13 Der Hodographsatz von Hamilton 7.6.

In diesem Abschnitt diskutieren wir einen wichtigen Satz von Hamilton, der besagt, dass die Hodographen der Lösungen des keplerschen Problems entweder Bogen von Kreisen im \mathbb{R}^3 , falls $\mathbf{c} \neq 0$, oder Teilmengen von Geraden, falls $\mathbf{c} = 0$, sind.

Definition 13.1. Es sei $\mathbf{r}: I \to \mathbb{R}^n$ eine Kurve. Der **Hodograph** von \mathbf{r} ist die Geschwindigkeitskurve $\mathbf{v} := \frac{d\mathbf{r}}{dt}: I \to \mathbb{R}^n$.

Bemerkung 13.2. Der Hodograph hängt von der Parametrisierung der Kurve \mathbf{r} und nicht nur vom Bild $\mathbf{r}(I)$. Genauer, wenn $s \mapsto t(s)$ eine Umparametrisierung ist, dann $\frac{d\mathbf{r}}{ds} = \frac{ds}{dt} \cdot \frac{d\mathbf{r}}{dt}$.

Beispiel 13.3. Der Hodograph der Kurve $\mathbf{r}(t) = (t, t^2/2)$, die die Parabel $y = x^2/2$ parametrisiert, ist die Kurve $\mathbf{v}(t) = (1, 0) + t(0, 1)$, die die Gerade x = 1 paarmetrisiert.

Der Hodograph der Kurve $\mathbf{r}(t) = (a\cos t, b\sin t)$, die die Ellipse $(x/a)^2 + (y/b)^2 = 1$ parametrisiert, ist die Kurve $\mathbf{v}(t) = (-a\sin t, b\cos t) = \mathbf{r}(t + \pi/2)$ die die gleiche Ellipse mit verschobener Zeit parametrisiert.

Der Hodograph der Kurve $\mathbf{r}(t) = (a \cosh t, b \sinh t)$, die die Hyperbel $(x/a)^2 - (y/b)^2 = 1$ parametrisiert, ist die Kurve $\mathbf{v}(t) = (a \sinh t, b \cosh t)$, die die Hyperbel $(x/a)^2 - (y/b)^2 = -1$ parametrisiert.

Definition 13.4. Es seien k und n natürliche Zahlen mit k < n. Eine k-Sphäre \mathcal{S} in \mathbb{R}^n ist die Menge aller Punkte in einer gewissenen (k+1)-dimensionalen tragenden Ebene α , die einen festen Abstand ρ von einem Punkt \mathbf{M} in α besitzen. Die Zahl ρ heißt Radius und der Punkt \mathbf{M} Mittelpunkt von \mathcal{S} . Die Sphäre heißt radial, wenn $\mathbf{0} \in \alpha$. Eine 1-Sphäre wird auch Kreis genannt und mit dem Buchstabe \mathcal{C} gekennzeichnet. Falls n=3 und α eine orientierte 2-Ebene ist, orientierien wir den Kreis $\mathcal{C} \subset \alpha$ gegen den Uhrzeigersinn (bezüglich einer positiven Basis von α).

Wir geben die folgende Charakterisierung von Sphären ohne Beweis an.

Hilfsatz 13.5. Zwei Aussagen gelten:

- 1. Jede k-Sphäre S ist die Schnittmenge zwischen der tragenden (k+1)-Ebene α und die (n-1)-Sphäre S' mit gleichem Radius und Mittelpunkt.
- 2. Es sei S'' eine (n-1)-Sphäre. Wenn α_* eine (k+1)-Ebene und S_* eine nicht in S'' enthaltene k-Sphäre ist, dann sind $S'' \cap \alpha_*$ und $S'' \cap S_*$ entweder die leere Menge, ein Punkt, oder eine (k-1)-Sphäre.

Wir betrachten nun Kreise, nämlich 1-Sphäre. Für Punkte auf ihrer tragenden Ebene kann man die folgende Größe definieren, die von Steiner 1826 eingeführt wurde.

Definition 13.6. Es sei \mathcal{C} ein Kreis mit Mittelpunkt \mathbf{M} und Radius ρ in einer Ebene α . Für jeden Punkt $\mathbf{P} \in \alpha$ definieren wir die Potenz von \mathbf{P} bezüglich \mathcal{C} als

$$\operatorname{Pot}_{\mathcal{C}}(\mathbf{P}) := |\mathbf{M} - \mathbf{P}|^2 - \rho^2.$$

Die Potenz ist positiv, wenn \mathbf{P} außerhalb von \mathcal{C} liegt. Sie ist null, wenn \mathbf{P} auf \mathcal{C} liegt. Sie ist negativ, wenn \mathbf{P} innerhalb von \mathcal{C} liegt.

Hilfsatz 13.7. Es sei $g \subset \alpha$ eine Gerade durch \mathbf{P} die \mathcal{C} in den Punkten \mathbf{Q}_1 und \mathbf{Q}_2 schneidet, wobei $\mathbf{Q}_1 = \mathbf{Q}_2$, wenn g tangent zu \mathcal{C} ist. Dann,

$$Pot_{\mathcal{C}}(\mathbf{P}) = \langle \mathbf{Q}_1 - \mathbf{P}, \mathbf{Q}_2 - \mathbf{P} \rangle. \tag{13.1}$$

Beweis. Als ersten Schritt zeigen wir, dass die rechte Seite von (13.1) unabhängig von g ist. Wir betrachten nur den Fall, wobei \mathbf{P} außerhalb von \mathcal{C} liegt. Es sei g' eine weitere Gerade durch \mathbf{P} , die \mathcal{C} in den Punkten \mathbf{Q}'_1 und \mathbf{Q}'_2 schneidet. Die 3-Ecke $\Delta(\mathbf{Q}_1\mathbf{P}\mathbf{Q}'_2)$ und $\Delta(\mathbf{Q}'_1\mathbf{P}\mathbf{Q}_2)$ sind ähnlich, weil sie die gleichen Winkel besitzen: $\widehat{\mathbf{Q}_1\mathbf{P}\mathbf{Q}'_2} = \widehat{\mathbf{Q}'_1\mathbf{P}\mathbf{Q}_2}$, weil \mathbf{P} , \mathbf{Q}_1 , \mathbf{Q}_2 und \mathbf{P} , \mathbf{Q}'_1 , \mathbf{Q}'_2 jeweil kollinear sind, und $\widehat{\mathbf{Q}_1\mathbf{Q}'_2\mathbf{P}} = \widehat{\mathbf{Q}'_1\mathbf{Q}_2\mathbf{P}}$, weil die Beiden Umfangswinkel zum Bogen zwischen \mathbf{Q}_1 und \mathbf{Q}'_1 sind. Das Verhälnis zwischen den Längen der entsprechenden Seite sind also gleich

$$\frac{|\mathbf{Q}_1 - \mathbf{P}|}{|\mathbf{Q}_1' - \mathbf{P}|} = \frac{|\mathbf{Q}_2 - \mathbf{P}|}{|\mathbf{Q}_2' - \mathbf{P}|}.$$

Daher gilt

$$\langle \mathbf{Q}_1 - \mathbf{P}, \mathbf{Q}_2 - \mathbf{P} \rangle = |\mathbf{Q}_1 - \mathbf{P}| \cdot |\mathbf{Q}_2 - \mathbf{P}| = |\mathbf{Q}_1' - \mathbf{P}| \cdot |\mathbf{Q}_2' - \mathbf{P}| = \langle \mathbf{Q}_1' - \mathbf{P}, \mathbf{Q}_2' - \mathbf{P} \rangle.$$

Wenn g' die Gerade, die durch P und M läuft haben wir

$$|\mathbf{Q}_1' - \mathbf{P}| \cdot |\mathbf{Q}_2' - \mathbf{P}| = (|\mathbf{M} - \mathbf{P}| - \rho) \cdot (|\mathbf{M} - \mathbf{P}| + \rho) = |\mathbf{M} - \mathbf{P}|^2 - \rho^2 = \operatorname{Pot}_{\mathcal{C}}(\mathbf{P}).$$

Die mögliche Lagen des Punktes P bezüglich $\mathcal C$ sondern einen Bogen auf $\mathcal C$ aus.

Definition 13.8. Es seien \mathcal{C} und \mathbf{P} ein Kreis und ein Punkt in der Ebene α . Der Bogen $\mathcal{B}_{\mathcal{C}}(\mathbf{P})$ von \mathcal{C} über \mathbf{P} ist definiert als

$$\mathcal{B}_{\mathcal{C}}(\mathbf{P}) := \mathcal{C} \setminus \{\mathbf{Q} \in \alpha \mid |\mathbf{Q} - \mathbf{P}|^2 \leq \operatorname{Pot}_{\mathcal{C}}(\mathbf{P})\}.$$

Wir bemerken, dass

- 1. wenn **P** im Inneren von \mathcal{C} liegt, ist $\mathcal{B}_{\mathcal{C}}(\mathbf{P}) = \mathcal{C}$;
- 2. wenn \mathbf{P} auf \mathcal{C} liegt, ist $\mathcal{B}_{\mathcal{C}}(\mathbf{P}) = \mathcal{C} \setminus \{\mathbf{P}\};$
- 3. wenn \mathbf{P} im Äußeren von \mathcal{C} liegt, ist $\mathcal{B}_{\mathcal{C}}(\mathbf{P})$ der Bogen zwischen den zwei Tangenten g_1, g_2 an \mathcal{C} durch \mathbf{P} . In diesem Fall scheiden sich die Kreise $\{|\mathbf{Q} \mathbf{P}|^2 \leq \operatorname{Pot}_{\mathcal{C}}(\mathbf{P})\}$ und \mathcal{C} in den Berührungspunkten der Tangenten g_1, g_2 senkrecht.

Bemerkung 13.9. Die Definitionen von Potenz und Bogen über einem Punkt lassen sich für k-Sphären \mathcal{S} , (k+1)-Ebenen α und Punkte \mathbf{P} mit $\mathcal{S} \subset \alpha$, $\mathbf{P} \in \alpha$ unmittelbar übertragen. Eine entsprechende Version des Hilfsatzes 13.7 gilt in dieser Allgemeinheit.

Satz 13.10 (Hamilton). Es besteht eine Bijektion $\mathbf{r} \mapsto \mathcal{C}_{\mathbf{r}}$ zwischen der Menge der Lösungen \mathbf{r} des keplerschen Problems mit $\mathbf{c} \neq 0$ und der Menge der orientierten radialen Kreise in \mathbb{R}^3 , wenn wir zwei Lösungen mit verschobener Zeitparametrisierung identifizieren. Hier stellt $\mathcal{C}_{\mathbf{r}}$ der Kreis in der Bewegungsebene von \mathbf{r} mit Radius $\rho_{\mathbf{r}}$ und Mittelpunkt $\mathbf{M}_{\mathbf{r}}$ dar, wobei

$$\rho_{\mathbf{r}} = \frac{\mu}{c}, \qquad \mathbf{M}_{\mathbf{r}} = \frac{\mu}{c} \mathbf{i} \cdot \mathbf{e}.$$
(13.2)

Außerdem gilt es

$$Pot_{\mathcal{C}_{\mathbf{r}}}(\mathbf{0}) = 2h, \tag{13.3}$$

wobei h die Energie von \mathbf{r} ist. Schließlich parametrisiert der Hodograph $\mathbf{v} = \dot{\mathbf{r}}$ den Bogen $\mathcal{B}_{\mathcal{C}_{\mathbf{r}}}(\mathbf{0})$ gegen den Uhrzeigersinn.

Beweis. Aus Folgerung 10.4 wissen wir, dass \mathbf{r} von den Vektoren \mathbf{c} und \mathbf{e} bis auf Zeitverschiebung eindeutig bestimmt wird. Also genügt es zu zeigen, dass die Abbildung $(\mathbf{c}, \mathbf{e}) \mapsto (\alpha_{\mathbf{r}}, \rho_{\mathbf{r}}, \mathbf{M_r})$ eine Bijektion ist, wobei $\alpha_{\mathbf{r}}$ die durch \mathbf{c} orientierte Bewegungsebene ist. Wenn $\mathbf{u} \in S^2$ der Normalenvektor zu $\alpha_{\mathbf{r}}$ ist, sind die Umkehrsformeln durch

$$\mathbf{c} = \frac{\mu}{\rho_{\mathbf{r}}} \mathbf{u}, \qquad \mathbf{e} = -\frac{1}{\rho_{\mathbf{r}}} \mathbf{i} \cdot \mathbf{M}_{\mathbf{r}}$$

gegeben. Für die Potenz benutzen wir (9.6):

$$\operatorname{Pot}_{\mathcal{C}_{\mathbf{r}}}(\mathbf{0}) = M_{\mathbf{r}}^2 - \rho_{\mathbf{r}}^2 = \frac{\mu^2}{c^2}(e^2 - 1) = 2h.$$

Wir schreiben $\hat{\mathbf{r}}(\theta) = \cos \theta \,\hat{\mathbf{e}} + \sin \theta \,\hat{\mathbf{i}} \cdot \hat{\mathbf{e}}$, sodass $\hat{\mathbf{i}} \cdot \mathbf{r}(\theta) = -\sin \theta \,\hat{\mathbf{e}} + \cos \theta \,\hat{\mathbf{i}} \cdot \hat{\mathbf{e}}$. Wir multiplizieren (9.5) durch $\mu \hat{\mathbf{i}}/c$ und bekommen

$$\mathbf{v}(\theta) = \frac{\mu}{c} \left(-\sin\theta \,\hat{\mathbf{e}} + \cos\theta \,\mathbf{i} \cdot \hat{\mathbf{e}} \right) + \frac{\mu}{c} \,\mathbf{i} \cdot \mathbf{e}. \tag{13.4}$$

Also \mathbf{v} parametrisiert einen Bogen auf dem Kreis $\mathcal{C}_{\mathbf{r}}$ und θ stellt den Winkel zwischen $\mathbf{v} - \mathbf{M}$ und $\mathbb{R}^+\mathbf{i} \cdot \mathbf{e}$ gegen den Uhrzeigersinn dar. Wenn e < 1 läuft θ auf der ganzen \mathbb{R} . Außerdem ist $\operatorname{Pot}_{\mathcal{C}_{\mathbf{r}}}(\mathbf{0}) < 0$ und daher $\mathcal{B}_{\mathcal{C}_{\mathbf{r}}}(\mathbf{0}) = \mathcal{C}_{\mathbf{r}}$. Wenn e = 1, läuft θ in $(-\pi, \pi)$. Außerdem ist $\operatorname{Pot}_{\mathcal{C}_{\mathbf{r}}}(\mathbf{0}) = 0$ und daher $\mathcal{B}_{\mathcal{C}_{\mathbf{r}}}(\mathbf{0}) = \mathcal{C}_{\mathbf{r}} \setminus \{\mathbf{0}\}$. In diesem Fall für π und $-\pi$ ergibt die rechte Seite in (13.4) genau $\mathbf{0}$. Wenn e > 1, läuft θ in $(-\theta_e, \theta_e)$, wobei $\theta_e = \arccos(-1/e)$. Außerdem ist $\operatorname{Pot}_{\mathcal{C}_{\mathbf{r}}}(\mathbf{0}) > 0$ und daher ist $\mathcal{B}_{\mathcal{C}_{\mathbf{r}}}(\mathbf{0})$ der Bogen zwischen den zwei Berührungspunkte \mathbf{Q}_1 und \mathbf{Q}_2 . Wenn wir φ für den Winkel $\widehat{\mathbf{0M}_{\mathbf{r}}\mathbf{Q}_2}$ schreiben, gilt $\cos \varphi = \rho_{\mathbf{r}}/M_{\mathbf{r}} = 1/e$. Es folgt daraus, dass $\cos(\pi - \varphi) = -1/e$ und deshalb $\theta_e = \pi - \varphi$. Also \mathbf{v} parametrisiert genau den Bogen $\mathcal{B}_{\mathcal{C}_{\mathbf{r}}}$.

Wir beschreiben nun die Hodographe der regularisierten Lösungen $\mathbf{r}:\mathbb{R}\to\mathbb{R}^3$ mit verschwindendem Drehimpuls. Zu diesem Zweck definieren wir den erweiterten euklidischen Raum.

Definition 13.11. Der erweiterte euklidische n-Raum ist der topologische Raum

$$\bar{\mathbb{R}}^n := \mathbb{R}^n \cup \{\infty\},\,$$

wobei $U \subset \mathbb{R}^n$ offen ist, entweder wenn U eine offene Teilmenge des \mathbb{R}^n ist oder $\infty \in U$ und $\mathbb{R}^n \setminus U$ eine kompakte Teilmenge des \mathbb{R}^n ist.

Wenn \mathbf{r} einen negative Energie besitzt, dann ist \mathbf{r} eine p-periodische Kurve mit $\mathbf{r}(0) = \mathbf{0}$. In diesem Fall setzen wir

$$\mathbf{v}: \mathbb{R} \to \bar{\mathbb{R}}^3, \qquad \mathbf{v}(t) = \begin{cases} \dot{\mathbf{r}}(t), & \text{if } t \notin p\mathbb{Z}; \\ \infty, & \text{if } t \in p\mathbb{Z}. \end{cases}$$

Da $\lim_{t\to pk} v(t) = \infty$ für alle $k \in \mathbb{Z}$, sehen wir, dass \mathbf{v} eine stetige Abbildung ist. In diesem Fall parametrisiert \mathbf{v} die ganze erweiterte Gerade $\mathbb{R}\mathbf{e}$ in Richtung \mathbf{e} .

Es sei nun angenommen, dass \mathbf{r} eine Energie $h \geq 0$ besitzt. Wir wählen die Parametrisierung, sodass $\mathbf{r}(0) = \mathbf{0}$. In diesem Fall setzen wir,

$$\mathbf{v}: \mathbb{R} \to \overline{\mathbb{R}}^3, \qquad \mathbf{v}(t) = \begin{cases} \dot{\mathbf{r}}(t), & \text{if } t \neq 0; \\ \infty, & \text{if } t = 0. \end{cases}$$

Die Kurve **v** ist stetig und parametrisiert die Menge $\mathbb{R}\mathbf{e} \setminus \{v^2 \leq 2h\}$. Bemerken Sie, dass solche Menge homöomorph zu einem offenen Intervall ist.