Differentialgeometrie 2 – Übungszettel 5

Heidelberg, Wintersemester 2019/2020

Gabriele Benedetti Kevin Emanuel Wiegand

5-1 Es sei (M,g) eine PR-Mannigfaltigkeit und $X \in \mathfrak{X}(M)$ ein Vektorfeld. Zeigen Sie, dass X Killing ist, genau dann wenn $(u_1,u_2) \mapsto g(\nabla^M_{u_1}X,u_2)$ schiefsymmetrisch ist. Folgern Sie daraus, dass die Funktion $t \mapsto g_{\gamma(t)}(\dot{\gamma}(t),X\circ\gamma)$ konstant ist, falls X Killing und $\gamma:(t_0,t_1)\to M$ eine Geodätische ist.

Es sei nun $M=(\theta_0,\theta_1)\times \mathbb{R}/2\pi\mathbb{Z}$ und $g=\mathrm{d}\theta^2+r^2(\theta)\mathrm{d}\phi^2$ mit $r:(\theta_0,\theta_1)\to (0,\infty)$ eine Rotationsfläche. Zeigen Sie, dass ∂_ϕ ein Killing-Vektorfeld ist. Folgern Sie daraus:

- (a) $r^2(\theta_{\gamma})\dot{\phi}_{\gamma}$ ist konstant entlang einer Geodätischen $(\theta_{\gamma},\phi_{\gamma}):(t_0,t_1)\to (r_0,r_1)\times S^1$. Interpretieren Sie dieses Resultat als die Erhaltung des Drehmomentums um die Rotationsachse.
- (b) es gilt die Formel $g(\nabla . \partial_{\phi}, \cdot) = r'(\theta)r(\theta)d\theta \wedge d\phi$. Beweisen Sie dann, dass eine Flusslinie $t \mapsto (\theta_0, \phi_0 + t)$ von ∂_{ϕ} genau dann eine Geodätische ist, wenn $r'(\theta_0) = 0$.

Es sei nun $(\theta_{\gamma}, \phi_{\gamma}): (t_0, t_1) \to M$ eine maximale Geodätische mit $r^2(\theta_{\gamma})\dot{\phi}_{\gamma} = c$ und $g(\dot{\gamma}, \dot{\gamma}) = 1$. Zeigen Sie, dass

$$\ddot{\theta}_{\gamma} = c^2 \frac{r'}{r^3} (\theta_{\gamma}), \qquad \dot{\phi}_{\gamma} = \frac{c}{r^2 (\theta_{\gamma})}.$$

Hinweis: nehmen Sie die Zeitableitung von $g(\dot{\gamma},\dot{\gamma})=1$ um zu zeigen, dass $\dot{\theta}_{\gamma}(\ddot{\theta}_{\gamma}-c^2\frac{r'}{r^3})=0$. Wenn $\ddot{\theta}_{\gamma}-c^2\frac{r'}{r^3}=0$ nicht überall gilt, finden Sie einen Widerspruch mittels (b). Alternative Lösung: Christoffelsymbole berechnen.

Berechnen Sie $(\theta_{\gamma}, \phi_{\gamma})$ für c = 0.

Zeigen Sie für c>0, dass $r(\theta_{\gamma}(t))\geq c$ mit Gleichheit genau dann, wenn $\dot{\theta}_{\gamma}(t)=0$. Es sei nun $[\theta_{-},\theta_{+}]\subset(\theta_{0},\theta_{1})$, sodass $r(\theta)>c$ für $\theta\in(\theta_{-},\theta_{+})$ und $r(\theta)=c$ für $\theta=\theta_{-},\theta_{+}$. Skizzieren Sie die Geodätische $(\theta_{\gamma},\phi_{\gamma})$ unter der Annahme, dass $\theta_{\gamma}(0)\in(\theta_{-},\theta_{+})$.

Hinweis: unterscheiden Sie die Fälle, wobei keiner, einer oder beide θ_-, θ_+ kritische Punkte von r sind.

5-2 Mit der Notation der obigen Aufgabe, sei $\theta_0 = 0$, $\theta_1 = \infty$ und $r(\theta) = (\sin \alpha)\theta$ die Profilkurve des Kegels mit Halbwinkel $\alpha \in (0, \pi/2)$. Für alle $\phi_0 \in \mathbb{R}/2\pi\mathbb{Z}$ finden Sie eine Isometrie

$$F: (\{(\theta, \phi) \in M \mid \phi \neq \phi_0\}, g) \to (V, g_{\mathbb{R}^2}),$$

wobei V die Menge der Vektoren $z \in \mathbb{R}^2 \setminus \{0\}$ ist, die einen Winkel β mit der x-Achse einschließen, sodass $\beta \in (0, 2\pi \sin \alpha)$. Es sei γ eine maximale Geodätische für (M, g) mit $r^2(\theta_\gamma)\dot{\phi}_\gamma \neq 0$. Zeigen Sie, dass γ für alle Zeiten definiert ist und dass γ genau dann eingebettet ist, wenn $\alpha \in [\pi/6, \pi/2)$. Hinweis: Betrachten Sie die Skizze auf der nächsten Seite. Das Bild der Geodätischen durch F darf immer parallel zur x-Achse angenommen werde (warum?).

Bonusfragen: können Sie die Anzahl der Selbstschnittpunkte von γ als Funktion von α schreiben? Erinnerung: $p \in \gamma(\mathbb{R})$ ist ein Selbstschnittpunkt, falls das Urbild $\gamma^{-1}(p)$ mehr als ein Element enthält.

Ist es möglich, dass $t_1 < t_2 < t_3$ existieren mit $\gamma(t_1) = \gamma(t_2) = \gamma(t_3)$?



Bild: Eine Skizze von V und seine Drehungen um Vielfachen von $2\pi \sin \alpha$.

Aufgaben zum Vorrechnen

5-3 Es sei (M,g) mit $M=(\theta_0,\theta_1)\times N$ und $g=\pm \mathrm{d}\theta^2+g^\theta$, wobei $\theta\mapsto g^\theta$ ein Pfad von Riemannschen Metriken ist. Wir setzen $S^\theta\in\Gamma(\mathrm{End}(TM))$ als das einzige Tensorfeld mit der Eigenschaft

$$\frac{1}{2}\frac{\mathrm{d}g^{\theta}}{\mathrm{d}\theta} = g^{\theta}(S^{\theta}\cdot,\cdot).$$

Wir schreiben ∇^{θ} für die LC-Ableitung von (N, g^{θ}) . Für $\theta \mapsto X^{\theta} \in \mathfrak{X}(N)$ bezeichnet $(X^{\theta})^h \in \mathfrak{X}(M)$ das einzige Vektorfeld, sodass $\mathrm{d}\pi_1 \cdot (X^{\theta})^h = 0$ und $\mathrm{d}_{\theta,p}\pi_2(X^{\theta})^h = X^{\theta}(p)$, wobei $\pi_1 : M \to (\theta_0, \theta_1)$ und $\pi_2 : M \to N$ die Projektionen sind. Zeigen Sie, dass ∇^M das einzige Element in $\mathrm{kA}(TM)$ ist, sodass für alle $X, Y \in \mathfrak{X}(N)$:

$$\begin{cases} \nabla^{M}_{\partial_{\theta}} \partial_{\theta} = 0 \\ \nabla^{M}_{X^{h}} \partial_{\theta} = (S^{\theta} \cdot X)^{h} \\ \nabla^{M}_{\partial_{\theta}} Y^{h} = (S^{\theta} \cdot Y)^{h} \\ \nabla^{M}_{X^{h}} Y^{h} = \nabla^{\theta}_{X} Y \mp g^{\theta} (S^{\theta} \cdot X, Y) \partial_{\theta}. \end{cases}$$

Hinweis: für die ersten zwei Gleichungen benutzen Sie Aufgabe 4-2(iii). Für die dritte Gleichung benutzen Sie, dass $[Y^h, \partial_{\theta}] = 0$.

Finden Sie S^{θ} , falls $g^{\theta}=r^2(\theta)g^N$ ist, wobei g^N eine feste Riemannsche Metrik auf N darstellt.

5-4 Ein Großkreis auf $(S_r^n, g_{S_r^n})$ ist die Schnittmenge zwischen S_r^n und einer zweidimensionalen Ebene in \mathbb{R}^{n+1} durch den Ursprung. Zeigen Sie, dass eine Parametrisierung mit konstanter Geschwindigkeit eines Großkreises eine Geodätische für $(S_r^n, g_{S_r^n})$ ist. Zeigen Sie, dass für alle $p \in S_r^n$ und $v \in T_p S_r^n$ ein Großkreis C existiert mit $p \in C$ und v tangential zu C, sodass Großkreise genau die Geodätischen auf S_r^n sind.

Hinweis: benutzen Sie den Satz über die LC-Ableitung von isometrischen Immersionen

Beweisen Sie ähnliche Aussagen für $(H_r^n, g_{H_r^n})$ und ihre Schnittmenge mit Ebenen in $\mathbb{R}^{n,1}$ durch den Ursprung. Hinweis: betrachten Sie die Kurve

$$t \mapsto \cosh\left(\frac{|v|_{H_r^n}t}{r}\right)p + \sinh\left(\frac{|v|_{H_r^n}t}{r}\right)\frac{rv}{|v|_{H_r^n}}.$$