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Quick Recap

Let f be a rational function of degree greater or equal to 2. If z0 is an
indifferent fixed point of (|f ′(z)| = 1) then the following are
equivalent

(1) f is locally linerarizable around z0
(2) z0 ∈ Ĉ \ J(f )
(3) the connected component U of Ĉ \ J(f ) containing z0 is conformally
isomorphic to E under an isomorphism which conjugates f on to
multiplication by λ on the disk.
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Main Goal

Investigate maps of the form

f (z) = λz +
N∑

n=2

anz
n, an ∈ C

Where λ = e2πiξ, ξ ∈ R \Q. We will determine all such ξ where we can
find z = h(ω) with f (h(ω)) = h(λω).
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Siegel’s and Cremer’s Theorems

Definition

A property is true for generic (in the topological sense) λ ∈ S1 ⇔ The set
of all such λ for which said property is true contains a countable
intersection of dense open subsets of S1.

Note that the set of generic λ is not necessarily a non null set.
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Siegel’s and Cremer’s Theorems

Cremer Non-linearization Theorem (1927)

For generic λ ∈ S1 it is true that if z0 is a fixed point of any rational
function with multiplier λ, then z0 is the limit of an infinite sequence of
periodic points. This means there is no linearizing coordinate in any
neighborhood of z0.
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Siegel’s and Cremer’s Theorems

Siegel’s Linearization Theorem (1942)

For almost every λ ∈ S1 any holomorphic function f : U → C with fixed
point mulitplier λ can be linearized by a local holomophic change of
variables.

Observation

Any irrational λ is either a ”Cremer Point” or a ”Siegel Point”.

Reminder (Siegel Disks)

Recall that a connected U ⊂ Ĉ \ J is called a Siegel disk.
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Diophantine and Roth Numbers

We can state much sharper theorems by introducing different sets of
irrational numbers. Let us begin with Diophantine Numbers due to Siegel.

Diophantine Condition

ξ ∈ R \Q satisfies a Diophantine Condition of order κ⇔ ∃ε = ε(ξ) such

that
∣∣∣ξ − p

q

∣∣∣ > ε
qκ ∀pq ∈ Q. Or by setting λ = e2πiξ ⇒ |λq − 1| > ε′

qκ−1 .

Diophantine Numbers

Let Dκ ⊂ R \Q denote all such numbers. Note that Dκ ⊂ Dη ⇔ κ < η.
Now we define Si :=

⋃
κ∈NDκ.

Similarly we can define

Roth Numbers

Ro :=
⋂
κ∈N≥2

Dκ
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Continued fractions

Pick ξ ∈ R \Q ∩ (0, 1). We can investigate the fractional expansion

ξ =
1

a1 + 1
a2+

1
a3+...

, ai ∈ N
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Continued fractions

If we chop off the expansion at any an−1 we get pn
qn

the ”n-th convergent”
of ξ. Interestingly it holds true that

qn+1 > qn >

(
1 +
√

5

2

)n−2

> 1, n > 2

Additionally, by construction, pn
qn

will be the best approximation of ξ with
denominator at most qn.
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Continued fractions

As before set λ = e2πiξ. We will need 2 facts (without Proof)

Fact 1

|λk − 1| < |λqn − 1|, k = 1, 2, ..., qn − 1

Fact 2

There exist constants 0 < c1 < c2 <∞ which satisfy

c1
qn+1

≤ |λqn − 1| ≤ c2
qn+1
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Continued fractions

We can now reformulate the Siegel and Roth conditions. Begin with Siegel.

λ ∈ Si ⇔ λ ∈
⋃
κ∈N

Dκ

⇔ ∃κ ∈ N : λ ∈ Dκ

⇔ ∃κ ∈ N, ε′(ξ) ∈ R : |λq − 1| < ε′

qκ−1

⇔ |λqn+1 − 1| ≤ c1

qκ−1n+1

< |λqn − 1| < ε′

qκ−1n

⇔ sup
n∈N

log(qn+1)

log(qn)
<∞

Equivalently one gets for λ ∈ Ro

lim
n→∞

log(qn+1)

log(qn)
= 1
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More Sets of Irrational Numbers

We will now introduce two more sets of irrational numbers. As always
ξ ∈ R \Q.

Bryuno Condition

Br :=
∑

n∈N
log(qn+1)

qn
<∞

Perez-Marco Condition

PM :=
∑

n∈N
log(log(qn+1))

qn
<∞

Note that we have Ro ⇒ Si ⇒ Br ⇒ PM
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Sharper Theorems

With those new sets we can formulate several theorems

Theorem of Bryuno (1972)

If ξ satisfies Br then any holomorphic function
f : U → C, z 7→ e2πiξz +

∑N
ν=2 aνz

ν can be linearized by a holomorphic
variable change.

Theorem of Yoccoz (1987)

If for ξ we have
∑

n∈N
log(qn+1)

qn
=∞ then every neighborhood of the origin

will contain infinitely many periodic orbits. Hence the origin is a Cremer
Point.

Theorem of Perez-Marco (1990)

If ξ satisfies the Perez-Marco (PM) condition any holomorphic function
f : U → C, z 7→ e2πiξz +

∑N
ν=2 aνz

ν which cannot be linearized will
contain infinitely many orbits in any neighborhood of the origin.
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Cremers Non-linearization theorem

We will define one last set of irrational numbers. We say ξ ∈ R \Q
satisfies a Cremer Condition of degree d if

Crd := lim sup
q→∞

log(log(|λq − 1|−1))

q
> log(d)

.

We can now state Cremers Theorem more formally

Cremer Non-linearization Theorem

If ξ satisfies Crd for d ≥ 2, then for an arbitrary rational function of degree
d any neighborhood of a fixed point of multiplier λ := e2πiξ must contain
infinitely many periodic orbits. No linearization is possible.
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Reduction to Polynomials

Firstly we will reduce the general case to the polynomial case (roughly).

Let f be rational. Wlog assume that f (∞) = f (0) = 0 (Otherwise
conjugate with Möbius Transform).

Now set f (z) = P(z)
Q(z) . It follows that deg(P) < d . Applying some algebra

we may also assume P(z) = λz +O(zs), s < d . Furthermore we can
assume Q(z) =

∑d
ν=0 aνz

ν . Now consider f ◦q(z) = z .

f ◦q(z) =
O(zs

q
) + λqz∑dq

ν=0 aνz
ν
⇔ 0 = z

(
dq∑
ν=0

aνz
ν −O(zs

q
) + λqz

)

But this is just an ordinary monic Polynomial! Now we can proceed to
show the polynomial case.
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Polynomial Case Part 1

Let f (z) = λz +
∑d

ν=2 aνz
ν , d > 1, ad = 1, with λ := e2πiξ, where ξ

satisfies Crd .

f ◦q(z) = λqz +
dq∑
ν=2

aνz
ν ⇔

dq∑
ν=2

aνz
ν + (λq − 1)z = 0

By the Fundamental Theorem of Algebra there must exist dq − 1 non-zero
fixed points. Now we can rearrange again

dq−1∑
ν=2

aνz
ν =

∏
∑

ni=dq−1

(z − zi )
ni = ±(λq − 1)
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Polynomial Case Part 2

Now there must exist a root zj with

0 < |zj | < |λq − 1|1/(dq−1) < |λdq − 1|1/(dq−1) < |λdq − 1|1/dq

By Hypothesis we can choose ε > 0 such that for arbitrarily large q

log(log(1/|λq − 1|))

q
> log(d) + ε⇔ |λq − 1|1/(dq−1) < e−e

εq
< e−εq

(1)

Obviously e−εq → 0 for large q. By Taylor we can choose δ > 0 such that
|f (z)| < eε|z | for |z | < δ. Thus,

|f ◦k(z)| < δ, 1 ≤ k ≤ q and |z | < e−εqδ

We have already seen that there exist periodic points (1) for any q.
Therefore the entire orbit must also be contained in this neighborhood.
This completes the proof.
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|f ◦k(z)| < δ, 1 ≤ k ≤ q and |z | < e−εqδ

We have already seen that there exist periodic points (1) for any q.
Therefore the entire orbit must also be contained in this neighborhood.
This completes the proof.
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Polynomial Case Part 2

Now there must exist a root zj with

0 < |zj | < |λq − 1|1/(dq−1) < |λdq − 1|1/(dq−1) < |λdq − 1|1/dq

By Hypothesis we can choose ε > 0 such that for arbitrarily large q

log(log(1/|λq − 1|))

q
> log(d) + ε⇔ |λq − 1|1/(dq−1) < e−e

εq
< e−εq

(1)

Obviously e−εq → 0 for large q. By Taylor we can choose δ > 0 such that
|f (z)| < eε|z | for |z | < δ. Thus,

|f ◦k(z)| < δ, 1 ≤ k ≤ q and |z | < e−εqδ

We have already seen that there exist periodic points (1) for any q.
Therefore the entire orbit must also be contained in this neighborhood.
This completes the proof.
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