
Variational Methods
for Convex Hamiltonian Systems

Part I: Basics on Tonelli Lagrangians

Talk 1 (Alex Arnhold): The action functional

Setting: M compact manifold without boundary. Definition of Lagrangians L : TM → R
of class C2. The action functional for curves between two given points with fixed time
interval or fixed homotopy class1 Euler-Lagrange equations (sketch of proof) and Euler-
Lagrange solutions. Addition of constant to the Lagrangian and of closed 1-forms does not
change the equations but change the action functional. However, within the curves with
fixed time interval or fixed homotopy class the change in the action functional is given
by a constant. The Legendre condition and the Euler-Lagrange vector field on TM . Is it
complete? The Legendre (Fenchel) transform

Leg : TM → T ∗M, (x, v) 7→ ∂vL(x, v).

Definition of Tonelli Lagrangians (see Remark 1.2.1 in [Maz] about uniformity of the su-
perlinearity). Example of electromagnetic Lagrangians

L(x, v) = 1
2
gx(v, v) + θx(v)− U(x)

where g is a Riemannian metric, θ is a 1-form and U is a function. The Euler-Lagrange
equations in this case turn into Newton’s equation

x∇∂tẋ = −∇U(x)− Yx · ẋ,

where ∇U is the gradient with respect to g and Y is the Lorentz force defined by

gx(Yx · u, v) = dθx(u, v), ∀x ∈M, u, v ∈ TxM.

The Legendre transform is a diffeomorphism if the Lagrangian is Tonelli. What are the
images Leg(x, ẋ) = (x, px) of Euler-Lagrange solutions x? Definition of the Hamiltonian
H : T ∗M → R

H(x, p) = 〈p,Leg−1(x, p)〉 − L(Leg−1(x, p)).

Relation between ∂qH, ∂pH and ∂qL and ∂pL. The function H is C2 and convex (∂2ppH =
(∂2vvL)−1) (later we will see that it is also Tonelli). The curves (x, px) satisfy the Hamilton
equations

ẋ = ∂pH(x, px), ṗx = −∂xH(x, px).

1a homotopy class is a subset of curves connecting the two end-points which are homotopic to each
other with fixed end-points.
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Uniqueness of solutions for Hamilton equations implies uniqueness of solutions for the
Euler-Lagrange equations.

Remark. Please see if the time is enough to discuss all the topics above. Please give only
few details of the proofs.

Talk 2 (Christian Alber): Tonelli’s Theorem

Definition of the Energy E : TM → R, E(x, v) = 〈∂vL, v〉 − L(x, v) so that E = H ◦ Leg.
Energy is invariant under addition of 1-form to L. If LU = L−U , where U : M → R, then
EU = E + U . Energy and Hamiltonian for the example of electromagnetic Lagrangians.
The energy (equivalently) the Hamiltonian are constant of motions. The Euler-Lagrange
flow is complete for M compact.

Statement of the problem: existence of action minimizers in the set {x : [a, b] →
M | x(a) = q0, x(b) = q1}. Statement of result: Corollary 3.3.3 in [Fat] (Tonelli’s The-
orem). Introduce the lift L̃ : TM̃ → R of a Lagrangian L : TM → R from a compact
manifold M to a covering space M̃ → M of M . Observe that the hypothesis are satisfied
for L̃ by lifting a metric on M as well. Deduce that for every q0, q1 ∈ M compact and
every homotopy class of paths from q0 to q1 there is an Euler-Lagrange orbit minimizing
the action. Other references for Tonelli’s: Theorem 4.1.1 in [Sor], [CI, Section 3-1], [Maz,
Theorem 1.3.1]. Definition of Tonelli minimizers.

Remark. The proof of Tonelli’s theorem should only be sketched.

Talk 3 (Camillo Tissot): Weierstrass Theorem and global mini-
mizers

Statement (without proof) of Weierstrass Theorem [Fat, Theorem 3.6.1 and Theorem 3.6.2]:
Euler-Lagrangian solutions defined on short intervals are Tonelli minimizers; two nearby
points are connected by a unique Tonelli minimizer defined for short time. Use Weierstrass
Theorem to sketch the proof of the regularity of Tonelli minimizers [Fat, Theorem 3.7.1].

Problem: Are there curves γ : R → M such that γ|[a,b] are Tonelli minimizers for all
a < b. What is their energy? Definition of global Tonelli minimizers [Sor, Definition 4.1.4].
Observe that the answer depends on the addition of closed 1-form η (see Talk 2) to the
Lagrangian.

This problem is related to finding free-time minimizers for L connecting two points x0
and x1. These are curves minimizing the action AL on the set⋃

T>0

C2
x0,x1

([0, T ],M).

Observe that free-time minimizers for L and for L+ k might a priori be different. Indeed,
there holds: free-time minimizers of L+ k connecting x0 and x1 have energy E = k [CI, 3-
3.2 Lemma]. In particular, finding free-time minimizers yields orbits connecting two points
with given energy.

2



We can now define global free-time minimizers of L+ k as curves γ : R→M such that
γ|[a,b] is a free-time minimizer for L + k connecting γ(a) and γ(b) [Sor, Definition 4.1.5].
Observation: a global free-time minimizer of L + k is a global Tonelli minimizer. Is the
converse true? For which k do we have (global) free-time minimizers of L+ k?

Later in the seminar we will prove the following statement

Theorem. There exists c(L) ∈ R such that

• For all k > c(L) and for all q0, q1 there exists a free-time minimizer of L+k connecting
q0, q1;

• There exists global free-time minimizers of L+ c(L).

• Global Tonelli minimizers are global free-time minimizers of L+ c(L) (in particular,
all global free-time minimizers have energy c(L)).

Example of the pendulum: L : TS1 → R, L(x, v) = 1
2
v2 − U(x), where S1 = R/2πZ

and U(x) := (cos x− 1). Draw the trajectories in the coordinates (x, v). For k ≥ 0 define
θ±k := ±

√
2(k − U)dx. We have

• L + rθ±0 ≥ 0 for all r ∈ [0, 1]. When does the equality sign hold? Determine the
global free-time minimizers of L+ rθ±0 ;

• L + θ±k + k ≥ 0 for all k ≥ 0. When does the equality sign hold? Determine the
global free-time minimizers of L+ θ±k + k.

Observe that for r ∈ [0, 1] and k ∈ [0,∞), rθ±0 and θ±k attain all possible cohomology
classes in H1(S1;R).

Part II: Minimizing orbits in dimension 1 - a toy model

Let us look at the problem of the existence of global Tonelli minimizers in a simple setting.

Talk 4 (Gabriele Benedetti): The variational problem and circle
homeomorphisms

Section 1 and 2 and Lemma 3.1, Corollary 3.2 from Section 3 [Ban].

Talk 5 (Gabriele Benedetti): Rotation number of minimal trajec-
tories

Section 3 starting from Theorem 3.3 [Ban].
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Talk 6 (Gabriele Benedetti): Structure of the set of minimal tra-
jectories

Section 4 and 5 from [Ban].

Talk 7 (Raphael Schlarb): Application to monotone twist maps

Section 7 from [Ban]. Definition of twist map and example of billiards. Invariant circles:
Theorem 1.3.3 in [Sib]. Minimal action of a monotone twist map, see Definition 1.3.6 in
[Sib] (Please use the notation β instead of α for the minimal action since this is the notation
we will use later on in the seminar). State Theorem 1.3.7 in [Sib].

Remark. An alternative reference are Sections 9.3 and 13.1-13.3 in [KH].

Part III: Minimizing orbits for Tonelli Lagrangians –

Mañé Theory

Talk 8 (Maximilian Schmahl): Aubry and Mañé sets

Finite-time potential Φk(x, y;T ) (see [CI, Section 3-4] and Proposition 4.1.11 in [Sor]).
Mañé potential

Φk(x, y) = inf
T>0

Φk(x, y;T )

Properties of the Mañé potential (see [CI, Section 2-1] and [Sor, 4.1.9]). Definition of Mañé
critical value c(L). Definition of semi-static and static curves and corresponding definition
of Aubry and Mañé sets. Observe that they are closed. Prove that the Aubry set contains
the non-wandering points of the Mañé set (see the first statement of Proposition 3-5.7 in
[CI] and the proof of Proposition 2.1.11 in [Sor]). In particular, if the Mañé set is non-
empty so is the Aubry set since non-wandering points always exist (for instance take α
or ω limits). Use the separatrix of the pendulum to give an example of a non-wandering
point which is not an α- or ω-limit. Observation: the Euler-Lagrange flow restricted to the
Mañé set can be as complicated as the one given by a vector field on M . Take X vector
field on M and define the Lagrangian L(x, v) := 1

2
|v − X(x)|2. Then the graph of X is

contained in the Mañé set and the Euler-Lagrange flow on the graph project to the flow of
X on M .

If time permits: Compute the Mañé potential and the Mañé critical value for the
pendulum for all cohomology classes and use it to find the Mañé and Aubry sets (see
[Sor, Section 4.3], but the argument using Lemma 4.3.2 is not quite right). Sketch: use
the Lagrangians L±k := L + θ±k , k ≥ 0 and L±r := L + rθ±0 , r ∈ [0, 1] defined in Talk 3.
Show that c(L±k ) = k and c(Lr±) = 0 by observing that there are periodic global free-time

minimizers for L±k and L±r with zero action. This shows that for k > 0, Φ
L±k
k (x, y) = 0 for

all x, y ∈ S1. Hence, the free-time minimizers are also static curves in this case. In the
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same way, the unstable critical point is a static curve for L±r . Now show that the separatrix

γ± : R→ S1 is a static curve for L±r only for r = 1. Indeed, Φ
L±1
0 (x, y) = 0 for all x, y ∈ S1

(obtain a closed curve by concatenating γ±|[−n,n] for n large with a short curve connecting
γ±(n) and γ±(−n)). On the other hand AL±r

(γ±|(−∞,+∞)) ≥ ε for r < 1 but then we can
find a curve with action smaller than ε connecting the points γ±(−n) and γ±(n) for n
large.

Talk 9 (Levin Maier): Graph property for the Aubry set and
generalities on probability measures

Graph theorem: Theorem 4.1.30 and Lemma 4.1.31 in [Sor]. Statement of problem: are
the Mañé and Aubry sets non-empty? Via weak KAM-Theorem one shows that the Mañé
set is non-empty. Then the Aubry set is non-empty since it contains the α- and ω-limit of
the Mañé set. We will follow Mather approach: construct elements in the Aubry set via
invariant measures.

Setting: Borel probability measures on compact manifold N . Definition of support.
Definition of pushforward of a probability by a map. Example: probability uniformly
distributed on a curve. Riesz-representation theorem. Weak*- topology in the space of
Borel probabilities and weak*-compactness. Support and weak*-convergence:

µn → µ, =⇒ suppµ ⊂
⋂
n

⋃
m≥n

suppµm.

Definition of measure invariant by a flow generated by vector field X. Definition of
ergodic probability measure. Example: rotation of angle α on a circle. Birkhoff’s ergodic
theorem. Decomposition of a probability measure µ in ergodic components {µ(s)}s∈S:

µ =

�
S

µ(s)ν

where (S, ν) is a probability space. Show that for all S ′ ⊂ S with µ(S ′) = 1, there holds

suppµ ⊂
⋃
s∈S′

suppµ(s).

Definition of rotation vector ρ(µ) ∈ H1(N ;R)∗ ∼= H1(N ;R) with proof of the identity�
N

dh(X)µ, ∀h ∈ C∞(N).

Note: in the literature the rotation vector is also known as the asymptotic cycle.
Continuity of the rotation vector in the weak*-topology. Formula for the rotation vector

for ergodic measures.

Remark. For the part on probability measures, you can consult [KH, Section 4.1 (a)-(f)].
For the part on the rotation vector (asymptotic cycle), see [KH, Section 14.7 (b)].
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Part IV: Minimizing orbits for Tonelli Lagrangians –

Mather Theory

Talk 10 (Valerio Assenza): Mather measures

Section 3.1, 3.2 and 3.3 in [Sor]. For the part on Fenchel duals and the proof that β∗ = α
you can consult [CI, Appendix D].

Talk 11 (Valerio Assenza): The Mather set is contained in the
Aubry set

Proposition 4.1.24 in [Sor]: Mather’s α function coincides with the Mañé critical value.
Proposition 4.1.26 in [Sor]: the Mather set is contained in the Aubry set. Proposition
4.1.29: semi-static curves are asymptotic to the Mather set. Example: the Mather set and
the α function for the pendulum [Sor, Section 3.5].

Part V: Minimizing orbits for Tonelli Lagrangians –

Weak KAM Theory

Talk 12 (Johanna Bimmermann): Weak KAM solutions and dy-
namics

Dominated functions and Proposition 5.1.4 in [Sor]. Dominated functions exist only of
k ≥ c(L). Definition of critical subsolution.

C0-characterization of HJ-solutions in Proposition 5.1.9 [Sor]. Definition of calibrated
curves. Calibrated curves and differentiability of dominated functions (Proposition 5.1.12
[Sor]). Weak KAM solutions and weak KAM Theorem [Sor, Theorem 5.1.16]. Characteri-
zation of the Mather set in terms of weak KAM solutions. Characterization of Aubry set
and Mañé set in terms of conjugated solutions, see [Fat, Section 5.2].

Talk 13 (Leon Happ): Lax-Oleinik semigroup and weak KAM
solutions

For this talk we use the reference [Fat]. Define the Lax-Oleinik semigroup from Section
4.6 and show that its fixed points coincide with weak KAM solutions (Proposition 4.6.7).
Sketch the proof of the existence of a fixed point from Section 4.7.
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Talk 14 (Gabriele Benedetti): The Peierls Barrier and the rela-
tionship between Tonelli and time-free minimizers
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