Differentialgeometrie 1

Leipzig, Wintersemester 2017/18

Dr. Gabriele Benedetti — Prof. Dr. Hans-Bert Rademacher Aufgaben Serie 14, 29.01.2018

14-1 Es sei M eine kompakte Fläche ohne Rand eingebettet in \mathbb{R}^3 . Zeigen Sie, dass es einen Punkt $p \in M$ mit K(p) > 0 gibt.

Hinweis: Betrachten Sie die Funktion $\beta: M \to [0, +\infty), \ \beta(x) = \frac{1}{2}|x|^2,$ wobei $|\cdot|$ den Betrag eines Vektors des \mathbb{R}^3 kennzeichnet. Es sei $p \in M$ ein Maximum von β (Warum existiert es?). Zeigen Sie, dass

$$II(X,X)_p \ge \frac{I(X,X)_p}{|p|^2}, \qquad \forall \, X \in T_p M$$

(Man benutze Flächenkurven, die durch p laufen, und die Aufgabe 2-1).

14-2 Es sei M eine kompakte zusammenhängende Fläche ohne Rand eingebettet in \mathbb{R}^3 . Zeigen Sie, dass, wenn M nicht diffeomorph zu S^2 ist, es dann drei Punkte p_-, p_0, p_+ auf M mit den folgenden Eigenschaften gibt:

$$K(p_{-}) < 0,$$
 $K(p_{0}) = 0,$ $K(p_{+}) > 0.$

14-3 Es sei (M,g) eine Riemannsche Mannigfaltigkeit, die diffeomorph zu S^2 ist. Eine Kurve c auf M heißt $einfach\ geschlossen$, wenn c eine Abbildung $c:[a,b]\to M$ mit den folgenden Eigenschaften ist:

$$c(a) = c(b),$$
 $c'(a) = c'(b)$ $c|_{[a,b)}$ injektiv.

Zeigen Sie, dass, wenn die Gauß-Krümmung von M positiv ist, dann zwei verschiedene einfach geschlossene Geodätische c_1, c_2 auf M sich schneiden.

- 14-4 Es sei (M,g) eine 2-dimensionale Riemannsche Mannigfaltigkeit. Eine geschlossene Kurve c auf M heißt einfaches geodätisches n-Eck, wenn c die Verkettung von n Stücken von Geodätischen ist und ebenso der Rand von einer Teilmenge B von M ist, wobei B homöomorph zu einer Scheibe ist. Beweisen Sie, dass, wenn $K \leq 0$ überall ist, es dann kein einfaches geodätisches 1- oder 2-Eck gibt.
- **14-5** Es sei (M,g) eine 2-dimensionale Riemannsche Mannigfaltigkeit, wobei M diffeomorph zum Zylinder $\{(x,y,z)\in\mathbb{R}^3 \mid x^2+y^2=1\}$ ist. Zeigen Sie, dass, wenn K<0, die folgenden Aussagen wahr sind.
 - (a) Der Rand ist einer Scheibe keine einfach geschlossene Geodätische.
 - (b) Zwei einfach geschlossene Geodätischen müssen sich schneiden.
- 14-6 Gegeben ist eine Metrik auf einer Fläche, deren Darstellung bezüglich der Koordinaten $(u,v)\in U\subset\mathbb{R}^2$ die folgende Gestalt hat:

$$I = \left(\begin{array}{cc} 1 & 0 \\ 0 & a^2(u, v) \end{array}\right).$$

Es sei $\kappa_g^v(u,v)$ die geodätische Krümmung der v-Linie, die durch den Punkt (u,v) geht. Zeigen Sie, dass

$$\kappa_g^v(u,v) = \frac{\partial_u a(u,v)}{a(u,v)}, \qquad K(u,v) = -\frac{\partial_{uu}^2 a(u,v)}{a(u,v)}.$$

14-7 Es sei $M \subset \mathbb{R}^3$ das Paraboloid mit der Parametrisierung

$$f: (0, +\infty) \times [0, 2\pi] \to \mathbb{R}^3, \qquad f(u, v) = (u \cos v, u \sin v, u^2).$$

Für jedes r>0 sei die Region $M_r:=\{(u,v)\in(0,+\infty)\times[0,2\pi]\mid u\leq r\}$ gegeben.

(a) Berechnen Sie die geodätische Krümmung des Randes von ${\cal M}_r$ und das Integral

$$\int_{\partial M_r} \kappa_g \mathrm{d}s.$$

- (b) Berechnen Sie die Euler-Charakteristik von M_r .
- (c) Leiten Sie aus der Gauß-Bonnet Formel das Integral $\int_{M_r} K dA$ her. Bestimmen Sie seinen Limes für $r \to +\infty$.
- (d) Es sei nun $\nu:M\to S^2$ die Gauß-Abbildung. Bestimmen Sie die Bildmenge $\nu(M)\subset S^2$ und berechnen Sie ihren Flächeninhalt.
- 14-8 Es sei $M\subset\mathbb{R}^3$ eine Fläche mit Gauß-Abbildung $\nu:M\to S^2$. Zeigen Sie, dass für die geodätische Krümmung einer regulären Flächenkurve $c:I\to M$

$$\kappa_g(t) = \frac{\langle c''(t), \nu_{c(t)} \times c'(t) \rangle}{|c'(t)|^3}$$

gilt.

- 14-9 Sei $c:I\to\mathbb{R}^3$ eine abgeschlossene reguläre Kurve mit $\kappa>0$ und sei $\mathbf{n}:I\to S^2$ das Normalensphärischenbild von c. Es sei κ_g die geodätische Krümmung von \mathbf{n} , wenn sie als Flächenkurve auf S^2 betrachtet wird.
 - (a) Zeigen Sie, dass

$$\kappa_g = \frac{\kappa \dot{\tau} - \dot{\kappa} \tau}{(\kappa^2 + \tau^2)^{\frac{3}{2}}},$$

wobei τ die Torsion von cist und der Punkt \cdot die Ableitung nach dem Bogenelement s_c von ckennzeichnet.

(b) Zeigen Sie, dass

$$\int_{I} \kappa_g \mathrm{d} s_{\mathbf{n}} = 0,$$

wobei $s_{\mathbf{n}}$ das Bogenelement von \mathbf{n} ist.

Hinweis: Wechseln Sie die Integrationsvariablen von $s_{\mathbf{n}}$ zu s_{c} mittels der Transformationsformel für das Integral. Benutzen Sie anschließend die Gleichung

$$\frac{\mathrm{d}}{\mathrm{d}s_c}\arctan\left(1+\frac{\tau}{\kappa}\right) = \frac{\kappa\dot{\tau}-\dot{\kappa}\tau}{\kappa^2+\tau^2}.$$

(c) Sei nun $\mathfrak n:I\to S^2$ einfach geschlossen. Beweisen Sie, dass $\mathbf n$ dann die Sphäre S^2 in zwei Regionen mit gleichem Flächeninhalt teilt.