26 Ebene homographische Lösungen 23.7.

Der nächste Satz zeigt, dass auch die ebenen homographischen Lösungen sind durch zentrale Konfigurationen charakterisiert.

Wir brauchen dazu den folgenden Hilfsatz.

Hilfsatz 26.1. Es sei $\mathbf{a} \in \Delta^c$ und $\mu \in \mathbb{C}$, sodass

$$\mu \cdot \mathbf{a}_i = \sum_{j \neq i} \frac{Gm_j}{r_{ij}^2} \hat{\mathbf{r}}_{ij}.$$

Dann ist μ eine positive reelle Zahl.

Beweis. Wir können annehmen, dass alle die Massen positiv sind, sodass wir

$$\mu \cdot \operatorname{grad} I(\mathbf{a}) = \operatorname{grad} U(\mathbf{a}). \tag{26.1}$$

haben. Wir schreiben $\mu = \mu_1 + \mu_2 \mathbf{i}$ und wir müssen $\mu_2 = 0$ zeigen. Für alle $\theta \in \mathbb{R}$ haben wir $I(e^{i\theta}\mathbf{a}) = I(\mathbf{a})$ und $U(e^{i\theta}\mathbf{a}) = U(\mathbf{a})$. Wenn wir diese Identitäten nach θ ableiten und $\theta = 0$ einsetzen, finden wir

$$\langle \operatorname{grad} I(\mathbf{a}), \mathbf{ia} \rangle = 0, \qquad \langle \operatorname{grad} I(\mathbf{a}), \mathbf{ia} \rangle = 0.$$

Wir nehmen das Skalarprodukt der Gleichung (26.1) mit ia und finden

$$\langle \mu_1 \operatorname{grad} I(\mathbf{a}), \mathbf{i} \mathbf{a} \rangle + \langle \mu_2 \mathbf{i} \cdot \operatorname{grad} I(\mathbf{a}), \mathbf{i} \mathbf{a} \rangle = \langle \operatorname{grad} U(\mathbf{a}), \mathbf{i} \mathbf{a} \rangle \iff \mu_2 2I(\mathbf{a}) = 0.$$

Da
$$I(\mathbf{a}) > 0$$
 folgt es, dass $\mu_2 = 0$.

Satz 26.2. Es sei $\mathbf{a} \in \Delta^c$ eine ebene Konfiguration. Die Konfiguration \mathbf{a} ist zentral (mit Konstante μ) genau dann, wenn es eine Funktion $\mathbf{z} : (t_0, t_1) \to \mathbb{C}$ gibt, sodass $\mathbf{r} := \mathbf{z}(t)\mathbf{a}$ eine (homographische) ebene Lösung von (22.3) ist. In diesem Fall löst \mathbf{z} das 2-dimensionale Keplerproblem mit Konstante μ :

$$\ddot{\mathbf{z}} = -\frac{\mu}{z^2}\hat{\mathbf{z}}.$$

 $\label{eq:main_problem} \mbox{Im Fall } \lambda \equiv 1, \ dann \ \mathbf{z}(t) = e^{i\omega t}, \ wobei \ \omega^2 = \mu.$

Beweis. Es sei $\mathbf{z}:(t_0,t_1)\to\mathbb{C}\setminus 0$ eine komplexe Funktion und man definiere $\mathbf{r}_i:=\mathbf{z}\mathbf{a}_i$ so, dass $\dot{\mathbf{r}}_i=\dot{\mathbf{z}}\mathbf{a}_i$ und $\ddot{\mathbf{r}}_i=\ddot{\mathbf{z}}\mathbf{a}_i$. Wir schreiben $\mathbf{z}(t)=\lambda(t)e^{i\theta(t)}$. Da wir $\mathbf{r}_{ij}=\mathbf{z}\mathbf{a}_{ij}$, $r_{ij}=\lambda a_{ij}$, $\hat{\mathbf{r}}_{ij}=e^{i\theta}\hat{\mathbf{a}}_{ij}$ haben, folgt

$$\sum_{j\neq i} \frac{Gm_j}{r_{ij}^2} \hat{\mathbf{r}}_{ij} = \sum_{j\neq i} \frac{Gm_j}{\lambda^2 a_{ij}^2} e^{i\theta} \hat{\mathbf{a}}_{ij} = \frac{\mathbf{z}}{\lambda^3} \sum_{j\neq i} \frac{Gm_j}{a_{ij}^2} \hat{\mathbf{a}}_{ij}.$$

Daher gilt (22.3) genau dann, wenn

$$\mu \mathbf{a}_i = \sum_{j \neq i} \frac{Gm_j}{a_{ij}^2} \hat{\mathbf{a}}_{ij}, \qquad \mu := -\frac{\lambda^3 \ddot{\mathbf{z}}}{\mathbf{z}}.$$

Außerdem μ ist konstant, weil $\mathbf{a}_i \neq \mathbf{0}$ für irgenwelche i und die Summe auf der rechten Seite konstant ist. Schließlich ist μ reell nach dem Hilfsatz 26.1.

Je größer n ist, desto schwieriger ist, die homographische Lösungen mit n Körper zu bestimmen. Für n=2 oder 3 können wir aber homographische Lösungen und zentrale Konfigurationen gut beschreiben.

Satz 26.3. Alle Lösungen $\mathbf{r} = (\mathbf{r}_1, \mathbf{r}_2)$ des Zweikörperproblems sind eben homographisch und alle Konfigurationen $\mathbf{a} = (\mathbf{a}_1, \mathbf{a}_2)$ mit Schwerpunkt in $\mathbf{0}$ zentral. Alle homographischen Lösungen $\mathbf{r} = (\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$ sind eben. Es sei $\mathbf{a} = (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$ eine Konfiguration mit Schwerpunkt in $\mathbf{0}$. Wenn $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ nicht kollinear sind, dann ist \mathbf{a} zentral genau dann, wenn $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ die Scheitel eines gleichseitigen Dreiecks sind. Wenn $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ kollinear sind, und o.B.d.A. \mathbf{a}_2 zwischen \mathbf{a}_1 und \mathbf{a}_3 liegt, dann gibt es eine einzige $\rho \in \mathbb{R}^+$, die nur von den Massen m_1, m_2, m_3 aber nicht von der Lage des Körpers abhängt, mit der Eigenschaft, dass \mathbf{a} zentral ist, genau dann, wenn

$$a_{23} = \rho a_{12}$$
.

Also bis auf Ähnlichkeiten gibt es eine einzige kollineare zentrale Konfiguration für die gegebenen Massen m_1, m_2, m_3 .

Beweis. Es sei $\mathbf{r} = (\mathbf{r}_1, \mathbf{r}_2)$ eine Lösung des Zweikörperproblems (mit $m_1, m_2 > 0$). Wir können annehmen, dass $\mathbf{r}_1 = \mathbf{z}_1$ und $\mathbf{r}_2 = \mathbf{z}_2$ komplexe Zahlen sind. Wir wissen, dass $\mathbf{z}_2(t) = -\frac{m_1}{m_2}\mathbf{z}_1$. Also setzen wir in (25.3) $\mathbf{z} := \mathbf{z}_1$, $\mathbf{a}_1 := 1$ und $\mathbf{a}_2 := -\frac{m_1}{m_2}\mathbf{1}$. Dann $\mathbf{z}_1 = \mathbf{z}\mathbf{a}_1$ und $\mathbf{z}_2 = \mathbf{z}\mathbf{a}_2$.

Es sei nun $\mathbf{r} = (\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$ eine homographische Lösung des (möglicherweise eingeschränkten) Dreikörperproblem. Wenn \mathbf{r} homothetisch ist, ist die Ebene durch $\mathbf{r}_1(t)$, $\mathbf{r}_2(t)$, $\mathbf{r}_3(t)$ unabhängig von t. Wenn \mathbf{r} nicht homothetisch ist, wissen wir aus Satz 25.11, dass \mathbf{r} sowieso eben ist. Man kann auch einen direkten Beweis der Ebenheit im Buch von Geiges (Theorem 7.1 und Exercise 7.9) finden.

Es seien $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ nicht kollinear. Das bedeutet, dass alle zwei Elemente aus $\mathbf{a}_{12}, \mathbf{a}_{23}$ und \mathbf{a}_{31} linear unabhängig sind. Aus $\sum_{j=1}^{3} m_j \mathbf{a}_j = \mathbf{0}$ bekommen wir für i = 1, 2, 3

$$\mathbf{0} = \sum_{j=1}^{3} \left(m_j (\mathbf{a}_j - \mathbf{a}_i) + m_j \mathbf{a}_i \right) = \sum_{j \neq i} m_j \mathbf{a}_{ji} + m \mathbf{a}_i.$$

Die Bedingungen (25.4) sind gleichbedeutend mit

$$\mathbf{0} = \sum_{j \neq i} m_j \left(\frac{G}{a_{ij}^3} - \frac{\mu}{m} \right) \mathbf{a}_{ij}, \quad i = 1, 2, 3.$$

Da die Vektoren auf der rechten Seite linear unabhängig sind, folgt es, dass

$$a_{ij}^3 = \frac{Gm}{\mu}, \quad \forall i \neq j.$$

Also sind die Abstände zwischen alle zwei Körpern gleich.

Es sei nun angenommen, dass \mathbf{a}_1 , \mathbf{a}_2 und \mathbf{a}_3 kollinear sind. Bis auf der Substitution $\mathbf{a}_i' = \lambda \mathbf{a}_i$ für i = 1, 2, 3 nehmen wir an, dass $a_{12} = 1$ und wir schreiben $\rho := a_{23}$. Wir identifizieren die drei Körper mit reellen Zahlen $x_1 < x_2 < x_3$ sodass, $x_2 = x_1 + 1$ und $x_3 = x_1 + (1 + \rho)$. Bis auf der Substitution $\mu' = \mu/G$ wird das Gleichungsystem (25.4) zum

$$\begin{cases}
\mu x_1 = m_2 + \frac{m_3}{(1+\rho)^2} \\
\mu(x_1+1) = -m_1 + \frac{m_3}{\rho^2} \\
\mu(x_1+(1+\rho)) = -\frac{m_1}{(1+\rho)^2} - \frac{m_2}{\rho^2}.
\end{cases} (26.2)$$

Wir müssen dieses System nach μ, x_1 und ρ lösen. Wir haben ein äquivalentes System, wenn wir die zweite und dritte Gleichung durch ihre Differenz mit der ersten ersetzen:

$$\begin{cases}
\mu x_1 = m_2 + \frac{m_3}{(1+\rho)^2} \\
\mu = -(m_1 + m_2) + \frac{m_3}{\rho^2} - \frac{m_3}{(1+\rho)^2} \\
\mu(1+\rho) = -\frac{m_1 + m_3}{(1+\rho)^2} - \frac{m_2}{\rho^2} - m_2.
\end{cases} (26.3)$$

Wir setzen μ von der zweiten Gleichung in die dritte und nach dem Beseitigen der Nenner bekommen wir

$$(m_1 + m_2)\rho^5 + (3m_1 + 2m_2)\rho^4 + (3m_1 + m_2)\rho^3 - (m_2 + 3m_3)\rho^2 - (3m_3 + 2m_2)\rho - (m_2 + m_3) = 0$$

Die linke Seite ist ein Polynom $P(\rho)$ fünften Grades. Wir haben P(0) < 0 und $P(\infty) = +\infty$. Also gibt es zumindest eine Lösung der obigen Gleichung. Wir möchten nun zeigen, dass diese Lösung ist die einzige. Es sei dann per Widerspruch angenommen, dass es $\rho_0 < \rho_1$ mit $P(\rho_0) = 0 = P(\rho_1)$ gibt. Wir haben P'(0) < 0 und deswegen gibt es ein Minimum ρ_2 im Intervall $(0, \rho_0)$. Das Maximum für P auf dem Intervall $[\rho_2, \rho_1]$ ist nicht negativ, also gibt es einen maximierenden Punkt ρ_3 für P im Intervall (ρ_2, ρ_1) (man nehme $\rho_3 = \rho_0$, wenn das Maximum gleich Null ist). Dann $0 \le P''(\rho_2)$ und $P''(\rho_3) \le 0$. Aber $P'''(\rho) > 0$ für alle $\rho \in \mathbb{R}^+$, sodass P'' eine monoton steigende Funktion ist. Das ergibt den Widerspruch $0 \le P''(\rho_2) < P''(\rho_3) \le 0$.

Bemerkung 26.4. Die homographische Lösungen mit drei Körpern sind nach Lagrange genannt, wenn die Körper nicht kollinear sind, und nach Euler genannt, wenn die Körper kollinear sind.

Aufgabe 26.5. Es seien $m_1, m_2, m_3 > 0$. Beweisen Sie, dass die Trägheitsmoment $I(\mathbf{r}) = \frac{1}{2} \sum_{i=1}^{n} m_i r_i^2$ lässt sich schreiben als

$$I(\mathbf{r}) = \frac{1}{4m} \sum_{i \neq j} m_i m_j r_{ij}^2 + \frac{1}{2} m r_S^2.$$
 (26.4)

Hinweis: $2mI = \sum_j 2m_j \frac{1}{2} \sum_i m_i r_i^2 = \sum_{i,j} m_i m_j r_i^2$. Dann ersetzen $r_i^2 = r_{ij}^2 + 2\langle \mathbf{r}_i, \mathbf{r}_j \rangle - r_j^2$.

Aufgabe 26.6. Es seien $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ drei Körper mit positiven Massen und $\mathbf{r}_S = \mathbf{0}$, die ein gleichseitiges Dreieck mit Seitenlänge a bilden. Finden Sie die Konstante μ für diese zentrale Konfiguration als Funktion von a und der Summe der Massen m. Finden Sie die Winkelgeschwindigkeit, wenn die drei Körper sich in einem Gleichgewicht bewegen.