Differentialgeometrie 2 – Übungszettel 4

Heidelberg, Wintersemester 2019/2020

Gabriele Benedetti Kevin Emanuel Wiegand

- **4-1** Es sei G eine Lie-Gruppe. Wir schreiben $L_h: G \to G$ und $R_h: G \to G$ für die Links- und Rechtsmultiplikation durch $h \in G$. Wir betrachten den Vektorraum $\mathfrak{X}_L(G)$ der linksinvarianten Vektorfelder auf G. Das heißt: $X \in \mathfrak{X}_L(G)$, falls X L_h -verwandt mit sich selbst für alle $h \in G$ ist. Zeigen Sie:
 - (a) der Fluß Φ_X eines beliebigen $X \in \mathfrak{X}_L(G)$ ist vollständig. Hinweis: Zeigen Sie, dass es $\epsilon > 0$ gibt, sodass für jedes $h \in G$ eine Integralkurve $\gamma: (-\epsilon, \epsilon) \to G$ von X mit $\gamma(0) = h$ existiert.
 - (b) für alle $X \in \mathfrak{X}_L(G)$ gilt die Formel

$$R_{\Phi_X^t(e)} = \Phi_X^t, \quad \forall t \in \mathbb{R},$$

wobei $e \in G$ das Identitätselement bezeichnet.

- (c) wenn g eine linksinvariante PR-Metrik auf G ist (d.h. $L_h \in \text{Iso}(G,g)$ für alle $h \in G$), dann ist die Funktion $g(X,Y): G \to \mathbb{R}$ konstant für alle $X,Y \in \mathfrak{X}_L(G)$.
- **4-2** Es sei (M,g) eine PR-Mannigfaltigkeit mit Levi-Civita Ableitung ∇ . Für $f:M\to\mathbb{R}$ definieren wir die Hessesche Form $\mathrm{H}(f)\in\Gamma(T^*M\otimes T^*M)$

$$H(f)_p(v_1, v_2) := g_p(\nabla_{v_1} \operatorname{grad} f, v_2), \qquad \forall p \in M, \ \forall v_1, v_2 \in T_pM.$$

Zeigen Sie:

- (a) wenn $F:(N,h)\to (M,g)$ eine isometrische Immersion ist, gilt $\mathrm{H}(f\circ F)=F^*\mathrm{H}(f)$. Hinweis: benutzen Sie, dass $\mathrm{grad}\,(f\circ F)$ und $\mathrm{grad}\,f$ Fverwandt sind und den Satz über LC von isometrischen Immersionen.
- (b) es gilt $H(f) = \frac{1}{2} \mathcal{L}_{grad} g$,

Es sei nun $N:=f^{-1}(0)\subset M$ und es sei angenommen, dass die Ungleichung $\pm g(\operatorname{grad} f,\operatorname{grad} f)>0$ für alle $p\in N$ gilt. Nach dem Satz der inversen Funktion ist die Abbildung

$$F: (-\epsilon, +\epsilon) \times U \to M, \qquad F(\theta, p) = \Phi^{\theta}_{\pm \operatorname{grad} f}(p).$$

ein Diffeomorphismus auf das Bild, wenn $U \subset N$ eine hinreichende kleine Umgebung eines Punktes in N ist. Zeigen Sie, dass, wenn die Gleichung $\pm g(\operatorname{grad} f,\operatorname{grad} f)=1$ auf einer Umgebung von N gilt, dann

- (i) $F^*g = \pm \mathrm{d}\theta^2 + g^{\theta}$, wobei $\theta \mapsto g^{\theta}$ ein glatter Pfad von PR-Metriken auf U ist. Hinweis: beweisen Sie erst, dass $\Phi^{\theta}_{\pm\mathrm{grad}\,f}(U) \subset \{f = \theta\}$ für $\theta \in (-\epsilon, \epsilon)$;
- (ii) $\partial_{\theta} = \pm \operatorname{grad} \theta$;
- (iii) $H(\theta) = \frac{1}{2}\dot{g}^{\theta}$, wobei $\dot{g}^{\theta} := \frac{dg^{\theta}}{d\theta}$. Hinweis: berechnen Sie $(\Phi_{\partial_{\theta}}^{t})^{*}(\pm d\theta^{2} + g^{\theta})$.

Bemerkung: es ist leicht die Umkehrung zu zeigen und zwar, dass die Gleichung $\pm g(\operatorname{grad} f, \operatorname{grad} f) = 1$ auf dem Bild von F gilt, falls $F^*g = \pm d\theta^2 + g^\theta$ stimmt.

Aufgabe zum Vorrechnen

4-3 Es sei (M,g) eine PR-Mannigfaltigkeit und $\lambda: M \to (0,\infty)$ eine Funktion. Man betrachte die PR-Metrik $g^{\lambda}:=\lambda^2 g$. Es seien ∇ und ∇^{λ} die Levi-Civita Ableitungen von g und g_{λ} . Es sei $D^{\lambda}:=\nabla^{\lambda}-\nabla\in\Gamma(T^*M\otimes T^*M\otimes TM)$ das Differenztensorfeld. Zeigen Sie:

$$D^{\lambda}(u_1, u_2) = (d\varphi \cdot u_1)u_2 + (d\varphi \cdot u_2)u_1 - g(u_1, u_2)\operatorname{grad}\varphi,$$

wobei $\varphi := \log \lambda$ ist und der Gradient bezüglich g zu verstehen ist.

- **4-4** Es sei g eine bi-invariante PR-Metrik auf einer Lie-Gruppe G. Das heißt: g ist sowohl linksinvariant als auch rechtsinvariant (siehe Aufgabe 4-1). Zeigen Sie:
 - (a) alle $X \in \mathfrak{X}_L(G)$ sind Killing-Vektorfelder;
 - (b) wenn ∇ die Levi-Civita Ableitung von g darstellt, dann

$$\nabla_X Y = \frac{1}{2}[X,Y], \qquad \forall \, X,Y \in \mathfrak{X}_L(G);$$

(c) die Integralkurven von jedem $X \in \mathfrak{X}_L(G)$ sind Geodätischen für g.