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1 What’s the deal?

The main aim for studying how groups act on other mathematical objects
through their representations ,is to detect internal symmetries of the object.
By operating with a particular group and observing what remains unchan-
ged/invariant under the action, we understand internal properties of the struc-
ture on which we operating.
Homogeneous spaces are a particular class of manifolds that behave per con-
struction very symmetrically under the action of some groups, and they can
be fully reconstructed just by looking at their behaviour under curtain actions.
Namely any point on the manifold is correlated pairwise to any other just by
the operation of elements of the group. The exact definition follows.

2 Review on group actions

Today we are going to restrict ourselves into Lie group actions on manifolds. So
let G be always a Lie group and M a manifold. So we can recap some important
definitions that were used in previous lectures,and we will also use today.

Definition 1 (Left actions): A left action of a Lie group G on M is a map:

θ : G×M −→M

(g, p) 7−→ g · p =: θg(p)

s.t. g1 · (g2 · p) = (g1 · g2) · p and e · p = p ; g1, g2 ∈ G, p ∈M, e identity in G.

Definition 2 (Summary of basic notions on group actions):

1. An action is said to be continuous if the defining map of the action is
continuous.

2. A manifold with such a G-action (G,M, θ) is called a G-space. If M is
smooth and the action is smooth then we call M a smooth G-space.

3. For all g ∈ G is θg : M −→M a homeomorphism with inverse
θ−1g : M −→ M . In particular if the action is smooth then θg is a diffeo-
morphism on M .

4. The orbit of p ∈M under the action of G is defined as:

G · p := {g · p : g ∈ G} < M

5. The isotropy group of p ∈M is defined as:

Gp := {g ∈ G : g · p = p} < G

6. The action is said to be free if:

Gp = {e}; ∀p ∈M
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7. a continuous action is said to be proper if the map:

G×M −→M ×M
(g, p) 7→ (g · p, p)

is a proper map.Where proper map is defined as a map between topological
spaces such that, its preimage of a compact subset is compact itself. A
useful characterization of proper actions we have seen last time was: that
an action is proper iff following holds: For two sequences (pi)i;∀pi ∈ M
and (gi)i;∀gi ∈ G s.t. both (pi)i, (gi·pi)i converge in M , then a subsequence
of (gi)i converges in G.

8. And the most important notion for today is the following: The action is
said to be transitive if:

∀p, q ∈M ∃g ∈ G : p = g · q

9. A map F : M → N for manifolds M,N is said to be equivariant if the
following diagram commutes:

M
F //

θg
��

N

φg

��
M

F
// N

where φ, θ denote the actions of G on N, M respectively.

3 Homogeneous spaces and their construction

Definition 3 (Homogeneous-space): A smooth manifold M endowed with a
transitive, smooth action by a Lie group is called a Homogeneous G-space or
just Homogeneous-space.

Example 1 (Basic Examples): Before we start exploring their properties lets
take a look at some examples to gain intuition on how they work.

1. The Euclidean group:

E(n) := Rn oφ O(n); (b, A)(b′, A′) := (b+ φA(b′), AA′), φA(x) := Ax

Acting on Rnvia:

E(n) y Rn : (b, A) · x := b+ φA(x) = b+Ax

These are the rigid-body motions.The action is obviously transitive as we
can obtain any vector from any other just by linear transformations in Rn.
So Rn becomes a homogeneous space under the action of E(n).
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2. Sn−1 vs O(n):

We observe the action O(n)×Sn−1 → Sn−1 as the restriction of the natural
action GL(n) y Rn, hence is the restriction smooth because Sn−1 is an
embedded submanifold of Rn. This action is also transitive, by taking a
unit vector and rotating it orthogonally in Rn.

3. The Möbious group: The group SL(2,R) operates transitively on the uper
half plane U := {z ∈ C : Im(z) > 0} under(

a b
c d

)
· z =

az + b

cz + d

The induced diffeomorphisms on U are exactly the Möbius-transformations.

The following theorems 2 and 5 are of great importance, because the first
one shows us how to construct homogeneous spaces and the other one classifies
them in terms of the first, as quotients of Lie groups by closed subgroups. For
these we have to recall the statement of the quotient manifold theorem that we
have seen last time:

Theorem 1 (Recall of the quotient manifold theorem/QMT:) Suppo-
se G is a Lie goup acting smoothly,freely and properly on a smooth manifold
M .Then the orbit space M/G is a topological manifold of dimension equal to
dim(M) − dim(G), and has a unique smooth structure with the property that
the quotient map π̃ : M −→ M/G is a smooth submersion (that is a diffe-
rentiable map between differentiable manifolds whose differential is everywhere
surjective).

Theorem 2 (Homogeneous-space construction theorem) Let G be a Lie
group and let H be a closed subgroup of G.(i) The left coset space G/H is a
topological manifold of dimension equal to dim(G)− dim(H), and has a unique
smooth structure s.t. the quotient map π : G −→ G/H is a smooth submersion.
(ii)The left action of Gy G/H given by:

g1 · (g2H) = (g1g2)H

turns G/H into a homogeneous-space.
Proof:
At first we observe how H operates from the right on G so that we can use the
quotient manifold theorem on H y G and give a natural smooth structure to
G/H. This operation is:

H ×G −→ G

(h, g1) 7→ g1h =: g2

• It follows directly from the closed subgroup theorem,that H is a properly
embedded Lie subgroup of G.
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• H y G is smooth because the operation coincides with the restriction of
the multiplication operation of G:

m : G×G −→ G restr.→ m|H : H ×G −→ G

• The action is in particular free:

g ∈ G, h ∈ H ⊂ G =⇒ [gh = g =⇒ h = e]

• The action is also proper: Let (gi)i, (hi)i be Sequences in G and H respec-
tively s.t. (gi)i and (gihi)i both converge in G. By the continuity of the
inverse map we have that hi = g−1i (gihi) also converges in G and because
H is closed in G, with the subspace topology ,follows that (hi) converges
in H. This is as we have denoted above equivalent to the fact that H y G
is proper.

So we have a smooth, free and proper action of a Lie group H on the smooth
manifold G. Then follows from the QMT that G/H has a unique smooth struc-
ture as a quotient manifold, s.t. the quotient map π : G −→ G/H is a smooth
submersion.

Now after all these considerations we can go back and try to understand the
action Gyθ G/H. Consider the following diagram:

G×G

IdG×π
��

m // G

π

��
G×G/H

θ
// G/H

where IdG × π is a smooth submersion as a product of those and

θ : (g1, g2H) 7→ g1 · (g2H) := (g1g2)H.

Under this last map we hope to turn (G,G/H) into a homogeneous space.To
end proof by proving that θ is well defined and smooth we have to make use of
the following ,very fundamental theorem of differential geometry:

Theorem 3 (Passing smoothly to the quotient): Let M,N,P be smooth
manifolds and π : M −→ N a surjective smooth submersion. If P is a smooth
manifold and F : M −→ P a smooth map that is constant on the fibers of π
(that is : [π(p) = π(q) =⇒ F (p) = F (q)] ), then there exist a unique smooth
map θ : N −→ P such that θ ◦ π = F.

M

F

  
π

��
N

∃!θ
// P

4



So to make use of this theorem we have to prove that the combination:

π ◦m : G×G→ G→ G/H

is constant on the fibers of IdG × π : To see that let g1, g2 ∈ G and so we have:

(IdG × π)(g1, g2) =(g1, g2H)

(IdG × π)−1(g1, ḡ2) ={(g1, g)|gH = g2H}
= : (G×G)(g1,g2)

π ◦m|(G×G)(g1,g2)
: (G×G)(g1,g2) → G/H

(g1, g) 7→ π(g1g) = g1gH = g1g2H ∀g

=⇒ π ◦m constant on the fibers of IdG × π.
The uniqueness of θ in Theorem 3 gives us the required smooth well defined
structure we wanted and per definition gives θ a group action.This action is
finally also transitive: Let (g1, g2) ∈ G × G. Then g2g

−1
1 ∈ G and satisfies the

following relation:

θ(g2g
−1
1 , g1H) = (g2g

−1
1 ) · g1H = g2H

that is,we connect ḡ1, ḡ2 through g2g
−1
1 . So the action is indeed transitive, and

this completes the proof of the construction theorem.

Theorem 4 (Equivariant map theorem):
Let M and N be smooth manifolds and G a Lie group. Suppose F : M −→ N is
a smooth map that is equivariant with respect to a transitive smooth G action
on M and any smooth G action on N. Then F has constant rank.Thus, if:

1. F is surjective, then it is a smooth submersion,

2. F is injective, then it is a smooth immersion,

3. F is bijective, then it is a diffeomorphism.

That is, in the form of a commutative diagram:

TpM
dFp //

d(θg)p

��

TF (p)N

d(φg)F (p)

��
TqM

dFq

// TF (q)N

5



Definition 4 (Orbit map):
On the frame of this theorem we can define, for an action θ : G×M −→M at
each p ∈M , a map:

θ(p) : G −→M

g 7→ g · p

which we will call the orbit map. This map has some important features:

• its image lays completely in the orbit G · p

• its preimage is the isotropy group of p, that is: (θ(p))−1(p) = Gp.

• it is smooth: G× {p} ↪→ G×M θ−→M

• In particular it is equivariant: θ(p)(gg′) = (gg′) ·p = g · (g′ ·p) = g · θ(p)(g′)

• and has constant rank ( Equivariant rank theorem + Transitivity of the
action).

Theorem 5 (Homogeneous-space characterization theorem): Let G be
a Lie group, let M be a homogeneous G-space, and let p be any point of M . The
isotropy group Gp is a closed subgroup of G, and the map

F : G/Gp −→M

gGp 7→ g · p

is an equivariant diffeomorphism.
Proof:
As we have seen right above, the isotropy groups are given by the inverse of the
orbit map,which is continuous and smooth as it is induced by the group action
and p closed =⇒ Gp closed. With this we conclude that the isotropy groups
are closed Lie Subgroup of G.
Now we check if F is indeed well defined:
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g1Gp = g2Gp ⇐⇒ ∃h ∈ Gp : g2 = g1h

F (ḡ2) = g2 · p = g1h · p = g1 · F (h̄)

= g1 · F (1̄) = g1 · p = F (ḡ1)

F is an equivariant map:

F
(
g′g
)

= g′g · p = g′F (ḡ)

and is also smooth.This follows from directly from Theorem 3 if we consider the
following diagram:

G

θ(p)

""
π

��
G/Gp

!F
// M

Here is π by definition a smooth surjective submersion. θ(p) is constant on the
fibers of π :

π1(g1Gp) = {g|{gGp = g1Gp︸ ︷︷ ︸
∃ξ∈Gp:g=g1ξ

}

θ(p)(g) = g · p = g1 · ξp
= g1 · p = θ(p)(g1)∀g ∈ π−1(g1Gp)

and therefore there is a unique smooth map F with the wished properties.
At last F is bijective:
It is sujective as: Let q ∈M arbitrary, then follows from transitivity:

∃g ∈ G : g · p = q =⇒ F (ḡ) = q

and injective as: g1, g2 ∈ G :

F (ḡ1) = F (ḡ2) =⇒ g1 · p = g2 · p =⇒ (g−12 g1) · p = p

=⇒ (g−12 g1) ∈ Gp =⇒ ḡ1 = ḡ2

=⇒ [F is equivariant+ smooth+ bijective]
Th4
=⇒ F is a Diffeomorphism

This theorem allows us to characterize every Homogeneous G-space M as
a quotient of the Lie group G by a closed subgroup, G/H, and namely by an
isotropy group of an element in M . Under these new insights we can return to
the examles we discussed before and write them as quotients of Lie groups.

Example 2 ”A wiser approach to the former excitation of our intuition”:
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1. On the Example of the Euclidean group we see that the isotropy group
of the origin is the subgroup O(n) < E(n), then is Rn diffeomorphic to
E(n)/O(n).

2. On the natural action O(n) y Sn−1 lets say we take as basis point p =
(0, ..., 0, 1)-the north pole , then we see that the isotropy group is O(n− 1)
by keeping p steady and rotating the sphere around the frozen axis that
goes through the center and p. Thus by using the characterization theorem
we see Sn−1 ∼= O(n)/O(n− 1) (diffeomorphic).

3. On the transitive action of SL(2,R) by Möbius transformations on U, has
the point i ∈ U the isotropy group:

SL(2,R)i = {C(a,b,c,d) ∈ SL(2,R)|a = d, c = −b; det(C(a,b,c,d)) = 1}
= SO(2) < SL(2,R)

So from theorem 3 we obtain a diffeomorphism: U −→ SL(2,R)/SO(2).

-Further important examples are:

4. Grassmanians: Gr(r, n) ∼= O(n)/(O(r)×O(n− r))

5. Projective space: Pn−1 ∼= PO(n)/PO(n− 1)

6. Hyperbolic space: Hn ∼= O+(1, n)/O(n)

7. Anti-de Sitter space: AdSn+1
∼= O(2, n)/O(1, n)

In particular these examples can be endowed with the special structure of a ”sym-
metric space” which will be explained in detail in the next lecture.

Remark: As a last remark, we have to make clear that not every smooth ma-
nifold can become a homogeneous space under some special action! There are,
most importantly, topological constraints for becoming a homogeneous space
and in particular it has been proven by G.Mostow in 2005 that a compact ho-
mogeneous space isn’t allowed to have negative Euler characteristic χ. Example:
for the case of an orientable surface it is χ = 2− 2g, where g the denotes genus
of the surface, that would mean that a double torus(g = 2, χ = −2) is directly
out of the game for becoming homogeneous, although the torus T (g = 1, χ = 0)
is trivially homogeneous under T = C/Z2.
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