21 Satz von Osipov-Belbruno für h = 1/2 (Teil III) 5.7.

21.1 Das hyperbolische Skalarprodukt

Definition 21.1. Es sei $\mathbf{x} \in \mathbb{H}^{n-1}$. Der tangentiale Raum von \mathbb{H}^{n-1} in \mathbf{x} ist der Vektorraum

$$T_{\mathbf{x}}\mathbb{H}^{n-1} := \left\{ \mathbf{h} \in \mathbb{R}^n \mid M(\mathbf{x}, \mathbf{h}) = 0 \right\}.$$

Das hyperbolische Skalarprodukt $\langle \, \cdot \, , \, \cdot \, \rangle_{\mathbb{H}} : T_{\mathbf{x}} \mathbb{H}^{n-1} \times T_{\mathbf{x}} \mathbb{H}^{n-1} \to \mathbb{R}$ ist definiert als

$$\langle \mathbf{h}_1, \mathbf{h}_2 \rangle_{\mathbb{H}} = M(\mathbf{h}_1, \mathbf{h}_2), \quad \forall \mathbf{h}_1, \mathbf{h}_2 \in T_{\mathbf{x}} \mathbb{H}^{n-1}.$$

Hilfsatz 21.2. Für alle $\mathbf{x} \in \mathbb{H}^{n-1}$ ist $T_{\mathbf{x}}\mathbb{H}^{n-1}$ ein (n-1)-dimensionaler Untervektorraum von \mathbf{R}^n und das hyperbolische Skalarprodukt ist tatsächlich ein Skalarprodukt, das heißt

$$\langle \mathbf{h}, \mathbf{h} \rangle_{\mathbb{H}} > 0, \quad \forall \mathbf{h} \in T_{\mathbf{x}} \mathbb{H}^{n-1}, \quad \mathbf{h} \neq \mathbf{0}.$$

Beweis. Wenn $\mathbf{x} = (\mathbf{y}, z)$, dann gehört $\mathbf{h} = (\mathbf{y}_1, z_1)$ zu $T_{\mathbf{x}} \mathbb{H}^{n-1}$ genau dann, wenn

$$\langle \mathbf{y}, \mathbf{y}_1 \rangle - zz_1 = 0$$

und die ist die Gleichung einer Hyperebene. Aus dieser Formel finden wir, dass

$$z_1 = \frac{\langle \mathbf{y}, \mathbf{y}_1 \rangle}{z}$$

und deshalb

$$M(\mathbf{h}, \mathbf{h}) = y_1^2 - z_1^2 = y_1^2 - \frac{\langle \mathbf{y}, \mathbf{y}_1 \rangle^2}{z^2} \ge y_1^2 - \frac{y^2 y_1^2}{z^2} = \frac{y_1^2}{z^2}$$

und der letzte Term ist positiv, wenn $\mathbf{h} \neq 0$, wobei wir die Cauchy-Schwarz Ungleichung benutzt haben.

Nach diesem Hilfsatz definieren wir die hyperbolische Norm von $\mathbf{h} \in T_{\mathbf{x}} \mathbb{H}^{n-1}$ als

$$|\mathbf{h}|_{\mathbb{H}} := \sqrt{\langle \mathbf{h}, \mathbf{h}
angle_{\mathbb{H}}}.$$

Hilfsatz 21.3. Es sei $\mathbf{x}: I \to \mathbb{R}^n$ eine Kurve. Wenn $\mathbf{x}(I) \subset \mathbb{H}^{n-1}$, dann gehört der Vektor $\dot{\mathbf{x}}(t)$ zum Tangentialraum $T_{\mathbf{x}(t)}\mathbb{H}^{n-1}$ von \mathbb{H}^{n-1} in $\mathbf{x}(t)$ für jede $t \in I$.

Beweis. Wenn $\mathbf{x}(I) \subset \mathbb{H}^{n-1}$ haben wir $M(\mathbf{x}(t), \mathbf{x}(t)) \equiv -1$. Wir leiten diese Gleichung nach t ab und benutzen die Bilinearität und Symmetrie von M, um die Behauptung zu beweisen.

Definition 21.4. Eine Kurve $\mathbf{x}: I \to \mathbb{H}^{n-1}$ ist nach der hyperbolischen Bogenlänge parametrisiert, genau dann, wenn $|\dot{\mathbf{x}}(t)|_{\mathbb{H}^{n-1}} = 1$ für alle $t \in I$.

Hilfsatz 21.5. Es sei $\mathbb{H}^{n-1} \cap \alpha$ eine Großhyperbel, wobei

$$\alpha = \mathbb{R} \cdot (\mathbf{e}_1, 0) + \mathbb{R} \cdot \mathbf{x}, \qquad \mathbf{x} := (-\sqrt{e^2 - 1} \mathbf{f}_1, e), \quad \mathbf{e}_1, \mathbf{f}_1 \in S^{n-2}, \quad \langle \mathbf{e}_1, \mathbf{f}_1 \rangle = 0.$$

Die Kurve $\gamma_{\alpha}: \mathbb{R} \to \mathbb{H}^{n-1}$, wobei für alle $u \in \mathbb{R}$

$$\gamma_{\alpha}(u) := \cosh u \mathbf{x} + \sinh u \mathbf{e}_1 = (\sinh u \mathbf{e}_1 - \sqrt{e^2 - 1} \cosh u \mathbf{f}_1, e \cosh u),$$

ist eine Parametrisierung nach der hyperbolischen Bogenlänge der gegebenen Großhyperbel.

Beweis. Das Resultat folgt direkt aus der Tatsache, dass $\mathbf{e}_1 \in S^{n-2}$, $\mathbf{x} \in \mathbb{H}^{n-1}$ und $M(\mathbf{x}, (\mathbf{e}_1, 0)) = 0$.

21.2 Die exzentrische Anomalie für h > 0

Es sei $\mathcal{H} \subset \alpha$ ein Ast einer Hyperbel in einer Ebene $\alpha \subset \mathbb{R}^3$ mit Exzentrizitätsvektor **e**, Brennpunkt in **0** und reellen Halbachse a. Es sei $\mathcal{H}' \subset \alpha$ der Ast der Hyperbel mit Periapsis \mathbf{r}_{\min} und reellen Halbachse a wie die von \mathcal{H} aber mit Exzentrizität $\sqrt{2}$. Es sei $\mathbf{M} \in \alpha$ der Schnittpunkt der Asymptote von \mathcal{H}' . Wir können den Ast \mathcal{H}' bijektiv parametrisieren als

$$\mathbf{s}(u) = \mathbf{M} + (-\cosh u)\hat{\mathbf{e}} + (\sinh u)\mathbf{i} \cdot \hat{\mathbf{e}}, \qquad u \in \mathbb{R}. \tag{21.1}$$

Definition 21.6. Wenn $\mathbf{r} \in \mathcal{H}$, definieren wir $\mathbf{s} \in \mathcal{H}'$ als der Punkt in \mathcal{H}' dessen Lot auf der Gerade $\mathbb{R} \cdot \mathbf{e}$ die Parabel \mathcal{H} im Punkt \mathbf{r} schneidet. Die exzentrische Anomalie von \mathbf{r} ist die einzige $u \in \mathbb{R}$ mit $\mathbf{s} = \mathbf{s}(u)$, wobei die rechte Seite von (21.1) gegeben ist.

Wir geben nun die Darstellung von ${\bf r}$ als Funktion von u und die Kepler-Gleichung für u ohne Beweis.

Satz 21.7. Der Punkt $\mathbf{r} \in \mathcal{P}$ lässt sich als Funktion der exzentrischen Anomalie auf folgender Weise ausdrücken:

$$\mathbf{r} = a(e - \cosh u)\hat{\mathbf{e}} + a\sqrt{e^2 - 1}\sinh u\,\hat{\mathbf{i}}\cdot\hat{\mathbf{e}}.$$

Diese Formel gilt auch für die entartete Hyperbel mit e = 1. Wenn $\mathbf{r} : \mathbb{R} \to \mathbb{R}^3$ eine regularisierte Lösung des keplerschen Problems mit h > 0 und u(t) die exzentrische Anomalie des Punktes $\mathbf{r}(t)$ ist, gilt

$$e \sinh u(t) - u(t) = \sqrt{\frac{\mu}{a^3}} (t - t_0),$$
 (21.2)

wobei t_0 der Periapsisdurchgang darstellt. Es folgt, daraus, dass die Parametrisierung nach der exzentrischen Anomalie eines Hodographs ${\bf v}$ mit h=1/2 durch die Formel

$$\mathbf{v}(u) = \frac{1}{1 - e \cosh u} \left(\sinh u \,\hat{\mathbf{e}} - \sqrt{e^2 - 1} \cosh u \,\mathbf{i} \cdot \hat{\mathbf{e}} \right)$$

 $gegeben\ ist.$

Beweis der zweiten Aussage im Satz 19.1. Es sei $\gamma_{\alpha}: \mathbb{R} \to \mathbb{H}^{n-1}$ eine Großhyperbel, die nach der Bogenlänge parametrisiert ist. Nach dem Hilfsatz haben wir

$$\gamma_{\alpha}(u) := \left(\sinh u \, \mathbf{e}_1 - \sqrt{e^2 - 1} \cosh u \, \mathbf{f}_1, e \cosh u\right).$$

Hier $\mathbf{x} = (\mathbf{y}, e)$ und $\mathbf{y} = -\sqrt{e^2 - 1} \mathbf{f}_1$. Wir berechnen dann nach der Definition 19.5

$$\Psi_1(\gamma_\alpha(u)) = \frac{1}{1 - e \cosh u} \left(\sinh u \, \mathbf{e}_1 - \sqrt{e^2 - 1} \cosh u \, \mathbf{f}_1 \right) = \mathbf{v}(u),$$

wobei die entsprechende Lösung den Exzentrizitätsvektor und den Drehimpuls

$$\mathbf{e} := e \, \mathbf{e}_1, \qquad \mathbf{c} := \sqrt{e^2 - 1} \, \mathbf{e}_1 \times \mathbf{f}_1 = \mathbf{y} \times \mathbf{e}_1$$

besitzt. \Box