Differentialgeometrie 2 – Übungszettel 3

Heidelberg, Wintersemester 2019/2020

Gabriele Benedetti Kevin Emanuel Wiegand

3-1 Es sei $\pi: (\tilde{M}, \tilde{g}) \to (M, g)$ eine Riemannsche Submersion. Wir betrachten eine stückweise glatte Kurve $\gamma: [t_0, t_1] \to \tilde{M}$. Zeigen Sie: $L_{\tilde{g}}(\gamma) \geq L_g(\pi \circ \gamma)$. Schließen Sie daraus, dass

$$d_{\tilde{g}}(p_1, p_2) \ge d_g(\pi(p_1), \pi(p_2)), \quad \forall p_1, p_2 \in \tilde{M}.$$

- 3-2 Es sei G eine glatte Linkswirkung auf einer Mannigfaltigkeit M, sodass
 - (i) jedes $p \in M$ besitzt eine Umgebung U, sodass $(\gamma \cdot U) \cap U = \emptyset$ für $\gamma \neq \text{id gilt}$;
 - (ii) für alle $p, p' \in M$ mit $p' \notin G \cdot p$, Umgebungen U von p und U' von p' existieren, für die $(\gamma \cdot U) \cap U' = \emptyset$ für alle $\gamma \in G$ gilt.

Es sei $\pi:M\to M/G$ die Quotientenabbildung und es sei M/G mit der Quotiententopologie versehen.

- (a) Zeigen Sie, dass M/G hausdorffsch ist und dass $\pi: M \to M/G$ eine Überlagerung ist;
- (b) Es sei U wie in (i), sodass $\pi|_U: U \to \pi(U)$ ein Homöomorphismus ist. Man kann annehmen, dass U der Definitionsbereich einer Karte $\varphi: U \to V$ ist. Dann ist $(\pi(U), \varphi \circ (\pi|_U)^{-1})$ eine Karte auf M/G. Zeigen Sie, dass zwei solche Karten, welche von (U, φ) und (U, φ') entstehen, verträglich miteinander sind. Hinweis: wenn W eine Zusammenhangskomponente von $\pi(U) \cap \pi(U')$

Hinweis: wenn W eine Zusammenhangskomponente von $\pi(U) \cap \pi(U')$ ist, beweisen Sie zuerst, dass es $U'' \subset U$ und $\gamma \in G$ gibt, sodass $\pi(U'') = W$ und $\gamma \cdot U'' \subset U'$ gilt.

(c) Zeigen Sie: es existiert eine eindeutige glatte Struktur auf M/G, sodass π ein lokaler Diffeomorphismus ist.

Hinweis: Betrachten Sie eine Karte $\psi: W \to Z$ einer glatten Struktur auf M/G, für die $\pi: M \to M/G$ ein lokaler Diffeomorphismus ist, und zeigen Sie, dass ψ und $\varphi \circ (\pi|_U)^{-1}$ verträglich für alle (U, φ) wie in (b) sind.

(Bitte Satz 3.59 nicht verwenden, um (a), (b) und (c) zu zeigen.) Es sei nun $M=\mathbb{R}^2$ und

$$G = \left\{ \psi_{m,n} : \mathbb{R}^2 \to \mathbb{R}^2 \mid \psi_{m,n}(x,y) = (x+m,(-1)^m \cdot y + n) \right\}_{(m,n) \in \mathbb{Z}^2}.$$

Zeigen Sie, dass die Wirkung von G die Eigenschaften (i) und (ii) erfüllt und dass \mathbb{R}^2/G eine Riemannsche Metrik $g_{\mathbb{R}^2/G}$ besitzt, sodass die Quotientenabbildung $\pi:(\mathbb{R}^2,g_{\mathbb{R}^2})\to(\mathbb{R}^2/G,g_{\mathbb{R}^2/G})$ eine Riemannsche Überlagerung ist.

3-3 Es seien Γ_1, Γ_2 Gitter in \mathbb{R}^n (siehe Beispiel 3.62). Zeigen Sie: $(\mathbb{R}^n/\Gamma_1, g_{\mathbb{R}^n/\Gamma_1})$ ist isometrisch zu $(\mathbb{R}^n/\Gamma_2, g_{\mathbb{R}^n/\Gamma_2})$ genau dann, wenn $A \in O(n)$ existiert mit $A(\Gamma_1) = \Gamma_2$.

Hinweis: Sie dürfen benutzen, dass Hochhebungen von glatten Abbildungen $F: \mathbb{R}^n \to \mathbb{R}^n/\Gamma_2$ zu $\tilde{F}: \mathbb{R}^n \to \mathbb{R}^n$ glatt (und eindeutig bestimmt von ihrem Wert in einem Punkt) sind.

Benutzen Sie dieses Resultat um die R-Mannigfaltigkeiten $(\mathbb{R}^2/\Gamma, g_{\mathbb{R}^2/\Gamma})$ bis auf Isometrien zu klassifizieren. Es sei dazu

$$S := \left\{ (x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1/2, \ y > 0, \ x^2 + y^2 \ge 1 \right\}.$$

Für jedes $(a, v) \in (0, \infty) \times S$ definieren wir das Gitter $\Gamma_{(a,v)}$, das durch (a,0) und av aufgespannt ist. Zeigen Sie, dass für alle Γ genau ein $\Gamma_{(a,v)}$ existiert, sodass $(\mathbb{R}^2/\Gamma, g_{\mathbb{R}^2/\Gamma})$ und $(\mathbb{R}^2/\Gamma_{(a,v)}, g_{\mathbb{R}^2/\Gamma_{(a,v)}})$ isometrisch sind.

Hinweis: Für Γ beliebig wählen Sie $u_1 \in \Gamma \setminus \{0\}$ mit kleinster euklidischen Norm und nehmen Sie die einzige Drehung $\rho : \mathbb{R}^2 \to \mathbb{R}^2$, sodass $\rho(u_1) = (a,0)$. Nehmen Sie nun innerhalb der Elementen von $\rho(\Gamma)$ mit kleinster positiven y-Koordinate, das Element u_2 mit kleinstem Betrag der x-Koordinate. Bis auf einer Spiegelung an der y-Achse darf man annehmen, dass $u_2/a \in S$ liegt (warum?).

Aufgabe zum Vorrechnen

- **3-4** Es sei (M,g) eine Lorentz-Mannigfaltigkeit, also $\sigma_{-}(g)=1$. Wir sagen, dass (M,g) kausal ist, wenn keine glatte, geschlossene, zeitartige Kurve $\gamma:[t_0,t_1]\to M$ existiert (d.h. $\gamma(t_0)=\gamma(t_1),\,t_0\neq t_1$ und $g(\dot{\gamma},\dot{\gamma})<0$). Zeigen Sie:
 - (a) der Minkowski Raum $(\mathbb{R}^{n,1}, g_{\mathbb{R}^{n,1}})$ ist kausal für alle $n \geq 2$;
 - (b) der anti-de-Sitter Raum (AdS^m, g_{AdS^m}) ist nicht kausal für alle $m \ge 2$;
 - (c) wenn $(N, g_N) \to (M, g_M)$ eine isometrische Immersion von Lorentz-Mannigfaltigkeiten ist, dann gilt die Implikation

$$(N, g_N)$$
 nicht kausal \implies (M, g_M) nicht kausal.

Schließen Sie daraus, dass für keine m und n eine isometrische Immersion $(AdS^m, g_{AdS^m}) \to (\mathbb{R}^{n,1}, g_{\mathbb{R}^{n,1}})$ existiert.