no evidence that at this visit there arose a mathematical discussion
between the two. But I know that Hasse had heard, either on this visit
or already in Göttingen, that Artin had applied for a leave of absence for
about one year. Artin intended to follow an invitation as visiting professor
to Stanford University in Berkeley, and also from the Carl Schurz Memorial
Foundation for a lecture tour through the USA. Artin had submitted his
application to the University of Hamburg some days ago, on 5. January 1937.1

These news came as a shock to Hasse. For, under the given circumstances
this would in all probability lead to the permanent emigration of Artin. His
wife Natascha was of half Jewish origin according to the Nazi definitions,
and Artin had to worry about the future of his family in Germany. Quite
generally, Hasse2 regarded the forced emigration of so many excellent mathe-
maticians as a heavy loss for science in Germany. In some cases (e.g., for
Emmy Noether) he had actively tried to find a way to keep them in Germany
but without success. And now Artin too was about to leave. Already in 1934,
it seems, there had circulated a rumor that Artin may contemplate to emi-

1According to [DS15] it was Lefschetz who had been instrumental in securing the
necessary financial means for a stay of Artin in the USA. Recently I have been informed
by Karin Reich that, according to Natascha Artin, also Courant had been active in this
direction.

2And not only Hasse.
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grate. I conclude this from a letter of Hasse to Blaschke, dated 31. October
1934, where it reads:

“What you write about Artin I have already heard from Hecke. I
am moved a lot by this since it is a shame that we should lose
him from Germany.”

It is understandable that, when Artin now told him about his decision to
accept the invitation to the USA, Hasse tried to talk him into remaining in
Hamburg. This was in vain under the circumstances. Hasse’s next letter
to Artin, dated 14. January 1937, contains heartfelt thanks in particular to
Mrs. Artin for the friendly reception in his house, but it contained no mathe-
matics. In the long series of letters between Hasse and Artin this is the first
one which does not contain any math.

How Artin was fired from the University of Hamburg and forced to emigrate
has been described in detail by Wußing in [Wuß08]. Artin left Hamburg
on 20. October 1937. I am citing from a letter of Hasse to Hecke dated
21. October 1937:

“In the meantime you will have managed the farewell parties for
the Artins. This affects me really heavy. I have written some
goodbye lines to Artin; this was quite difficult for me.”

Finally Artin did not go to Stanford but to the University of Notre Dame,
Indiana. One year later he changed to Bloomington and 1946 to Princeton
University.

During the following years there were only few letters exchanged between
Hasse and Artin, and these of personal kind only. See [FLR14]. (After the
war the correspondence between Artin and Hasse was revived, and also their
friendship.) But Artin does not leave our story entirely. We shall meet his
name again in the context of Weil’s work in Chapter 12.
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11.2 The Italian connection

11.2.1 Severi

As I have reported in section 9.5, Hasse had heard from Weil and from
Lefschetz that the solution of his problem, i.e., the algebraic definition of a
positive quadratic form on the correspondences, may perhaps be found in the
framework of Italian algebraic geometry – provided the geometric statements
and proofs can be transferred to characteristic p . Weil had mentioned the
“Trattato” of Severi [Sev26]. Therefore, in view of the unsatisfactory outcome
of the recent workshop in Göttingen Hasse held a seminar based on Severi’s
book in the summer semester of 1937. He wished to become more familiar
with the concepts and the language of Italian algebraic geometry.

He also wished to get into closer contact to Francesco Severi. The occasion to
meet Severi arose soon. The University of Göttingen planned to celebrate its
200th anniversary at the end of June 1937. As usual in academic institutions
the celebration was planned with some amount of pomp and, in particular,
on an international scale. Delegations of other European and non-European
universities were invited. Note that it was the year 1937. Quite a number of
foreign academic institutions and academicians refused to participate, as a
protest against the expulsion of so many scientists from the German academic
scene and more generally against the dictatorial rule of the Nazi government,
in particular against antisemitism. Others, who also observed with abhor-
rence the atrocities of the Nazi regime, decided to participate nevertheless, in
order to express to the German colleagues their solidarity in difficult times.

Hasse had heard (from Blaschke) that Francesco Severi, being one of the most
prominent academic figures in Italy, also had received an official invitation
to the celebration. He took the opportunity and invited Severi to deliver a
mathematical lecture. Hasse wrote to him on 19. April 1937:

“. . . I am taking the liberty to ask you on this occasion to deliver
a lecture about your present work. The subject of my seminar in
the present semester is based on your book “Trattato di geometria
algebraica”. The nomenclature of your papers is still somewhat
foreign to us but I hope that until the end of the semester my
students will be sufficiently acquainted with it.”
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Severi accepted, and his talk was scheduled for 28. June 1937 at 9 a.m. with
the title:

New conceptions and problems of algebraic geometry.

The language of Severi’s talk was French.

In another letter dated 17. June 1937 Hasse invited Severi to live in his
(Hasse’s) house during his stay in Göttingen. Severi gratefully accepted.
Thus Hasse and Severi had ample opportunity during the days of the cel-
ebration to meet and talk privately, off the formal occasions. Geppert had
been asked by Hasse to act as interpreter during this time.

Harald Geppert (1902-1945) had an Italian mother and was fluent in Italian
language. He had studied in Breslau and Göttingen and held a Dozentur in
Giessen 1935-1940, thereafter a position as professor in Berlin. He had done
some work in algebraic geometry, in particular on algebraic surfaces. Geppert
was well acquainted with the mathematical scene in Italy. Hasse used to ask
Geppert for help and advice whenever he wished to establish contacts with
Italian mathematicians, and also for translation between German and Italian
language. For biographical information about Geppert see [Käh64].

I have not found any record about the content of the conversation between
Hasse and Severi in Göttingen. But I believe it is safe to assume that
Hasse mentioned his problem concerning the transfer of the “inequality of
Castelnuovo-Severi” into the algebraic setting. (See page 214.) I am not so
sure whether Severi was willing and able to understand the necessity of such
transfer.

Side Remark: It is an academic tradition that on such jubilee the degree
of “honorary doctorate” will be transferred upon some distinguished scien-
tists. Hasse had proposed the name of Severi in this connection and this had
been accepted by the Faculty and the University Board of the University of
Göttingen. It also had been permitted by the German ministry of education
– at that time such permission was absolutely necessary. However, some
days before the beginning of the celebration Hasse was asked by the ministry
to abstain from the plan of honorary degree for Severi. As the reason for
this sudden withdrawal it was said that the German embassy in Rome had
not been able to guarantee that Severi does not have “non-Aryan” ancestors.
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Hasse was much disturbed and sent several letters to people whom he thought
to have political influence on the relevant government agencies. Finally, in
the last minute the withdrawal was withdrawn and the formal celebration of
honorary doctorate for Severi could proceed as planned.

One year later Hasse and Severi met again, at the annual meeting of the Ger-
man Mathematical Society (DMV) in Baden-Baden. There, Severi delivered
a talk on 13. September 1938. In a letter announcing this to Hasse, dated
26. August 1938, he expressed his hope to meet Hasse there. He wrote:

“We could speak about the topic of the note “Application of the
theory of algebraic functions” etc. which you sent me and which
I have read with interest.”

Here Severi refers to Hasse’s note [Has37a]. But this note is only part of a col-
lection of somewhat popular essays from the Mathematical-Physical section
of the “Gesellschaft der Wissenschaften zu Göttingen”. It does not mention
any of the special questions and problems which Hasse was confronted with
in his project of proving the RHp. It seems to me doubtful whether it could
have been a proper basis of a fruitful exchange of scientific views about the
problems of algebraization of the theory of correspondences.3 In any case,
during their meeting in Baden-Baden they agreed to the following:

1. Severi would send reprints of his articles dealing with results and me-
thods which possibly could help Hasse in his endeavor.

2. They would try to start an exchange of younger mathematicians from
the Italian school of algebraic geometry and the German school of al-
gebra with the aim to establish closer cooperation.

But it turned out that both these schemes did not quite work as planned. As
to the first item, I read in a letter of Hasse to Geppert dated 11. November
1938:

3On the other hand, this note reveals that Hasse’s interest had somewhat shifted, or
I should better say expanded, to the theory of function fields over base fields which are
algebraic number fields. There are also several other sources which indicate this shift of
interest. See, e.g., [Has42a] or the last section of [Has42b].
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“. . . After my conversation with Sua Eccellenza [Severi] in Baden-
Baden I soon received a letter in which he cited almost all papers
of Rosati. In particular he mentioned one paper in which the
theorem of the minimal equation for correspondences is proved. I
have looked up the review about this and other papers of Rosati
and Severi in the encyclopedia article by Berzolari. I have not
found any rudiment pointing to a purely algebraic treatment of
the singular correspondences . . . Severi says in his letter that the
periods cannot be algebraized but, in his opinion, the topological
tools (cicli) could. But I do not see how this can be done . . . ”

Thus Hasse was still trying to understand the mathematical language of Ital-
ian algebraic geometry – apparently without much success. In retrospective
we know today that indeed the notion of “cycles” (cicli) is a useful tool in
algebraic geometry. It seems that Hasse had observed this. But at that
time this notion had been introduced into algebraic geometry as a topolog-
ical tool, and Hasse did not see how to translate it into algebra. Today we
know it can be done, as had been foreseen by Severi. In an n-dimensional
(non-singular) variety the (n−1)-cycles are the divisors, and Hasse was used
to work with divisors, of course. It appears that he had problems with the
notion of lower-dimensional cycles since they are not associated to valuations.

But Deuring in his theory of correspondences had shown how to work, in
the case at hand, exclusively with divisors without explicitly using lower-
dimensional cycles : In algebraic geometry the “double field” F = Quot(F ⊗
E) is considered as the function field of a 2-dimensional variety, viz. the
direct product of two curves. (I am referring to Chapter 10.) Among the
1-dimensional cycles of this variety there are what I have called “transcen-
dental” divisors. The intersection of two such transcendental divisors A,B
is a 0-cycle. This can be represented by a divisor of the curve with function
field E, namely the different D(A,B). If Hasse would have followed this idea
then he would have to deal exclusively with divisors which he was used to:
once with the transcendental divisors of F|E and thereafter with the divisors
of E|K. So why did he not follow the path which Deuring had opened, and
proceed straight to his envisaged proof of the RHp? Of course we will never
know the true reason (if there is one). I have the impression that he did
not see the analogy between the notion of intersection of curves on algebraic
surfaces, and that of different in algebraic number theory.
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As to the envisaged exchange of young mathematicians between Italy and
Germany, things could not be realized as planned. From the correspondence
Hasse-Geppert it appears that Bompiani was assigned to be in charge of
the Italian side for this plan. But after the outbreak of World War II in
September 1939 those plans were postponed. Although Hasse on 5. January
1940 still wrote to Bompiani that he wished to have a young Italian mathe-
matician in Göttingen “in order to learn much of the great results of Italian
algebraic geometry”, he had finally to cancel this. For, on 4. April 1940 Hasse
was conscripted to join the research department of the Navy headquarters in
Berlin.

11.2.2 The Volta congress

The Royal Academy of Italy in Rome had planned its 9th Volta congress for
October 1939. The main theme was set as

Contemporary Mathematics and its Applications.

The organization of this congress seems to have been in the hands of Severi.
From Germany a number of mathematicians had been invited, among others
I found the names of Blaschke, Caratheodory, Wirtinger, Erhard Schmidt,
Süss, Reidemeister, Geppert, and Hasse. This was a relatively large group
from Germany. The German ministry named Hasse as the chairman of the
delegation. In those years it seemed necessary for political reasons that there
was an official chairman in such a situation, the politically correct name
in the Nazi jargon was “Delegationsführer”. But Hasse did not agree with
this nomination. He proposed Blaschke as chairman because Blaschke, he
wrote, was much more acquainted with the mathematicians in Italy and
their mathematics. However, when Blaschke told him (in a letter of 26. June
1939) there would be the possibility that Bieberbach could be nominated as
chairman then Hasse finally accepted. It appears that nobody would have
been happy with Bieberbach as Delegationsführer.

In July 1939 Hasse started to write down the manuscript for his talk at the
Volta congress. The title of the talk was

Rational points on algebraic curves modulo p .

In a letter to Geppert in Gießen dated 18. July 1939 he wrote that he wished
to present this manuscript in Italian language, and he asked for help in the
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translation. Geppert agreed, and Hasse visited him in Gießen for a week
in August in order to work with him on the translation. The matter was
somewhat urgent since Severi wished to have the manuscripts for the talks
by mid-August, so that the printed papers would be available already at the
congress in October.

The paper in its printed form has 58 pages. It contains a survey of Hasse’s
proof of the RHp in the elliptic case, as well as Deuring’s algebraic theory
of correspondences for function fields of arbitrary genus. As Hasse wrote to
Geppert, he considered this paper as a contribution to the mutual under-
standing of the German and the Italian schools of algebra. But he added:

“I hope that the content of this paper will meet the approval of His
Excellency [Severi] and will not lead to a disgruntlement towards
the German school of algebra. Although my knowledge of the
Italian literature is somewhat cursory only, I have the impression
that the theory of correspondences, in the form as developed there,
cannot be translated directly to the case of a finite base field. For
myself, this is the only justification not to be content with a theory
based on continuity arguments or transcendental tools (periods,
integrals).”

I have cited this text since here Hasse utters quite clearly his motivation
for the search of a purely algebraic base for his proof. Perhaps, if there
would have been more time available to become acquainted with the Italian
literature, Hasse would have realized that indeed, there did exist a theory of
correspondences of algebraic curves, developed in Italy, without essential use
of transcencental tools and that his and Deuring’s version can be seen as a
transfer of geometric ideas into the language of modern algebra.

But time was not available. The Volta Congress which originally had been
planned for October 1939, was postponed indefinitely since in September
the war (WW II) had begun. Hence Hasse did not get the opportunity
to present his view and discuss it with his Italian colleagues. Nevertheless
Hasse’s manuscript, having been submitted in August already, was printed.
I do not know whether and when reprints became available to the mathe-
matical public. The reprint which I found among the Hasse papers carries
1940 as the year of printing. The refereeing journals give 1943 as the year
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of publication. In the Jahrbuch der Fortschritte der Mathematik and Zen-
tralblatt für Mathematik the paper was listed but not refereed. After all,
in 1943 the RHp had been already proved by Weil and hence large parts of
Hasse’s paper were outdated. In the Mathematical Reviews the referee was
O. F. G. Schilling.

The next opportunity to present the algebraic views to an Italian audience
arose two years later when Deuring gave a lecture course in Rome at the
“Istituto Nazionale di Alta Matematica”. It appears that he had been invited
by Severi. I do not know whether this invitation was considered to be part of
the envisaged exchange between young Italian geometers and young German
algebraists. The Deuring lecture was realized from 22 March to 8. April 1941,
notwithstanding the difficult war times. There exist lecture notes (in Italian
language) [Deu41b]. On 60 pages it contains a brief introduction to the
theory of function fields, a report on Hasse’s proof of the RHp in the elliptic
case, on Deuring’s own recent results on the structure of the endomorphism
ring in the elliptic case, and on his papers on correspondences.

Thus Deuring lectured about the same topic and with the same aim as Hasse
had planned at the cancelled Volta congress. In the lecture notes Deuring
does not cite Hasse’s manuscript [Has43b]. I do not know whether Deuring
had prepared this lecture in accord with Hasse.

There are two footnotes in Deuring’s paper which might be of historic inter-
est. The first contains a reference to Weil’s Comptes Rendus note of 1940
[Wei40] . There Weil had presented a program how to proceed in the direction
of a proof of RHp. I shall discuss that note below in section 12.2. Deuring in
his footnote reports that “by personal communication of the author” Weil did
not have a proof of an important lemma stated in this CR note. Therefore,
he said, the RHp still had to be regarded as an open problem. This may be
of some interest since several authors claim that already in 1940 Weil was in
the possession of a proof. The second footnote was apparently added in the
last minute before print. Here Deuring briefly points to a new note by Weil,
this time in the Proceedings of the National Academy of Sciences in USA
[Wei41]. There Weil announces a proof of RHp. Deuring did not comment
this second announcement. Perhaps he had not yet received the final version
of the paper.
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One year later the 9th Volta congress in Rome was belatedly held (although
the war was still going on). The precise dates were 8-12. November 1942.
From Germany there participated Blaschke, Caratheodory and Hasse. Thus
the German “delegation” was small when compared to the original plans
for the congress in 1939. This time Hasse’s contribution was not any more
confined to the RHp. Instead, as he reported in [Has43a] he spoke generally
about “those methods and results of modern number theory which are based
on the arithmetic theory of algebraic functions”.

The printed version of Hasse’s lecture appeared only in the year 1945 after
the war [Has45]. The paper is written in German. In the context of this
paper the word “arithmetic” refers to those results and methods which are
of direct importance to number theory, viz., the theory of algebraic numbers.
(Compare this to the former use of “arithmetic” in Artin’s thesis which I
have discussed on page 28.) The paper does not present any new results or
methods. It may be regarded as a moment of reflection about the influence
of the theory of complex functions on the theory of algebraic numbers. Hasse
distinguishes two parts of this influence: “methodical” and “with regard to
content”. In the first part he mentions Hensel’s idea of p-adic numbers and
the idea of local versus global in number theory. In the second part he
mentions the Mordell-Weil Theorem and Siegel’s theorem on integer points
of curves. The RHp is mentioned as a side remark only. Hasse refers to
his own proof in the elliptic case but also to the newly announced proof of
A. Weil in case of curves of arbitrary genus. He says in this respect:

“I have been told that recently A. Weil has succeeded with the
proof also in case g > 1. However I have to entertain some
doubts in this respect, as long as the envisaged detailed exposition
is not available. Two years ago already A. Weil had asserted in
a Comptes Rendus note that he was in the possession of a proof,
although he had to admit later that he did not have a proof of the
decisive fundamental lemma.”

Here, Hasse refers to Weil’s second note [Wei41].

Perhaps this rather unusual text may be explained by Hasse’s disappoint-
ment which he experienced when he had heard that Weil, despite his first
announcement in [Wei40] did not have a proof at that time.
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Hasse in his paper propagates the general idea to investigate the connection
between function fields over number fields and function fields over finite fields.
In other words: Solution of diophantine equations (global) and diophantine
congruences (local). But this is expressed as a vague idea only. The tools
for such investigations, i.e., the commutative algebra, were not sufficiently
developed at that time.

After reading Hasse’s exposition which centers around the mutual influence
between number theory and the theory of functions, the reader will wonder
why algebraic geometry had not been explicitly mentioned in this context.
After all, for some time Hasse had tried to learn about algebraic geometry in
order to obtain ideas for the proof of RHp. Has he abandoned this search by
now? Perhaps he had done so since Weil seemed to have finally conquered
the RHp and Hasse could now turn to other problems.

I have yet to mention an earlier publication of Hasse where he tries to give
the algebraic version of the geometry of the Jacobian as g-dimensional va-
riety for g > 1 [Has42b]. The manuscript had been submitted in 1941 and
appeared in the year 1942. Hasse says that the ideas go back to 1938 when
he presented a survey at the annual meeting of the German Mathematical
Society about the problems related to the RHp. On that occasion he had
met Severi as I have already reported (see page 236). Perhaps this paper
can be regarded as Hasse’s first step in the direction of adapting the geomet-
ric language into algebra, with the aim to finally reach the essential ideas
of Italian algebraic geometry as presented in Severi’s book – at least those
which are of relevance for the study of the Jacobian. But Hasse’s paper does
not give any substantial contribution. Hasse announces some proofs which
he had asked van der Waerden about. The latter answered Hasse’s questions
but the answer [van47] appeared in the year 1947 only when it was outdated
already. Hasse’s paper was reviewed by A. Weil in the “Mathematical Re-
views”. Weil points out that the greater part of the present paper is devoted
to an exposition of some of the more elementary properties of the Jacobian
variety and adds, that this is

“. . . couched in the arithmetico-algebraic language of the author
and his school, which will be familiar to readers of his papers but
may act as a deterrent on other classes of readers, and does not
seem to the reviewer to be as well adapted to those questions as
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the language of algebraic geometry.”

Here we see explicitly stated the reason, as seen by Weil, why Hasse did not
succeed with a proof of the RHp for higher genus. Hasse had often propagated
that the mathematical notions and hence the language should be adapted to
the problems at hand. But the “arithmetico-algebraic” language which Hasse
preferred and with which he had obtained all his former outstanding successes
was, according to Weil, perhaps not so well adapted in this particular case
and prevented him to find his way here. (Already in 1940 Weil had uttered
this opinion in a letter to Henri Cartan.See page 264).) In his review Weil
also points out that the RHp for higher genus has already been proved by
himself. For this he refers to his second announcement in 1941 [Wei41]. This
fact may explain why Hasse never returned to his attempts to transfer the
theory of Jacobians of algebraic curves to characteristic p .

11.3 The French Connection

Let us jump back in time from the 1940s to the 1930s.

In those years Hasse had exchanged mathematical ideas and letters with
two French mathematicians: Claude Chevalley and André Weil. The corre-
spondence with Chevalley was about class field theory, while that with Weil
was predominantly concerned with function fields and the RHp and hence
relevant for our story. I have already mentioned several letters which were
exchanged between Hasse and Weil.4 This correspondence continued in the
years after 1936.

11.3.1 On function fields

In a letter of 22. November 1937 André Weil wrote to Hasse:

“On the occasion of a talk at Julia’s seminar I have recently writ-
ten up a method for establishing the theorem of Riemann-Roch,

4See page 172 ff., sections 9.4 and 9.5, and page 199.
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which is closely related to my proof of the generalized Riemann-
Roch Theorem . . . ”

Weil refers to his paper [Wei38a] which however had not yet appeared when
he wrote this letter. His “generalized Riemann-Roch Theorem” concerns
matrix rings over function fields in the classical case, i.e., the base field being
the field of complex numbers.

Weil continues his letter with an explicit description of his ideas, together
with complete details.

On first sight this looks like just another algebraic proof of the Riemann-Roch
Theorem which, after all, had already been established by F. K. Schmidt using
the method of Dedekind-Weber (see section 4.2). Recently F. K. Schmidt had
proved the Riemann-Roch theorem also for those function fields which are
not separably generated [Sch36]. Weil explicitly refers to this paper. It seems
that he was inspired by it to develop his new approach. Why did Weil find
his approach interesting enough not only to mention his setup but sending a
detailed exposition in a letter to Hasse? Weil himself gives the answer:

“Thereby a new concept is introduced which in fact coincides with
the hitherto used concept of differential . . . ”

We see that Weil considered his new concept of “differential” of such basic
importance that he immediately informed Hasse about it. Let us see:

Weil introduces the concept of what today is called “adele”. An adele α of a
function field F |K is given by assigning to each prime P of F |K an element

αP in the completion K̂P with the usual finiteness condition, namely that
αP is P -integer for almost all primes P . The function field F is diagonally
embedded in its adele ring A , and the Riemann-Roch Theorem appears
now as a simple exercise in linear algebra by comparing the arithmetic in
F with the arithmetic in A. In this setup Weil’s “differentials” appear as
K-linear mapsA → K (continuous in the appropriate topology) which vanish
on F . Thus Weil’s notion of “differential” of F |K is reduced to the notion
of its residues. Weil’s condition that it vanishes on F is just the algebraic
analogue of Cauchy’s theorem, namely that the sum of the local residues of
a differential vanishes.
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(Here I use “residue” in the sense of the word “residuum” which is used
in German; it refers to the local expansion of a differential with respect to
a uniformizing parameter t. Then the “residue” of the differential is the
coefficient of t−1dt; this does not depend on the choice of the uniformizing
parameter t.)

I have already said in section 8.1 that Hasse had given an algebraic proof of
Cauchy’s theorem in his paper [Has34d] where he used the classical notion
of differential ydx (with x, y ∈ F ). But in Weil’s setup Cauchy’s theorem is
taken as an axiom for his “differentials” which appear now in some sense as
“dual” to the “functions” of the field F – as it was well understood in the
classical case of analytic functions over the complex base field C.

The importance of Weil’s approach lies in the use of the new notion of “adele
ring” which seems to be the proper structure when it comes to study the
connection between local and global. Actually, Weil in his letter did not
yet use the word “adele”; it seems that he himself created this word at
a later occasion. (In any case, the word “adele” appears in [Wei59].) Weil
created his adeles as the additive version of Chevalley’s multiplicative “idele”.
Chevalley’s idele group is contained in Weil’s adele ring as the group of its
invertible elements.

Weil could assume that Hasse was familiar with Chevalley’s theory of ideles
which is expanded in the paper [Che36] of the year 1936. In fact, ideles
appear already in a letter of Chevalley to Hasse dated 20. June 1935. Again,
Chevalley did not yet use the word “idele” in his letter, he says “élements
idéaux” instead. The word “idele” was proposed by Hasse in his enthusiastic
Jahrbuch review of Chevalley’s paper. Chevalley himself used it later in
his article on class field theory [Che40]. (By the way, in that later paper
Chevalley used the word “differential” in the same way as Weil in his letter
to Hasse, but this time in the multiplicative sense – obviously inspired by
Weil.)

Weil closed the description of his results with the words:

“If you find that the above lines are suitable for publication in
Crelle’s Journal then they are at your disposal.”



11.3. THE FRENCH CONNECTION 250

Hasse immediately realized the importance of Weil’s approach. He wrote to
Weil on 30. November 1937:

“Many thanks for your very interesting letter with the beautiful
and new proof of the theorem of Riemann-Roch. In particular
I like your nice and original idea of introducing differentials. It
will be a pleasure for me to accept your kind offer and compose
an article for Crelle’s Journal from your letter.”

Weil’s paper appeared 1938 in volume 179 with the subtitle “Aus einem Brief
an H.Hasse” [Wei38b].

Remark 1: The publication of Weil’s article in Crelle’s Journal carried a
high risk for Hasse if it would have come to the knowledge of higher Nazi
officials. Already the exchange of letters with Weil was not without risk. It
appears that now Hasse felt his position quite strong in his dealings with the
German ministry of education, so that he was prepared to take this risk. By
the way, in the preceding year Hasse had already published in Crelle’s Jour-
nal another paper by a Jewish author, namely by Kurt Hensel [Hen37]. In
a similar way this risk existed also in view of his contacts with other people
who were outlawed by the Nazis for racial or political reasons, for instance
with authors of the new edition of ‘Enzyklopädie der Mathematischen Wis-
senschaften”, whose section for Algebra and Number Theory was edited by
Hasse jointly with Hecke. In the latter case, however, the contributions of
those authors were finally not allowed to be published, against the propos-
als of Hasse and Hecke. (Details can be found in the correspondence file
Hasse-Hecke which is available at the sources mentioned in the Preface.)

Remark 2: Sometimes in the literature it is said that the notion of “adele”
had been introduced by Artin in his paper [AW45] under the name of “val-
uation vector” which later were renamed as “adele” by A. Weil. Here we
see that the introduction of adeles is due to Weil himself, in the year 1938
already. However both Weil and Artin make it clear that they were inspired
by Chevalley’s ideles.

Remark 3: It seems not widely known that Chevalley had discovered his
notion of idele and its use in class field theory while working on the text
of a survey article for the new edition of “Enzyklopädie der Mathematischen
Wissenschaften”. In this project Hasse had proposed to Chevalley to write
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an article on class field theory, and Chevalley had accepted. His letter of
20. June 1935 to Hasse, where he explained his new notion of “élements
ideaux” and its use in class field theory is a preliminary report about the
progress of writing this article. (I have mentioned this letter on page 245
above already.) Chevalley did complete his article and he reported about it at
the annual meeting of the German Mathematical Society, on 12. September
1938 in Baden-Baden. The article was translated into German by Martin
Eichler. But its publication was delayed due to problems with printing during
World War II. I know that the manuscript still existed in the year 1948,
when Hasse inquired whether Chevalley still wished this manuscript to be
published. At that time Chevalley held a position at Columbia University,
New York. Apparently he did not wish publication any more. After all,
his final paper on the foundation of class field theory with the notion of
“idele” had appeared in 1940 already in the Annals of Mathematics [Che40].
Anyhow, his original manuscript for the German encyclopedia would have
been an important historical document, but it seems to be lost.

It appears that Weil had developed his new concept of differential in the hope
that it may be useful for a proof of RHp. For, in a letter of 20. January 1939
Weil wrote:

“Recently I have interrupted my investigations on p-groups in or-
der to pick up again some former thoughts about the analogy be-
tween number fields and function fields. A first consequence was
that I proved the functional equation for the zeta functions with
arbitrary characters . . . ”

When Weil speaks of “zeta functions with arbitrary characters” he means
what usually is called L-series L(s|χ) for ray class characters χ of a function
field over a finite base field. For these functions, a proof of the functional
equation required a generalization of the Riemann-Roch Theorem for ray
classes was needed. Weil offers to send a note about his proof to the Göttinger
Nachrichten for publication. But Hasse had to remind him that Witt had
proved the functional equation already and that he (Hasse) had informed
Weil about Witt’s proof in his letter of 12. August 1936. (See page 190.)
Witt’s proof had never been published but in the meantime, Hasse wrote,
there had appeared a paper by Weissinger (a student of Artin) containing a
proof of the functional equation [Wei37]. Weil thanks in a letter of 9. February



11.3. THE FRENCH CONNECTION 252

1939. Now he had read Weissinger’s paper and found that his own proof was
exactly the same as Weissinger’s.

In the same letter Weil utters a new idea for the proof of RHp:

“The functional equation yields the RHp for those L-series which
decompose into L-series of degree 1. If I am not mistaken these
are the L-series of those function fields for which you have proved
the RHp jointly with Davenport, and this seems to be the ac-
tual reason why your proof succeeds. But I suspect that all linear
factors of the zeta functions in function fields may be viewed as
non-abelian L-series in the sense of Artin. If so then there would
follow a proof of RHp. ”

In his reply Hasse confirms Weil’s assumption that the function fields of his
paper with Davenport are those for which the zeta function decomposes into
L-series of degree 1. He adds that cyclic fields with degree a higher power
of p have this property as well. (Recall that the Davenport-Hasse fields are
certain cyclic extensions of degree p of a rational field; see section 6.3.3.) This
addition, however, is not true. The L-series of such fields can be treated by
using Witt vectors. H. L. Schmid has computed the L-series of those fields in
detail [Sch41]. From this it follows that Hasse’s statement does not hold for
cyclic extensions of degree pn > p .

Weil’s idea to regard the linear factors of L-series as non-abelian L-series
in the sense of Artin did apparently not work. Weil’s later proof of the
RHp starts with Deuring’s approach as Hasse had originally envisaged. See
section 12.3.

The above citations from letters show that there was a lively and prolific
exchange of ideas and facts between Hasse and Weil in those years. In fact
this was not restricted to the problem of RHp but covered a wider range, in
particular function fields (of one or several variables) over number fields.4

4In some letters Weil also touched personal matters. He asked Hasse for recommenda-
tion letters when he applied for academic positions in France. However these applications
were not successful at that time. He put his frustration into words in a letter to Hasse:
“In France, appointments have little to do with scientific achievements . . . ”
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In a letter of 19. May 1938 Hasse writes that in his seminar they are working
towards an algebraization of Weil’s thesis [Wei29]. (If I say “they” here then
I have in mind Hasse and Siegel. The latter had in the meantime changed
from Frankfurt, where he had troubles of political kind, to Göttingen where
Hasse tried to protect him from such troubles.) Hasse reports that they
had been partially successful, in particular with class field theory for abelian
unramified extensions of function fields over number fields. In his next letter
of 6. January 1939 Hasse writes that in his seminar they are also working
on Siegel’s great paper [Sie29]. We see that Hasse’s interest now includes
function fields over number fields as base fields, as I have mentioned earlier
already.

Of particular interest seems to be the following query of Weil in his letter of
24. February 1939:

“Have you ever thought whether the higher dimensional varieties
over a finite field also have zeta functions? ”

Hasse replied on 7. March 1939 that he has never thought about zeta functions
of higher dimensional varieties over a finite field but, he adds,

“I did consider the question about zeta functions of one-dimensional
varieties over a number field. This would be somewhat similar as
for 2-dimensional varieties over a finite field. I have the impres-
sion that the very elegant results of Hecke and Petersson point in
this direction. I have asked my present student Humbert (Lau-
sanne) to investigate the relationship between Hecke’s result and
my theory of elliptic function fields.”

But Humbert did not stay long in Göttingen. Because of the precarious
political situation in Germany 1939 (shortly before the outbreak of the war)
he left Göttingen and returned to Switzerland. Thus again Hasse lost a
promising student, as he had experienced one year earlier with Hanna von
Caemmerer (see page 199).

From Hasse’s correspondence with Petersson it is seen that Hasse himself
was deeply involved with the problem of the definition and the properties of
zeta functions of elliptic curves over number fields. He tried to define such
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zeta function as product of the zeta functions of the reduced curve modulo p
for all prime numbers p . Well, for “almost all” p , namely those for which
the curve admits good reduction. The situation was similar to when Artin
had defined his new L-series for Galois characters, which originally could
be done with the contributions of the unramified primes only. Hasse tried
to extract from Petersson’s work that his new L-series satisfy a functional
equation which then perhaps could lead the way to an adequate definition
of the zeta function of an elliptic curve over a number field, accounting also
for the primes with bad reduction. However Hasse had to postpone this plan
until after the war.

After the war André Weil took over and investigated zeta functions of curves
over number fields [Wei52]. However he did not consider elliptic curves but
the generalized Fermat curves from the Davenport-Hasse paper (see sec-
tion 6.3.) Weil cited Hasse as the one who originally had the idea. Weil
also mentions the name of Humbert in his comments to his paper. See vol. II
of [Wei79a]. But Hasse, after all those difficult years, had to admit that
he had forgotten about it. Nevertheless Hasse himself now wrote a follow
up paper where he expanded his own ideas about this [Has55]. The case of
elliptic curves was treated in several papers by Deuring in the 1950s.

11.3.2 The book

Usually when Hasse had received a paper for publication in Crelle’s Journal
he himself carefully checked the manuscript and prepared it for publication
(see [Roh64]). However, in the case of Weil’s paper on the Riemann-Roch
Theorem which I have discussed in the preceding section, he did not do this
himself but he asked his assistant Ernst Witt to do it. The reason was that
Hasse used most of his working time to complete his long projected book on
algebraic number fields based on the local theory of p-adic fields in the sense
of Hensel. In a letter of 30. November 1937 he had written to Weil:

“At present I am working hard on my book about number theory
which has been projected a long time ago. Volume 1 is completed
up to a few paragraphs. It contains a brief presentation on ele-
mentary number theory from an advanced view point, an elaborate
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and quite modern foundation of valuation theory and its applica-
tion to the foundation of the arithmetic in algebraic number fields,
including functions fields. . . I hope that volume 1 can appear next
year.”

Several years ago Hasse had signed a contract with Springer for his book.
There were to be two volumes, the first as described by Hasse in his letter,
and the second volume about class field theory in its new formulation with
Artin’s reciprocity law and Hasse’s Local-Global Principle. But the agreed
deadline for submission of the first volume had already been exceeded. (In
the letter to F. K. Schmidt of 25. June 1936 Hasse had mentioned the date
of 1. November 1936. I have already cited from that letter on page 181.)
Therefore Springer, through F. K. Schmidt as the managing editor of the so-
called yellow series, tried to excert some pressure upon Hasse to finally finish
the manuscript, in particular since Springer had given some advancement by
financing an assistant who was to help Hasse in this project. Hence for several
months now Hasse had put away most of his other work and concentrated
on finishing the book. In a letter he writes that he uses 75% of his working
time for the book project.

The next letter from Weil to Hasse seems to be lost. It is not contained in
Hasse’s Nachlass since Hasse had forwarded it to Witt who took care of the
editing and proof reading for Weil’s paper. But from Hasse’s reply it can be
concluded that the lost letter contained, among other things, an offer of Weil
that he would take care of a French translation of Hasse’s book. Hasse wrote
to Weil on 16. December 1937:

“Many thanks for your kind offer to take care of a French edition
of my book. In principle I do agree but I have to consider the
wish of my publisher Springer that the French edition should not
appear at the same time as the German one, but only 11

2
years

later at the earliest . . . In any case there will still be some time
for this.”

Apparently Weil had not known that already some months earlier Chevalley
had asked Hasse (in a letter of 7. July 1937) about the possibility of a French
edition, and Hasse had replied to him the same as he now did to Weil. By
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the way, the appearance of Hasse’s book was also expected in England, for
Davenport wrote to Hasse on 30. October 1937:

“The appearance of vol. 1 of your book is looked forward to with
great interest by all English mathematical circles.”

The great interest for Hasse’s book appears to have been based on three ex-
pectations: First, the book was to contain a systematic treatment of algebraic
number theory by means of Hensel’s p-adic numbers, based on valuation the-
ory. Second, it included the theory of function fields over finite base fields. In
today’s terminology, it was a treatment of global fields based on the theory of
local fields. This was quite new at that time and not yet treated systemati-
cally in a book. Moreover, one hoped that the book contained the basic tools
which are helpful to build a proof of the RHp. In addition, since Hasse had
planned a second volume presenting class field theory in its modern form, it
was expected that he would develop all necessary prerequisites for class field
theory in his volume 1.

But alas!, although the first volume was completed in November 1938 it
appeared much later than expected (in 1949 only) and the second volume
was never written. The story is as follows:

It was on 4. November 1938 when Hasse had finished his book manuscript
and posted it to Springer. One day later he wrote to Davenport:

“I feel extremely relieved to have this nightmare off my mind.”

But it turned out that the nightmare persisted. F. K. Schmidt wrote on
18. November 1938 to Hasse that the publisher had estimated the size of the
book to about 600 pages. This was too much and he proposed to skip some
of the sections. Hasse replied on 24. November that he does not wish to do
this. In particular he did not want to skip those topics which had not been
systematically treated in the literature (e.g., exponential, logarithmic and
power function in p-adic fields). Hasse proposed to leave the text as it is.

In a later letter he suggested that Springer could publish this text in 2 vol-
umes and, accordingly, Hasse would be freed from the writing of another
volume on class field theory as was originally envisaged. Hasse proposed
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the name of Chevalley as a possible author of a book on class field theory.
But again this was not accepted by Springer. There followed an exchange
of several letters but both sides, the author and the publisher, did not give
way until finally, in a letter of 9. December 1938, F. K. Schmidt wrote that
the decision of this dispute could be postponed since this was not an urgent
matter.

In a letter of 6. January 1939 Hasse informed Weil about this state of affairs
since Weil had shown interest for a French translation of Weil’s book, as we
have seen above. Hasse wrote:

“The manuscript of the first volume of my Number Theory is com-
plete. It was to appear in May of this year. But now the publisher
had made some troubles since I have exceeded the envisaged size.
I was asked to skip from the manuscript what in my opinion are
the best pieces. Since I have refused to do so, the publisher has
put off the publication for the time. Hence I do not know when
the book will appear and whether it will appear at all.”

Weil replied on 20. January 1939: 5

“I am very appalled to hear that the publication of your great
Number Theory has been postponed indefinitely.”

And Weil adds:

“Under these circumstances, would you not reconsider our former
translation plans ? On the other hand there may be a possibility
here to publish your book in German with Hermann. In this case
it would be necessary to cut the book into smaller pieces of 100
or 120 pages, according to the general policy of the “Actualités
scientifiques”. This would perhaps not be objectionable; but would
you like that your book appears in a foreign country ? I any case
I am prepared to do what is possible in this respect.”

5In the original we read the date “20.I.38” but the content of the letter shows clearly
that this was a misprint and the letter was written in 1939.



11.3. THE FRENCH CONNECTION 258

“Hermann” was the publishing company in France of the series “Actualités
scientifiques”.

In his reply dated 4. February 1939 Hasse thanks Weil for his interest and
engagement for the book. But he would rather like the book first be published
in Germany if published at all.

Let me briefly report on the further fate of this book. After some time Hasse
and the editors of the “yellow series” came to an agreement: they would
ask an independent authority for his opinion. For this service Siegel was
chosen, who was willing to do the job. Siegel’s recommendation turned out
to be clear: Hasse’s manuscript should be published as it is. But this is still
not the end of the story. In a letter to Ferdinand Springer, F. K. Schmidt
expressed his doubts whether Siegel had read the manuscript at all 6 and
hence a second reviewer should be asked. But Springer categorically decided
that this is now the end of the story and Hasse’s book should appear as it
is.7 Obviously Springer did not wish to have further disagreements with both
Hasse and Siegel. And so Hasse’s manuscript was accepted for publication.

This happened in the summer of 1939. As is well known, on 1. September
1939 Hitler started what was to become the second world war. During war
time the supply of paper was scarce and publishing activities were heavily
restricted. This applied also to Hasse’s book. After the war things slowly
normalized. Hasse had left Göttingen and gone to Berlin where he was a
member of the Academy of Sciences. His book finally appeared in the year
1949 but in the publishing house of the Academy, not in Springer Verlag.
Hasse had made a deal with Springer that he would write another book on
Number Theory, containing his notes from his lecture courses in Berlin, and
on the other side Springer would admit that the former manuscript would be
published by the Berlin Academy. Hence there were two books by Hasse on
Number Theory: the “yellow Hasse” (because the Springer books from the
“Grundlehren” series had a yellow cover) and the “blue Hasse” (the color of
the cover of the Academy books). The blue Hasse became a classic, it had
several editions, finally it became yellow (i.e., it was taken over by Springer
Verlag) and was translated into English, the last edition was in the year 2002.

6In view of all what is known of stories about Siegel this may well have been the case.
7I have found these letters in the archive of Springer Verlag Heidelberg.
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11.3.3 Paris and Strassbourg

In a letter of Weil to Hasse dated 19. February 1938 he wrote from Strass-
bourg (where Weil held a position):

“Since you will come to Paris soon, I would be particularly glad if
I could be sure to meet you there. Please let me know in advance
when you come, for I do not travel to Paris as often as in earlier
times. It would hardly be a detour if you would visit Strassbourg
either on your trip to Paris or on your return. I very much hope
that you may be persuaded to do this, what do you think ?”

It appears that Weil had obtained some information that an invitation of
Hasse to Paris was under way. Hasse received the official invitation several
days later, on 27. February 1938. (It may be that the official invitation had
been delayed through censorship in Germany.) The invitation was signed by
the Dean of the Faculté des Sciences and included three scientific lectures
at the Sorbonne. It was Gaston Julia who had recommended this to his
Dean. Julia had met Hasse in Göttingen on the occasion of the University
centennial in June 1937, and thereafter they had exchanged some letters but
not of mathematical content since their mathematical interests were quite
different.

The invitation to Paris was timed for May 1938. But this timing was not
convenient for Hasse. As he wrote to Julia on 28. February 1938:

“Before officially replying to your dean I would like to describe to
you personally my actual situation. Presently I am engaged with
all my power writing up my book on number theory. The book had
been planned now for 10 years, and the publisher is demanding its
completion with unusual intensity. Hence I am unable to direct
my attention towards any other topic before this book is completed.
I am estimating this to be not before June.”

Again we see that the writing of the book forced Hasse to put off all other
work. (For the same reason he also canceled a visit with Davenport which
had been planned for the summer of 1938.) Accordingly he proposed to shift
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his visit to Paris from the summer to the beginning of the winter semester.
But several days later he sent another letter to Julia, dated 7. March 1938:

“I am asking myself whether it would be better to move the whole
thing until next spring. For, Chevalley told me that he is visiting
the USA for half a year, starting on the first of October. It would
be a pity if I would miss him in Paris.”

This suggests that it had been Chevalley who originally had proposed to Julia
to invite Hasse to Paris. During the past years there had been continued
cooperation between Hasse and Chevalley. In the summer of 1933 Chevalley
had stayed in Marburg with Hasse and from then on they had exchanged
letters, mostly on class field theory. Since Chevalley and other young founders
of Bourbaki sometimes met in Julia’s seminar it seems not improbable that
Julia’s invitation of Hasse to Paris had been suggested by Chevalley.8

Hasse had replied to Weil’s letter on 24. February 1938. He informed Weil
that his visit to Paris will be postponed. But he added:

“If this [the visit to Paris] will be realized then it will be a great
pleasure to me to travel via the much beloved Strasbourg and to
visit you there.”

Hasse’s visit to Paris was finally set for May 1939. But later it turned out
that this timing was quite unfavorable for Hasse. On 20. January 1939 Weil
wrote:

“. . . It’s a great pity that you could accept the invitation to Paris
in this year only. For, last year all our number theorists would
have been there. But this year in May, by an unfortunate coin-
cidence they will all be out of town (if not Chevalley will be back
from America which may be possible). Pisot will be in Göttingen9,

8Later however, in a letter of 20. January 1939, Weil writes: “We have had heavy
differences with Julia . . . ” (“Mit Julia haben wir uns verkracht. . . ”).

9Charles Pisot (1910-1984) had a research grant to study number theory in Göttingen
in the summer semester 1939. He was born in Alsace hence he spoke German as well as
French. As Weil wrote to Hasse it was Pisot which he had had in mind for translation of
Hasse’s book into French. Pisot became a member of Bourbaki for some time.
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Chabauty in Manchester with Mordell, myself in Cambridge since
I just got a stipend for study in England and Scandinavia. I don’t
have to say how much I regret to have to miss the opportunity to
meet you after such a long time . . . ”

As it turned out, Chevalley remained in Princeton, thus Hasse indeed did
not meet any of the mentioned number theorists on his visit to Paris.

A few days before Hasse’s start for Paris he received a letter from Elie Cartan
saying that:

“My friend M. Julia is very weak and has been on leave for more
than three months. Hence I myself have to determine today the
days and time which are suitable for your three lectures at the
Institute Poincaré . . . ”

These lectures were finally set for 19., 23. and 24. May 1939. But Hasse ar-
rived already some days earlier in order to participate at the ceremonies of the
Paris Academy for E. Cartan’s 70th birthday, which took place on 18. May.
(On this occasion Hasse again met Severi.) There in a short address he con-
veyed to E. Cartan the greetings and wishes of the DMV (Deutsche Mathe-
matiker Vereinigung). I did not find the text of this address in the Nachlass
of Hasse. But from Cartan’s letter of thanks some days later it may perhaps
be deduced what Hasse had said. E. Cartan wrote:

“. . . I am glad that my papers and my books have found inter-
est among the German mathematicians and that I can count in
Germany with a great number of friends and scholars.”

But then he added:

“It is among my heartiest wishes that the close international col-
laboration will be maintained against all obstacles; it is impossible
that the people in the world of science and art, when all passions
are excluded, do not consider themselves as friendly partners (ne
sentent frères).”
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Perhaps this can be read as kind of critical reminder of certain tendencies
propagated by some German mathematicians like Bieberbach et al., to es-
tablish what was named “Deutsche Mathematik” in contrast to mathematics
from other countries or cultures. By the way, Hasse and his students (except
Teichmüller) never published a paper in the journal “Deutsche Mathematik”
which had been established by Bieberbach.

Hasse’s three lectures at the Sorbonne were announced with the title:

New investigations on the arithmetic of algebraic function fields.

I. Generalities: Divisor class group and ring of multipliers.

II. Rational and integer points on algebraic curves with integer
coefficients.

III. Rational points on algebraic curves with coefficients mod. p .

Hasse’s lectures were read in French. He had prepared his manuscript with
the help of a language teacher.

Despite Julia’s health problems he did attend Hasse’s lectures.10 Unfortu-
nately I did not find the text of these lectures. From the correspondence
Hasse-Julia it appears that Hasse was to send the manuscript to F. Roger
who was supposed to have it mimeographed. At that time Roger was the
secretary of Julia’s seminar. In any case the manuscript seems to be lost
during the following turbulent times.

On the way home from Paris Hasse went through Strasbourg following the
invitation by A. Weil last year (see page 254). However, just at this time
Weil was away on a trip to Britain and Scandinavia, as already mentioned
above. Instead, Hasse was friendly received by Henri Cartan and Ehresmann,
as Hasse later reported to Julia. He gave a colloquium talk with a small
audience (“in kleinem Kreis”). It is said that he repeated his third lecture
which he had delivered in Paris. H. Cartan wrote notes of Hasse’s lecture into
his personal diary. I am indebted to Professor Michèle Audin for sending me
copies of the relevant pages of H. Cartan’s diary which is preserved. From

10Gaston Julia had been seriously injured during World War I and since then had health
problems throughout his life. Nevertheless, and perhaps just because of this experience,
he vehemently advocated a close political cooperation between France and Germany, so
that there would be no further war between the two countries . . .
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those notes it can be seen that Hasse in Strasbourg just presented his proof
of the RHp in the elliptic case, and over the base field Fp only. At the end
of Cartan’s notes we find the sentence that this can be generalized over an
arbitrary finite base field, and for curves of arbitrary genus. But Deuring’s
paper for higher genus is not mentioned.

Thus again, as it was with Hasse’s Italian lectures in Rome, his lectures in
Paris (and Strasbourg) did not contain anything new in the direction of the
RHp, and they had no visible effect on future research.

Summary

In the years after the Göttingen workshop in 1937 there was no essential
progress in the direction of the RHp for function fields of higher genus. I
have reported in this chapter about the following topics:

1. Artin was forced to emigrate to USA due to the Nazi legislature. Thus
Hasse lost a friend and a valuable partner for mathematical discussion.

2. Since Weil had suggested that the solution of the problem may be ex-
tracted from Italian algebraic geometry, Hasse tried to familiarize him-
self with algebraic geometry. In particular he met Severi several times,
but without much avail.

3. Hasse kept his contact to Weil by exchanging letters. This led to a
publication of Weil on function fields in Crelle’s Journal, and also to
an exchange of some interesting ideas on zeta functions. But again,
concrete steps towards a proof of the RHp did not appear. A planned
meeting of Hasse and Weil in Paris could not be realized.
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Chapter 12

A.Weil

André Weil (1906–1998) was 8 years younger than Hasse. He was born and
raised in Paris. He received his doctorate 1928 at the University of Paris,
supervised by Hadamard, with his thesis “Arithmetic of algebraic curves”
where he proved his part of what today is called the Mordell-Weil Theorem.

265
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His name appeared already several times in our story since he had exchanged
letters with Hasse and had early shown interest in the RHp.

12.1 Bonne Nouvelle

At the outbreak of World War II our story took a sharp turn.1 Hasse was
conscripted to work at the Navy headquarters in Berlin. There he could not
do much research work in the direction of the RHp, as he himself stated on
several occasions. A. Weil who stayed in Finland when war was declared,
was suspected to be a Soviet spy and he was arrested. (Finland was in the
state of war with the Soviet Union 1939-1940 about Karelia.) Apparently
it was Nevanlinna and/or Ahlfors who was finally able to arrange that he
could return to France. But there again Weil found himself arrested, as a
conscientious objector to military service. He was imprisoned in Rouen, the
prison building being called “Bonne Nouvelle”. According to his own words,
while waiting for the trial he found ample time to work in mathematics (see
[Wei79a]). He had the chance to get into contact with his family and his
friends and colleagues. In particular the exchange of letters with his friend
Henri Cartan continued during this period. The highly interesting correspon-
dence between H. Cartan and A. Weil is edited by Michèle Audin [Aud11].
Reading those letters gives a lively picture of the various mathematical ideas
which Weil fostered in this period. Among them the RHp occupies a promi-
nent place. The following citations I have taken from Audin’s book, and
translated into English.

On 26. March 1940 Weil wrote from Bonne Nouvelle in a letter to Cartan in
Strasbourg:

“. . . My arithmetic-algebraic investigations are gaining momen-
tum (I believe I have obtained very important results about the
ζ function of algebraic function fields). I do urgently need that
you answer my former question as early as possible: In an al-
gebraic function field (field of constants of characteristic p) the
number of classes with n-th power being 1. If you find the result

1And not only our story.
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for genus 1 do not be content with it but continue the research un-
til you find the result for arbitrary genus, whether it is published
(in Crelle’s Journal.)”

Weil refers to a former letter where he had asked Cartan to find out whether
this number (hn in the notation of Hasse) had been determined already by
Hasse or by any of his students. In his answer of 2. April 1940 Cartan wrote
that he had been unable to do the search which Weil had asked for, be-
cause the relevant volumes of Crelle’s Journal were still at the bookbindery
at Strasbourg and not yet returned. But he had checked the volumes of Zen-
tralblatt, at least until 1937 – the rest was also at the bookbindery. Here is
what he found:

1. Hasse’s paper [Has36c] where he determined the number hn for elliptic
function fields. (See formula (8.13) on page 147.)

2. The paper of Hasse-Witt [HW36] where hn is determined for a p-power
n = pr, this time for function fields of arbitrary genus. (See section
8.2.1, and also the remark on page 149.)

3. The paper of Deuring [Deu36] which contains a partial result for n 6≡
0 mod p . In general it was conjectured that hn = n2g for n 6≡ 0 mod p .
Deuring shows that if K|K0 is cyclic of prime degree and if the conjec-
ture holds for K0 then it holds for K.

At the end of Deuring’s paper there is a remark “added in proof” which says:

“The solvability of Xn = C for every class C of degree 0 and
every exponent n can be easily proved by Hasse’s method.”

In this connection “solvability” seems to include the determination of the
number of solutions. When Deuring mentions “Hasse’s method” then he
probably means the use of suitable differential determinants which Hasse
had used in the elliptic case. (See section 8.3.1.) In any case, although
Deuring announces that he will return to this question in the future he did
not do so. (Compare the Remark on page 149 f.)

But Cartan was not able to check this since the latest Crelle volumes were
missing in Strasbourg. Weil replied on 5. April 1940 that he is almost certain
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that Deuring has proved the said result for hn = n2g with n 6≡ 0 mod p
but how to be sure? In the meantime Weil will accept this fact, or prove it
himself. He continues:

“My work makes striking progress. Almost all of the transcenden-
tal theory of algebraic functions can be transferred to finite fields
of constants: period matrices, bilinear relations and the theorem
of Hurwitz. The algebraic theory of Severi goes quite trivially.
This has not been taken into account by Deuring who, like all
these people who do not know their classics, has reformulated it
in his language, with the tiresome notions of ideals, divisors, class
field theory, residues, etc.. . . ”

Some days later, on 8. April 1940, Weil wrote again, saying that the absence
of detailed information about the work of Hasse and Deuring is quite em-
barrassing to him; he needs not only the said result (namely hn = n2g for
n 6≡ 0 mod p ) but also some indication of their methods. He continues:

“Provisionally, while writing a note for the Comptes Rendus which
I will send to your father I have decided to accept this fact for good
without comment; but for my further work it would be useful for
me to have some more precise information about the proof . . . ”

Weil seems to be confident that the result is correct (what it is).

Henri Cartan‘s father was Elie Cartan who as a member of the academy was
able to put the note into publication.

But then in his letter Weil mentions a more serious gap in his work, concern-
ing what he calls his “fundamental lemma”. He writes that he will complete
his note even without having a proof of that lemma:

“I am quite clear about it so that I will take the risk . . . Hasse does
not have a chance any more 2, for I have solved (conditionally with
respect to my lemma) all the main problems of the theory . . . ”

2“Hasse n’a plus qu’a se prendre”.
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Explicitly, Weil mentions first the problem of RHp (which Hasse had proved
in the case of genus one), and secondly the problem that Artin’s L-series for
characters of Galois extensions are polynomials. He finds the second point
more interesting since, he wrote, it opens the way for the study of non-abelian
extensions in analogy to the situation of number fields. But the first point,
he says, is more sensational in view of the tenacity with which Hasse and his
people have tried to prove it.

Certainly, what Weil writes in this letter means a great success and he could
rightly be proud of it. In the published version the note is registered as
presented at the Academy session of 15. April 1940 – about one week after
this letter to Henri Cartan had been dispatched.

However, some time later his spirit seems to have calmed down. For on
2. May 1940 he writes:

“Since some time already I have left the algebraic functions which
have continued to annoy me heavily. My main lemma is up in the
air. In other situations I would have had scruples to publish it in
this form, but in this moment this is not much of importance to
me . . . It may even turn out that what I am missing can be found
in Deuring’s work. When I am able to clear up this question I
will return to it.”

It is quite understandable that just in this moment the question about the
lemma seemed not to be of primary importance to Weil in his personal sit-
uation. The court trial which would decide about his fate was due the next
day.

Weil finally agreed to join the army under certain conditions. Some days later
he could leave the prison. In a letter of 16. May 1940 to Cartan he wrote:
“Me voici soldat”. In the turmoil created by the occupation of France by
German troops which started on 10. May 1940 he succeeded to escape from
France and finally enter the United States. He himself has told the details
of his story in his autobiographic book [Wei91].

But the manuscript for Weil’s CR-note had already been expedited. It ap-
peared in print in the same year [Wei40]. Now, what precisely is the content
of this note?
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12.2 The first note 1940

The first sentence of Weil’s note is rather long and reads:

“I will briefly report in this note on the solution of the main prob-
lems of the theory of algebraic functions over finite base fields; it
is known that these have been the topic of various papers, in par-
ticular during the last years by Hasse and his students; as they
have anticipated, the key to these problems is the theory of cor-
respondences; but the algebraic theory of correspondences which
is due to Severi is not sufficient, and one has to add to these
functions the transcendental theory of Hurwitz.”

Then he reports about some details:

Given a function field Fq|Kq with base field finite of cardinality q = pr,
consider its base field extension F |K where K denotes the algebraic closure
of Kq. Consider the subgroup J (p) of the elements of the Jacobian J of F |K
with order prime to p . Weil starts with the description of the structure of
J (p), as a consequence of the formula hn = n2g for n 6≡ 0 mod p. As he
had written to H. Cartan he did not know whether this formula was proved
already by Hasse and/or Deuring in characteristic p but nevertheless he uses
it here (see the foregoing section). Accordingly the structure of J (p) is as
follows:

Let Q̂(p) denote the completion of the rational number field Q with respect
to all `-adic valuations except the p-adic one. Q̂(p) contains the completion
Ẑ(p). Then J (p) can be regarded as consisting of the vectors of length 2g with
entries from the factor group Q̂(p)/Ẑ(p). That is, there is an isomorphism

J (p) ≈ Q̂(p)/Ẑ(p) × · · · × Q̂(p)/Ẑ(p)︸ ︷︷ ︸
2g

Every correspondence µ of the Jacobian J acts on this group and hence can
be represented as a 2g × 2g matrix M(µ) with entries in Ẑ(p).

Let µ′ be the image of µ under the Rosati anti-automorphism. (The algebraic
theory of the Rosati anti-automorphism had been developed by Deuring in



12.2. THE FIRST NOTE 1940 271

his second paper on correspondences which appeared in the year [Deu40].
But probably Weil did not yet know about this paper.) Weil claims that the
trace of the matrix M(µµ′) is a rational integer and

TrM(µµ′) > 0 .

This is the main content of the “important lemma” in Weil’s note.

We see that Weil in this note follows precisely what Hasse had written to
Weil in his letter of 12. July 1936 (see page 192). There, Hasse had said
that one should search for a positive definite quadratic form on the ring of
correspondences, and he had proposed that one should look for an abstract
analogue of the Hermitian form belonging to the period matrix. Here, Weil
points a way how to construct this form in analogy to the classical case,
namely µ 7→ TrM(µµ′). On first view this seems a good solution to Hasse’s
problem. But soon there arise questions which in this note are not suffiently
explained. For instance, how did Weil make sure that the trace of M(µµ′)
is in Z ? It appears that in Weil’s opinion this would allow him to use these
matrices in the same way as in the classical case of characteristic 0 where the
period matrices do have coefficients in Z.

In his Collected Papers [Wei79a] Weil tells us that mathematically at “Bonne
Nouvelle” he had to rely on his own recollections, i.e., he had no access to
mathematical literature – with perhaps one exception:

“It may be that I had at my disposal the stimulating book by Lef-
schetz “La Géometrie et l’Analysis Situs”; in any case this book
kept my company a little later when I found myself in military
uniform in May 1940.”

Weil refers to the book [Lef24]. In fact, as far as one can see from the
brief announcements in Weil’s note [Wei40] the style of his note reminds me
of Lefschetz’s style in this book. But it seems futile to search for further
stimuli which may have guided Weil during the preparation of his note. For,
Weil himself explains in his recollections [Wei79a] in detail what ideas and
thoughts were in his mind while writing up his CR-note.

Remark: The arrangement of Weil’s Collected Papers, with the author’s
comments to each of his papers, is exemplary. It is an ideal source for the
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historian of mathematics who is interested in the development of ideas, the-
ories and the mutual influence between the main actors. In this respect such
arrangement is of much more value than the usual “Collected Papers” which
contain the text of the various papers only. But it does not make superfluous
the study of the letters which were exchanged at the time. Not infrequently
it happens that after many years things in the past look somewhat different
from what they formerly had been.

In any case, the main result of the note was “up in the air” as Weil had
written to Henri Cartan in his letter of 2. May 1940 (see page 265). In the
same letter he said that he will return to this topic when he has cleared
up the open questions. This he did one year later, when he was already in
the USA. There he published a second note about the RHp. (See the next
section.)

But in the meantime Weil seems to have freely told people that in fact the
publication of his first note [Wei40] was premature and he did not yet have a
proof of the “important lemma”. Deuring had said so in his paper [Deu41b],
and he referred to “personal communication by the author”. (See page 240.)
I do not know how Deuring (in Germany) in those war times had been able to
contact Weil (at that time in Princeton, USA). But in the summer of 1941 the
USA were not yet directly involved in the war and perhaps the postal service
still functioned. In a letter from Hasse to Julia dated 7. September 1941
Hasse informed Julia about the present state of Weil’s “important lemma”,
i.e., that its validity was still unknown. (Julia had earlier sent a copy of
Weil’s CR-note to Hasse.) Hasse mentions Siegel and Chevalley, both in
Princeton at that time, who could not verify the validity of the lemma and,
when they had asked Weil he had admitted that he could not prove it. I do
not know how Hasse at that time had obtained this information. In a letter to
Dieudonné dated 13. March 1942 he wrote that he had heard this “indirectly”
from Siegel. Perhaps Hasse had in mind what Siegel earlier had written to
him from Princeton, in a letter dated 27. June 1940. Siegel had written:

“I have tried to understand the proof of the “Riemann hypothesis”
for the zeta function of an algebraic function field with arbitrary
genus with finite base field – the proof which André Weil has
sketched in the “Comptes Rendus” of 22. April. But right at the
beginning I encountered a difficulty which I could not overcome.
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I had asked Chevalley about it but he couldn’t do it either. But
you will probably be able to do it. . . ”

However, from the date of this letter it is evident that at that time Weil had
not yet arrived in the USA and therefore he could not have been consulted by
Siegel. It appears that Hasse later had found another source for his informa-
tion. Perhaps Deuring? In any case it seems to have been generally known
to the people involved, including the referees, that the “important lemma”
was still up in the air. The referee in the “Jahrbuch” for Weil’s first note was
van der Waerden. The referee in the “Zentralblatt” was H. L. Schmid. In the
“Mathematical Reviews” it was O.F.G. Schilling.

Quite generally, it is tacitly assumed that a note in the “Comptes Rendus” (or
in the notices of any scientific academy in the world) represents a preliminary
announcement of results which, at least in the opinion of the author, have
already been obtained – if not explicitly stated otherwise. Weil in the first
sentence of the note gives the impression that indeed he had already obtained
“the solution of the main problems of the theory of algebraic functions over
finite base fields”. Hence it is understandable that Hasse and others, after
hearing that the main lemma was still unproved, got the impression that this
note did not follow the usual standards of scientific publishing. In the letter
to Julia cited above, Hasse voiced his suspicion that Weil may have written
this note in order to secure priority by unfair methods. In a similar vein
he expressed himself later in a letter to Dieudonné dated 13. March 1942.
(Dieudonné had informed him in a letter of 27. February 1942 that in the
meantime Weil had found a complete proof of the RHp. Obviously he referred
to Weil’s second note [Wei41]; see next section.) Hasse did not know, and in
any case did not take into consideration the quite extreme situation which
Weil was confronted with when he decided to have this note published. Weil
himself in [Wei79a] gave this as an explanation for his premature publication.

12.3 The second note 1941

Some time in the summer of 1941 Hasse received mail from the USA. The
sender was André Weil. He sent a reprint of a second note, this time published
in the Proceedings of the National Academy of Sciences, announcing the proof
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of the RHp [Wei41]. This was accompanied by a short letter (in English
language) with the following text:

“Dear Hasse, In the midst of the vastly more important affairs in
which I hear you are at present engaged, you may still be able to
spare a few minutes for the perusal of the solution of a problem
you used to be interested in. With best greetings from the U. S. A.
Yours sincerely A Weil.”

Remark: I have not found this letter among the Hasse papers. Hasse had
informed Julia about Weil’s second note and at that occasion cited this text,
in his letter to Julia dated 7. September 1941. I have copied this text from
Hasse’s letter to Julia. The somewhat sarcastic tone of Weil’s text sounds
different from that of the former letters of Weil to Hasse. This may perhaps
be explained with the different political attitudes of these two people in that
time. It was World War II. Weil was strictly against military service and a
fugitive from the German terror; Hasse served in a military research group
following his patriotic sentiment.

Weil had arrived as a refugee in the United States in January 1941. There
he had close contact to his friend Chevalley and other people in Princeton.
It seems he worked hard in order to prove the RHp and thus to vindicate his
suspicious note of last year. He succeeded quickly and published the above
mentioned second note which carries the date 11. June 1941. There he again
mentions

“. . . the two outstanding problems, viz. the proof of the Riemann
hypothesis for such fields and the proof that Artin’s nonabelian
L-functions on such fields are polynomials.”

Here, “such fields” are algebraic function fields of one variable with finite
base fields.

In the first paragraph of the note Weil refers to his earlier CR-note of last
year where, he says, he had

“sketched the outline of a new theory of algebraic functions over
a finite field of constants”
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which might be useful to prove the two problems above. That new theory may
be described as “transcendental”, says Weil, since it uses close analogues to
the classical theory of abelian integrals of the first kind and Jacobi’s Inversion
Theorem. But:

“. . . I have now found that my proof of these results is indepen-
dent of that “transcendental” theory and depends only upon the
algebraic theory of correspondences on algebraic curves, as due to
Severi.”

In other words: Now he followed strictly the direction which Deuring had set
with his theory of correspondences and which Hasse had informed him about
in the year 1936 (see sections 9.3 and 9.4). To be sure: the mathematical
languages used by Weil and Deuring are different: Weil is using the language
of algebraic geometry and Deuring that of algebraic function fields. But
both are belonging to algebra: Deuring is the translation from the geometric
language into the language of function fields, and Weil keeps the geometric
language following Severi, but with the following comment:

“It should be observed, however, that Severi’s treatment, although
undoubtedly containing all the essential elements for the solu-
tion of the problems it purports to solve, is meant to cover only
the classical case where the field of constants is that of complex
numbers, and doubts may be raised as to its applicability to more
general cases, especially to characteristic p 6= 0 . A rewriting of
the whole theory, covering such cases, is therefore a necessary
preliminary to the applications we have in view.”

Here we see already Weil’s plan to rewrite the whole of classical algebraic
geometry for arbitrary base fields – a huge effort which he finally mastered
in his book [Wei46].

But apart from the mathematical language, Weil goes one essential step fur-
ther than Deuring. Whereas Deuring stopped after constructing algebraically
the ring of endomorphisms of the Jacobian, Weil followed Severi further and
found the positive definite quadratic form on it which had been envisaged
by Hasse. When Weil said that Severi’s treatment “undoubtedly contains all
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the essential elements. . . ” this is only a mild circumlocution of saying that
Severi’s arguments are to be cleared and rewritten such that they meet the
standards of a modern mathematical exposition. And this is precisely what
Weil does. In particular this concerns the proof that the quadratic form in
question is positive definite – which is the main point for the RHp.

In my opinion, this is the essential achievement of Weil with respect to our
story of the RHp. He was the one who did what nobody had been able to
do, namely he dived into the ocean of algebraic geometry and brought to the
surface the sources which were needed for the proof of RHp, in particular
a consistent theory of intersection number. As an extra bonus he provided
a new foundation of the whole of algebraic geometry for arbitrary charac-
teristic, which required a huge effort and started a new era of “arithmetic
geometry”. This would not have been absolutely necessary just for the proof
of the RHp. For, that proof is “elementary”, as Weil says in his letter to
Artin [Wei80], since it uses only the geometry on the direct product Γ×Γ of
a curve with itself.

Now, how does Severi’s proof look like after Weil’s rewriting? This I have
pointed out already in section 10.5. You have just to read our “virtual proof”
in the language of algebraic geometry, in the way as I indicated there. The
important part is the proof of positive definiteness (section 10.2). I admit
that the proof there is not exactly the rewriting of Weil’s proof but, I believe,
shows some simplifications. But the main arguments there are essentially
modeled after Weil’s. In Weil’s proof appears what has been called the
“generic complementary correspondence” which I have avoided in the virtual
proof and replaced by a simple discriminant estimate. See section 10.2.2.

Remark: As it turned out, this quadratic form and its positivity had already
been found earlier in classical algebraic geometry, by Castelnuovo. This was
later discovered and pointed out by A. Weil in [Wei56]. Weil mentions that
Castelnuovo had defined algebraically for any correspondence A what he
called “equivalence defect” δ(A) ≥ 0 which is constructed precisely as our
σ(A,A) and vanishes if and only if A ≈ 0 . Apparently this was not known
by the participants of Hasse’s workshop, nor to Weil at that time. Today the
statement σ(A,A) > 0 is called “Inequality of Castelnuovo-Severi”.

Weil’s other proof, which he called “transcendental” and which “was up in the
air” at the time of his first note, did still remain up there when he published
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his second note. But he promised at the end of this note:

“A detailed account of this theory, including . . . the “transcen-
dental” theory as outlined in my previous note, is prepared for
publication.”

In consequence Weil published the books [Wei46, Wei48a, Wei48b].

Prior to these publications, after Weil had finally convinced himself about his
proofs and before going to prepare the final manuscripts, he wrote a letter to
Artin explaining all details. The letter is dated 10. July 1942, it begins with:

“I have now reached a state in my work on correspondences where
it will be helpful if I make a general survey of the theory, for you
and a few such people. This seems all the more desirable, as I
now find that the final writing up is going to involve a recasting
of the intersection theory in algebraic geometry (since I am not
altogether pleased with v. d. Waerden’s treatment of this subject),
this means that things may not get ready for quite a while.”

The full text of the letter is contained in the “Collected papers” of Weil,
as well as his comments. I have the impression that the letter was written
not only as information for Artin and other “such people”, but also as an
opportunity for Weil to put his ideas into line and to recheck the whole setup.

The fact that the letter was written to Artin shows that Artin still was con-
sidered as the ultimate authority for the RHp, although he had not published
anything about this question after his thesis.

Summary

After the outbreak of the second world war (1939) Hasse was drafted to the
Navy and did not have much time to think about the RHp. Weil found himself
imprisoned in Rouen as a conscientious objector to military service (1940).
While waiting for the trial he used his time to think about mathematics, in
particular about a proof of the RHp. This is documented in the letters which
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he exchanged with Henri Cartan and which are preserved. After a while he
had an idea how to algebraize the transcendental theory of correspondences,
for which he cited Hurwitz, and to find the positive definite form which Hasse
had envisaged in a letter to him. However, since in his prison he had no
access to mathematical literature he was not able to check the details. But
although the proof was still incomplete he decided, due to his very exceptional
situation, to publish a note in the “Comptes Rendus” explaining his ideas.

During the turmoil created by the German invasion of France Weil managed
to escape to the USA. There he continued his work on the RHp and in 1941 he
succeeded with a proof of the RHp. However this new proof went differently
from the one which he had sketched in his CR-note. It used the algebraic
theory of correspondences as developed by Severi. He was able to write a new
foundation of algebraic geometry, containing in particular the intersection
theory of algebraic varieties. His results were finally published in three books
1946/48. The essential theorem leading to the RHp is what today is called
“Inequality of Castelnuovo-Severi”.

In the year 1942, hence prior to the above mentioned publications, Weil wrote
a letter to Artin explaining all details.



Chapter 13

Appendix

With the appearance of Weil’s above mentioned three books, the RHp1 was
settled and our story comes to an end. But the mathematical development
inspired by this or that item of our story persists and is still present. From
the numerous literature in this direction I will mention here three papers
only:

The first is the paper of Mattuck and Tate published in the year 1958 in
the Hamburger Abhandlungen [MT58]. There the authors show that the
RHp can be derived from the Riemann-Roch Theorem for surfaces, applied
to the surface Γ × Γ, the direct product of a curve Γ with itself. This is
an interesting aspect. It has inspired Grothendieck to investigate also for
higher-dimensional varieties the quadratic form on the Neron-Severi group,
defined by the intersection multiplicities of divisors [Gro58].

Secondly, I have to mention Weil’s generalization of the RHp to varieties
of higher dimension, culminating in the so-called “Weil conjectures”. We
have seen the beginning of these ideas in the letter of Weil to Hasse dated
24. February 1939 (see page 249). Weil’s conjectures were finally solved by
Déligne. This is again a fascinating story but it would exceed the scope of
this book. I refer to the presentation by Freitag and Kiehl in the book [FK88]
which includes a historic sketch by Dieudonné.2

1and much more
2Added in proof: I am indebted to Franz Lemmermeyer for pointing out to me the

recent papers [Mil16], [OS16].
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13.1 Bombieri

Thirdly, there has appeared a new and quite short proof of the RHp by
Bombieri [Bom74]. This came as a surprise to the mathematical community
since the underlying idea is different from the original ideas of Hasse, Deuring
and Weil. Those people had seen the analogy of the RHp problem to the
classic theories of complex multiplication, of analysis and algebraic geometry.
They had successfully remodelled the relevant parts of those classic theories
such as to cover also the case of characteristic p > 0. In particular they
could now handle the Frobenius operator which, due to his inseparability
properties, does not have an analogue in the characteristic 0 case and in
this sense may look as a somewhat strange exemption although it plays the
main role in RHp. In constrast, Bombieri does not care about the historic
analogies to the characteristic 0 case. Following a lead from Stepanov [Ste69]
he uses explicitly the strength of the inseparability properties of the Frobenius
operator in order to reach the RHp directly.

Originally I had planned this last chapter as a brief epilogue only. But now
I cannot resist to include here at least a sketch of the main idea of this
short and highly original piece of work. I am closely following Bombieri’s
presentation but use my own notation. Let us review the situation:

F |K function field with finite base field.

q number of elements of the base field K.

g the genus of F |K.

N the number of primes of degree 1 of F |Kq.

It is not necessary here to work in the base field extension with the algebraic
closure of K as new base field, as was done in earlier sections. The main
result of Bombieri’s new proof is the

Theorem: Suppose that q = p2µ is a square, and that q is suffi-
ciently large. Then

(13.1) N ≤ q + (2g + 1)
√
q .

When I say that q should be “sufficiently large” then this means that q should
be larger than a constant depending on the genus g only. The following proof
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will produce such a constant. The assumptions on q can be achieved after
suitable base field extension of the given function field.

On first view the theorem looks like the verification of Artin’s criterion (see
page 71 in section 4.5). But it is only part of it. Artin’s criterion requires
the estimate of |N − q − 1| if q is sufficiently large . Therefore, in addition to
(13.1) it will be necessary to obtain a suitable lower estimate too. But once
one has the idea leading to the above theorem, the required lower estimate
can be obtained by applying the same idea to other situations, which appear
when the underlying meromorphism is replaced by its inverse in the (additive)
group of endomorphisms of the Jacobian of F |K. Therefore I will concentrate
here on the above theorem. Bombieri’s full proof has been included into the
well known book “Field Arithmetic” by Jarden and Fried [FJ08].

In the former proofs the idea of obtaining an estimate of N was based on
the construction of an element 0 6= z ∈ F which has all primes of degree 1
as zeros. Then N can be estimated by the degree of the zero divisor of z.
This equals the degree of the pole divisor of z. Thus one is left with estimat-
ing the degree of this pole divisor. Compare, e.g., our construction of the
determinant dµ(u) on page 220 f. There we have estimated the degree of a
discriminant, which is the square of a different. Note that N can be inter-
preted as the degree of the different D(1, π); see page 223. But that estimate
above is quite rough since the pole divisor of the determinant in question is
quite large. That method had given the desired result only if embedded as
part of the general theory of correspondences.

The new idea of Stepanov-Bombieri is to construct directly a non-zero ele-
ment z in F which again has the primes of degree 1 as zeros but this time
of high multiplicity. It will turn out that the multiplicities of the zeros of z
are to be ≥ pµ =

√
q; thus pµN will be estimated by the degree of the pole

divisor of z. This will give a better estimate for N and leads to the desired
result.

Actually, in Bombieri’s construction the pole divisor of z will be a power
of a prime P0 of degree 1 which is chosen in advance. Thus Bombieri’s
construction will give an estimate of the number N − 1 of the remaining
primes of degree 1.

The details of this construction are as follows:
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P0 is a prime of degree 1 of F |K .

L` = L(P `
0) the module of elements in F having P0 as their only pole, of

order ≤ `.

Lp
µ

` the module consisting of the pµ-th powers of elements of L` .

The desired element z is to be contained in the product module

Lp
µ

` · L
p2µ

m

where `,m are certain parameters which will have to be carefully selected
(see below). The pole divisor of any z ∈ Lp

µ

` ·Lp
2µ

m is a power of P0 , of degree
≤ `pµ +mp2µ. Every z ∈ Lp

µ

` · Lp
2µ

m is a pµ-th power and therefore every zero
of z has multiplicity ≥ pµ. Thus we only have to make sure that there exists
some z ∈ Lp

µ

` · Lp
2µ

m which admits all N − 1 primes 6= P0 of degree 1 as zeros.
If this is achieved then, as explained above, we obtain the estimate

pµ(N − 1) ≤ `pµ +mp2µ

N − 1 ≤ `+mpµ .

Choosing the parameters

(13.2) ` = pµ − 1 , m = pµ + 2g

we obtain the announced estimate (13.1) since p2µ = q.

This choice of parameters may look somewhat artificial at this point but the
following computations will show how they arise when one is looking for the
existence of z ∈ Lp

µ

` · Lp
2µ

m which has all primes of degree 1 (except P0) as
zeros.

If u1, u2, u3 . . . is a K-basis of L` then every z ∈ Lp
µ

` ·Lp
2µ

m can be represented
in the form:

(13.3) z =
∑
i

up
µ

i xp
2µ

i with xi ∈ Lm .

Since ` < pµ by (13.2) this representation is unique. To see this choose the
basis of L` adapted to the series of submodules

K = L0 ⊂ L1 ⊂ · · · ⊂ L`−1 ⊂ L` .



13.1. BOMBIERI 283

Each Li is of dimension ≤ 1 over the preceding module; if that dimension
is 1 then choose ui ∈ Li \Li−1. This gives a K-basis of L` , and vP0(ui) = −i.
Since i ≤ ` < pµ the vP0(ui) are mutually incongruent modulo pµ. Hence
the ui are linearly independent over F pµ , and therefore the up

µ

i are linearly
independent over F p2µ . Thus indeed, the representation (13.3) is unique. In
other words: Lp

µ

` ·Lp
2µ

m is isomorphic to the tensor product Lp
µ

` ⊗Lp
2µ

m over K.

In order to make sure that the element z in (13.3) has all primes of degree 1
as zeros (except P0) one tries to choose z such that

z̃ :=
∑
i

up
µ

i · xi = 0 .

In fact, if P 6= P0 is of degree 1 then xiP ∈ K for every i and hence

xp
2µ

i P = (xiP )p
2µ

= (xiP )q = xiP .

Observe that the map x 7→ xp
2µ

is the Frobenius meromorphism π of F |K
since p2µ = q. (Compare (7.12) on page 122.) It follows

zP =
∑
i

up
µ

i P · x
p2µ

i P =
∑
i

up
µ

i P · xiP = z̃P = 0 .

The map z 7→ z̃ is a K-homomorphism

(13.4) Lp
µ

` ⊗ L
p2µ

m −→ Lp
µ

` · Lm ⊂ L` pµ+m .

Thus z 6= 0 has to be in the kernel of this map. But:

What if the kernel of the map z 7→ z̃ vanishes?

Well, if this would be the case then the proof would break down. So we have
to look for an argument that indeed the kernel does not vanish for the above
choices of the parameters ` and m in (13.2) – provided q is sufficiently large.
At this point the Riemann-Roch theorem comes into the play.

The Riemann-Roch Theorem allows to estimate the K-dimensions of the
respective modules in question:

dimLp
µ

` = dimL` ≥ `− g + 1

dimLp2µm = dimLm ≥ m− g + 1

dimL` pµ+m = ` pµ +m− g + 1 (if `pµ +m > 2g − 2).



13.1. BOMBIERI 284

Thus the kernel of z 7→ z̃ does not vanish if `pµ +m > 2g − 2 and

(`− g + 1)(m− g + 1) > ` pµ +m− g + 1 .

Substituting for `,m the terms in (13.2) shows `pµ +m = p2µ + 2g, and gives
the condition

p2µ + pµ − g(g + 1) > p2µ + g + 1 ,

pµ > (g + 1)2

q = p2µ > (g + 1)4 .

This is meant in the theorem when I said that q should be “suffiently large”.

I hope I have been able to convey to you the originality and beauty of the idea
for this new proof. But at the same time it is seen that the realization of the
idea requires a subtle choice of the parameters involved in the construction,
see (13.2). It is not at all clear “why” just these or similar choices lead to
the envisaged result.

What would Hasse have said if he had seen this proof? Bombieri’s proof
appeared in 1976 ; Hasse died in the year 1979. I do not know whether Hasse
in his last years had seen or at least been told about Bombieri’s paper. In
any case, if I am allowed to speculate then I would say that he would have
fully acknowledged the achievement of the author and its ingenuity. But
on the other hand I recall Hasse’s discussion with Davenport about proofs
as manifestations of mathematical structures. (See page 85.) Perhaps he
would have added that one should search for the “true” reason, embodied in
the structure of function fields and in particular the Riemann-Roch theorem.
How can one explain that the Bombieri-Stepanov idea has been so successful
in exhibiting just pµ =

√
q as the error term? What is its connection to the

idea of Hasse, Deuring and Weil who constructed the quadratic form? In my
opinion such investigation would be a good and interesting problem. Note
that the Riemann-Roch theorem, which is essentially the basis of Bombieri’s
proof, is equivalent to the functional equation of the zeta function ζF (s).
This had been shown by F. K. Schmidt and Witt. (See section 4.4). Is it
possible to derive (13.1) directly from the functional equation of ζF (s)?
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[Beh35] H. Behrbohm. Über die Algebraizität der Meromorphismen eines
elliptischen Funktionenkörpers. Nachr. Ges. Wiss. Göttingen (2),
1:131–134, 1935. 128

[BM04] J. Brillhart and P. Morton. Class number of quadratic fields, Hasse
invariants of elliptic curves, and the supersingular polynomial. J.
Number Theory, 106:79–111, 2004. 156

[Bom74] E. Bombieri. Counting points on curves over finite fields (d’apres
S.A.Stepanov). Sem. Bourbaki 1972/73, Expose No.430, Lect.
Notes Math. 383, 234-241 (1974)., 1974. 15, 276

[BR36] H. Behrbohm and L. Redei. Der Euklidische Algorithmus in
quadratischen Körpern. J. Reine Angew. Math., 174:192–205,
1936. 128

[Cea96] S. S. Chern et al. Wei-Liang Chow 1911–1995. Notices Am. Math.
Soc., 43(10):1117–1124, 1996. 117
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[Che40] C. Chevalley. La théorie du corps de classes. Ann. Math. (2),
41:394–418, 1940. 245, 247

[Che51] C. Chevalley. Introduction to the theory of algebraic functions of
one variable., volume VI of Mathematical Surveys. American Math-
ematical Society, New York, 1951. XI, 188 pp. 63

[CN35] C. Chevalley and H. Nehrkorn. Sur les démonstrations
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BIBLIOGRAPHY 294

Wiss. Göttingen, Math.–Phys. Kl. I, 1933(42):253–262, 1933. 115,
170

[Has33b] H. Hasse. Vorlesungen über Klassenkörpertheorie. Preprint, Mar-
burg. [Later published in book form by Physica Verlag Würzburg
(1967)], 1933. 107

[Has34a] H. Hasse. Abstrakte Begründung der komplexen Multiplikation
und Riemannsche Vermutung in Funktionenkörpern. Abh. Math.
Semin. Univ. Hamb., 10:325–348, 1934. 117, 119

[Has34b] H. Hasse. Existenz separabler zyklischer unverzweigter Er-
weiterungskörper vom Primzahlgrad p über elliptischen Funktio-
nenkörpern der Charakteristik p. J. Reine Angew. Math., 172:77–
85, 1934. 141, 154

[Has34c] H. Hasse. Riemannsche Vermutung bei den F.K.Schmidtschen
Kongruenzzetafunktionen. Jahresber. Dtsch. Math.-Ver., 44,
2.Abt.:44, 1934. 28, 94, 99, 116

[Has34d] H. Hasse. Theorie der Differentiale in algebraischen Funk-
tionenkörpern mit vollkommenem Konstantenkörper. J. Reine
Angew. Math., 172:55–64, 1934. 139, 245

[Has34e] H. Hasse. Theorie der relativ–zyklischen algebraischen Funktio-
nenkörper, insbesondere bei endlichem Konstantenkörper. J. Reine
Angew. Math., 172:37–54, 1934. 25, 59, 97, 99, 101, 102, 142
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