Differentialgeometrie 1

Heidelberg, Sommersemester 2019 Gabriele Benedetti Urs Fuchs

MÖGLICHE ERSTE AUFGABEN IN DER KLAUSUR

Aufgabe 1. Es sei $L := \{(x,y) \in \mathbb{R}^2 \mid x,y \geq 0 \text{ und } xy = 0\} \subset \mathbb{R}^2$. Ist L eine topologische Mannigfaltigkeit?

Beweisidee. Wir beweisen, dass L homö
omorph zu $\mathbb R$ ist und daher eine topologische Mannigfaltigkeit. Wir definieren

$$\varphi: L \to \mathbb{R}, \qquad \varphi(x,y) = \begin{cases} -y & \text{falls } x = 0 \\ x & \text{falls } y = 0 \end{cases}$$

mit Umkehrabbildung

$$\psi: \mathbb{R} \to L, \qquad \psi(t) = \begin{cases} (t,0) & \text{falls } t \ge 0 \\ (0,-t) & \text{falls } t \le 0. \end{cases}$$

Die Stetigkeit von φ und ψ folgt aus Satz ?? und die Tatsache, dass L die Teilraumtopologie von \mathbb{R}^2 besitzt. Denn: die Mengen $L \cap \{x=0\}$ und $L \cap \{y=0\}$ sind abgeschlossen in L; $(x,y) \mapsto -y$ und $(x,y) \mapsto x$ sind stetig von \mathbb{R}^2 nach \mathbb{R} und übereinstimmen auf $(L \cap \{x=0\}) \cap (L \cap \{y=0\}) = \{(0,0)\}$. Auf ähnlicher Weise: die Mengen $[0,\infty)$ und $(-\infty,0]$ sind abgeschlossen in \mathbb{R} ; $t \mapsto (t,0)$ und $t \mapsto (0,-t)$ sind stetig von \mathbb{R} nach \mathbb{R}^2 (und daher nach L wegen der Definition der Teilraumtopologie) und übereinstimmen auf $[0,\infty) \cap (-\infty,0] = \{0\}$.

Aufgabe 2. Bestimmen Sie für jedes $n \in \mathbb{N}_0$ genau welche Teilräume $N \subset \mathbb{R}$ mit der Teilraum Topologie topologische Mannigfaltigkeiten der Dimension n sind.

Beweisidee. Es sei angenommen, dass N eine Mannigfaltigkeit der Dimension n>1 ist. Dann für alle $p\in N$ existiert $U\subset N$ offene Umgebung von p und $\varphi:U\to V$ ein Homöomorphismus mit $V\subset \mathbb{R}^n$ offen. Wir können annehmen, dass $V=B^n_r(0)$ mit $\varphi(p)=0$ für ein r>0. Wenn n>1, dann sollte $\varphi^{-1}(V\backslash\{0\})$ zusammenhängend sein aber

$$\varphi^{-1}(V\setminus\{0\}) = \Big((-\infty,p)\cap\varphi^{-1}(V\setminus\{0\})\Big) \cup \Big((p,\infty)\cap\varphi^{-1}(V\setminus\{0\})\Big)$$

wegen der Injektivität von φ . Diese Widerspruch zeigt $n \leq 1$. Für n = 1 ist φ^{-1} : $B_r^1(0) \to \mathbb{R}$ eine injektive stetige Abbildung mit Definitionsmenge ein offenes Intervall. Aus Analysis I ist $U = \varphi^{-1}(B_r^1(0))$ ein offenes Intervall. Das heißt, dass N eine offene Teilmenge von \mathbb{R} notwendigerweise sein muss. Umgekehrt sind alle offenen Teilmengen N von \mathbb{R} topologische Mannigfaltigkeit der Dimension 1.

Es sei schließlich n=0. Dann $U=\{p\}$, da $V=B^0_r(0)=\{0\}$. Da N die Teilraumtopologie besitzt, existiert ein Intervall (a,b), sodass $\{p\}=N\cap(a,b)$.

Umgekehrt ist jede Teilmenge N von \mathbb{R} mit der Eigenschaft, dass für alle $p \in N$ ein Intervall (a,b) mit $\{p\} = N \cap (a,b)$ existiert, eine Mannigfaltigkeit der Dimension 0. Denn werden die Hausdorff-Eigenschaft und die abzählbare Basis von \mathbb{R} geerbt.

Aufgabe 3. Es sei $D \subset \mathbb{R}^n$ eine Menge mit nicht-leerem Inneren und es sei N eine beliebige n-dimensionale topologische Mannigfaltigkeit. Zeigen Sie, dass jedes $x \in N$ eine Umgebung hat, welche homöomorph zu D ist.

Hinweis: Beweisen Sie die Aussage zuerst für $D = B_1(0)$ und dann für $D = \mathbb{R}^n$.

Beweisidee. Nach der Definition von Mannigfaltigkeit gibt es eine Karte $\varphi: U \to V$ um $x \in N$. Bis auf Verkettung mit dem Homömorphismus $\mathbb{R}^n \to \mathbb{R}^n$, $q \mapsto q - \varphi(x)$ können wir annehmen, dass $\varphi(x) = 0 \in V$. Da V offen in \mathbb{R}^n ist, existiert r > 0, sodass $B_r(0) \subset V$. Es sei nun $U' := \varphi^1(B_r(0))$. Dann ist die Einschränkung $\varphi|_{U'}: U' \to B_r(0)$ ein Homöomorphismus. Die Verkettung $\tau_{1/r} \circ \varphi|_{U'}: U' \to B_1(0)$ ist ein Homöomorphismus, wobei $\tau_{1/r}: \mathbb{R}^n \to \mathbb{R}^n$ die Streckung $\tau_{1/r}(q) = q/r$ ist. Die Verkettung $\varphi'' := F \circ \tau_{1/r} \circ \varphi|_{U'}: U' \to B_1(0)$ ist ein Homöomorphismus, wobei

$$F: B_1(0) \to \mathbb{R}^n, \qquad F(q) = \frac{q}{\sqrt{1 - |q|^2}}.$$

Wenn $D \subset \mathbb{R}^n$ offen ist, ist $\varphi''|_{(\varphi'')^{-1(D)}} : (\varphi'')^{-1(D)} \to D$ der gewünschte Homöomorphismus.

Aufgabe 4. Wir definieren auf $\mathbb{R}^{n+1} \setminus \{0\}$ eine Äquivalenzrelation gegeben durch $x \sim y :\Leftrightarrow y = \lambda x$ für $\lambda \in \mathbb{R} \setminus \{0\}$ und auf $S^n \subset \mathbb{R}^{n+1}$ eine Äquivalenzrelation \sim' gegeben durch $x \sim' y :\Leftrightarrow x = \pm y$. Wir wissen, dass

$$F: S^n/\sim' \to (\mathbb{R}^{n+1}\setminus\{0\})/\sim, \qquad F([x]') = [x]$$

ein Homöomorphismus ist und dass beide Räumen hausdorffsch mit abzählbarer Basis sind. Wir wissen auch dazu, dass die Quotientenabbildungen $\pi: (\mathbb{R}^{n+1} \setminus \{0\}) \to \mathbb{R}^{n+1} \setminus \{0\}/\sim$ und $\pi': S^n \to S^n/\sim'$ offen sind und dass

$$\overline{\varphi}_i^+ := \varphi_i^+ \circ (\pi'|_{U_i^+})^{-1} : \pi'(U_i^+) \to B_1(0) \subset \mathbb{R}^n$$

ein Atlas für $S^n/\!\sim'$ bilden, wobei (U_i^+,φ_i^+) die Karten von S^n aus der Vorlesung sind.

Zeigen Sie, dass die Abbildungen

$$\varphi_j: \left((\mathbb{R}^{n+1} \setminus \{0\}) / \sim \right) \setminus \{x_j = 0\} \to \mathbb{R}^n,$$
$$\varphi_j([x]) = \left(\frac{x_0}{x_j}, \dots, \frac{x_{j-1}}{x_j}, \frac{x_{j+1}}{x_j}, \dots, \frac{x_n}{x_j} \right)$$

für $j=0,\ldots,n$ eine glatte Struktur auf $(\mathbb{R}^{n+1}\setminus\{0\})/\sim$ definieren. Beweisen Sie, dass F ein Diffeomorphismus ist.

Beweisidee. Die Mengen $U_j := ((\mathbb{R}^{n+1} \setminus \{0\})/ \sim) \setminus \{x_j = 0\}$ sind offen, da $\hat{U}_j := \pi^{-1}(U_j)$ und π offen sind. Wir betrachten die stetige Abbildung $\hat{\varphi}_j : \hat{U}_j \to \mathbb{R}^n$, wobei $\hat{\varphi}_j(x) = \frac{1}{x_j}(x_0, \dots, x_{j-1}, x_{j+1}, \dots, x_n)$. Da $\varphi_j \circ \pi = \hat{\varphi}_j$ gilt, ist die Abbildung φ_j nach der universellen Eigenschaft der Finaltopologie. Es

sei nun $\hat{\psi}_j: \mathbb{R}^n \to \hat{U}_j$ die stetige Abbildung $\hat{\psi}_j(y) = (y_1, \dots, y_j, 1, y_{j+1}, \dots, y_n)$. Wir definieren die stetige Abbildung $\psi_j:=\pi\circ\hat{\psi}_j$. Man sieht leicht, dass φ_j und ψ_j invers zu einander sind. Daher ist φ_j eine Karte. Wir prüfen nun die Verträglichkeit von φ_i, φ_j mit i < j. Erstmal $\varphi_i(U_i \cap U_j) = \mathbb{R}^n \setminus \{y_j = 0\}$ und $\varphi_j(U_i \cap U_j) = \mathbb{R}^n \setminus \{z_{i+1} = 0\}$. Dann ist

$$\varphi_j \circ \varphi_i^{-1}(y) = \frac{1}{y_j}(y_1, \dots, y_i, 1, y_{i+1}, \dots, y_{j-1}, y_{j+1}, \dots, y_n)$$

glatt. Auf ähnlicher Weise ist $\varphi_i \circ \varphi_j^{-1}$ auch glatt. Also sind die Karten mit einander verträglich. Sie definieren daher eine glatte Struktur.

Wir zeigen nun, dass F ein Diffeomorphismus ist. Wir sehen, dass $F(\pi'(U_i^+)) = U_i$. Daher reicht es zu zeigen, dass $\varphi_i \circ F \circ (\bar{\varphi}_i^+)^{-1} : B_1(0) \to \mathbb{R}^n$ ein Diffeomorphismus für alle $i = 0, \ldots, n$ ist. Wir berechnen den Fall i = 0:

$$\varphi_0 \circ F \circ (\bar{\varphi}_0^+)^{-1}(y) = \varphi_0 \circ F \circ ([\sqrt{1-|y|^2}, y]') = \varphi_i([\sqrt{1-|y|^2}, y]) = \frac{y}{\sqrt{1-|y|^2}},$$

die ein Diffeomorphismus nach Aufgabe 1-1 ist.

Aufgabe 5. Zeigen Sie, dass

$$\pi: S^n \to \mathbb{RP}^n, \qquad \pi(x_0, \dots, x_n) = [x_0: \dots : x_n]$$

eine glatte Abbildung ist, die ein lokaler Diffeomorphismus ist.

Beweisidee. Wir zeigen, dass die stetige Abbildung $\pi|_{U_i^{\pm}}: U_i^{\pm} \to U_i$ ein Diffeomorphismus ist. Wir berechnen wie in der obigen Aufgabe nur den Fall i=0:

$$\varphi_0 \circ \pi \circ (\varphi_0^{\pm})^{-1}(y) = \frac{y}{\sqrt{1 - |y|^2}},$$

die ein Diffeomorphismus nach Aufgabe 1-1 ist.

Aufgabe 6. Zeigen Sie, dass die folgende Funktion wohldefiniert und glatt ist:

$$f: \mathbb{RP}^n \to \mathbb{R}, \qquad f([x_0: \dots : x_n]) = \frac{\sum_{j=0}^n j x_j^2}{\sum_{j=0}^n x_j^2}.$$

Beweisidee. Wir haben $\sum_{j=0}^{n} x_j^2 = 0$ genau dann, wenn x = 0. Also ist

$$\tilde{f}: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}, \qquad f(x) = \frac{\sum_{j=0}^{n} j x_j^2}{\sum_{j=0}^{n} x_j^2}$$

wohldefiniert. Es sei $x' \sim x$. Dann $x' = \lambda x$ und

$$\tilde{f}(x') = \frac{\sum_{j=0}^{n} j(x'_j)^2}{\sum_{j=0}^{n} (x'_j)^2} = \frac{\sum_{j=0}^{n} j(\lambda x_j)^2}{\sum_{j=0}^{n} (\lambda x_j)^2} = \frac{\lambda^2 \sum_{j=0}^{n} j x_j^2}{\lambda^2 \sum_{j=0}^{n} x_j^2} = \frac{\sum_{j=0}^{n} j x_j^2}{\sum_{j=0}^{n} x_j^2} = \tilde{f}(x).$$

Die Wohldefinitheit von f ist somit bewiesen. Für die Glattheit nehmen wir eine Karte $\varphi_i:U_i\to\mathbb{R}^n$ und berechnen

$$f \circ \varphi_i^{-1}(y) = \frac{i + \sum_{j=1}^i (j-1)y_j^2 + \sum_{j=i+1}^n jy_j^2}{1 + \sum_{j=1}^n y_j^2},$$

die klarerweise glatt ist.

Aufgabe 7. Es seien M_1 , M_2 glatte Mannigfaltigkeiten. Zeigen Sie: die Projektionen $\pi_1: M_1 \times M_2 \to M_1$ und $\pi_2: M_1 \times M_2 \to M_2$ sind glatt. Es sei nun L eine weitere glatte Mannigfaltigkeit und $F: L \to M_1 \times M_2$ eine Abbildung. Zeigen Sie: F ist glatt genau dann, wenn $\pi_1 \circ F$ und $\pi_2 \circ F$ glatt sind.

Beweisidee. Es sei $(U_1 \times U_2, \varphi_1 \times \varphi_2)$ eine Karte für $M_1 \times M_2$. Dann $\pi_1(U_1 \times U_2) = U_1$, $\pi_2(U_1 \times U_2) = U_2$ und

$$\varphi_1 \circ \pi_1 \circ (\varphi_1 \times \varphi_2)^{-1} : V_1 \times V_2 \to V_1, \qquad \varphi_1 \circ \pi_1 \circ (\varphi_1 \times \varphi_2)^{-1} (x_1, x_2) = x_1,$$

 $\varphi_2 \circ \pi_2 \circ (\varphi_1 \times \varphi_2)^{-1} : V_1 \times V_2 \to V_2, \qquad \varphi_1 \circ \pi_2 \circ (\varphi_1 \times \varphi_2)^{-1} (x_1, x_2) = x_2.$

Diese zwei Abbildungen sind glatt. Da $(U_1 \times U_2, \varphi_1 \times \varphi_2)$ beliebig war, sind π_1 und π_2 glatt.

Es sei nun $F:L\to M_1\times M_2$ eine Abbildung. Wir nehmen $q\in L$ beliebig und es sei $(p_1,p_2):=F(q)$. Wir nehmen eine beliebige Karte (U_L,φ_L) um q. Eine beliebige Karte von $M_1\times M_2$ um (p_1,p_2) ist derart $(U_1\times U_2,\varphi_1\times\varphi_2)$, wobei (U_1,φ_1) und (U_2,φ_2) beliebige Karten von M_1 und M_2 um p_1 und p_2 sind. Es sei angenommen, dass F glatt um q ist. Dann existiert $U_L'\subset U_L$, sodass $F(U_L)\subset U_1\times U_2$ und $(\varphi_1\times\varphi_2)\circ F\circ\varphi_L^{-1}|_{V_L'}$ ist glatt. Das impliziert $\pi_1\circ F(U_L')\subset U_1$ und $\pi_2\circ F(U_L')\subset U_2$. Außerdem gilt

$$(\varphi_1 \times \varphi_2) \circ F \circ \varphi_L^{-1}|_{V_L'} = \left(\varphi_1 \circ (\pi_1 \circ F) \circ \varphi_L^{-1}|_{V_L'}, \varphi_2 \circ (\pi_2 \circ F) \circ \varphi_L^{-1}|_{V_L'}\right).$$

Da eine Abbildung zwischen offenen Teilmengen des euklidischen Raums genau dann glatt ist, wenn ihre Koordinaten glatt sind, sind $\varphi_1 \circ (\pi_1 \circ F) \circ \varphi_L^{-1}|_{V_L'}$ und $\varphi_2 \circ (\pi_2 \circ F) \circ \varphi_L^{-1}|_{V_L'}$ glatt. Wir haben somit gezeigt, dass $\pi_1 \circ F$ und $\pi_2 \circ F$ glatt um q sind.

Es sei umgekehrt angenommen, dass $\pi_1 \circ F$ und $\pi_2 \circ F$ glatt um q sind. Dann existieren $U'_{1,L} \subset U_L$ und $U'_{2,L} \subset U_L$, sodass $\pi_1 \circ F(U'_{1,L}) \subset U_1$ und $\pi_2 \circ F(U'_{2,L}) \subset U_2$ und $\varphi_1 \circ (\pi_1 \circ F) \circ \varphi_L^{-1}|_{V'_{1,L}} : V'_{1,L} \to V_1$ und $\varphi_2 \circ (\pi_2 \circ F) \circ \varphi_L^{-1}|_{V'_{2,L}} : V'_{2,L} \to V_2$ glatt sind. Dann $F(U'_{1,L} \cap U'_{2,L}) \subset U_1 \times U_2$ und das kartesische Produkt von $\varphi_1 \circ (\pi_1 \circ F) \circ \varphi_L^{-1}|_{V'_{1,L}}$ und $\varphi_2 \circ (\pi_2 \circ F) \circ \varphi_L^{-1}|_{V'_{2,L}}$ ist glatt. Daher ist F glatt um q.

Aufgabe 8. Es sei $M=(0,3)\times(0,3)\subset\mathbb{R}^2$. Finden Sie eine Zerlegung der Eins auf M bezüglich

$$\{(0,2)\times(0,3),\ (1,3)\times(0,3)\}.$$

Finden Sie eine Zerlegung der Eins auf M bezüglich der Überdeckung

$$\{(0,2)\times(0,2),\ (1,3)\times(0,2),\ (0,3)\times(1,3)\}.$$

Beweisidee. Wir konstruieren zuerst eine Zerlegung der Eins des Intervalls (0,3) bezüglich der Überdeckung $\{(0,2),(1,3)\}$. Es sei $e_3:\mathbb{R}\to\mathbb{R}$ die glatte Funktion, die in der Vorlesung definiert wurde, und die Eigenschaften $e_3(t)=0$ für $t\leq 0$, $e_3(t)=1$ für $t\geq 1$ und $e_3(1-t)=1-e_3(t)$ für alle $t\in\mathbb{R}$ hat. Wir setzen $\rho_1(t)=e_3(5-3t)$ und $\rho_2(t)=e_3(3t-4)$. Dann $T(\rho_1)=(0,5/3]$, $T(\rho_2)=[4/3,3)$ und $\rho_1(t)+\rho_2(t)=e_3(1-(3t-4))+e_3(3t-4)=1$ für alle $t\in\mathbb{R}$.

Wir konstruieren nun eine Zerlegung der Eins auf M bezüglich $\{(0,2) \times (0,3), (1,3) \times (0,3)\}$, indem wir $\tilde{\rho}_1(x,y) = \rho_1(x)$ und $\tilde{\rho}_2(x,y) = \rho_2(x)$ nehmen.

Wir konstruieren nun eine Zerlegung der Eins auf M bezüglich der Überdeckung $\{(0,2)\times(0,2),\ (1,3)\times(0,2),\ (0,3)\times(1,3)\}$. Wir konstruieren zuerst eine Zerlegung bezüglich $\{(0,2)\times(0,2),\ (1,3)\times(0,2)\}$. Das ist nochmal durch $\tilde{\rho}_1(x,y)=\rho_1(x)$ und $\tilde{\rho}_2(x,y)=\rho_2(x)$ gegeben. Danach konstruieren wir eine Zerlegung bezüglich $\{(0,3)\times(0,2),(0,3)\times(1,3)\}$. Die ist durch $\tilde{\sigma}_1(x,y)=\rho_1(y)$ und $\tilde{\sigma}_2(x,y)=\rho_2(y)$ gegeben. Daher ist die gewünschte Zerlegung durch

$$\{\tau_1 := \tilde{\sigma}_1 \tilde{\rho}_1, \tau_2 := \tilde{\sigma}_1 \tilde{\rho}_2, \tau_3 := \tilde{\sigma}_2\}$$

gegeben. Denn

$$T(\tau_1) = (0, 5/3] \times (0, 5/3], \quad T(\tau_2) = [4/3, 3) \times (0, 5/3], \quad T(\tau_3) = (0, 3) \times [4/3, 3)$$

und

$$\tau_1 + \tau_2 + \tau_3 = \tilde{\sigma}_1 \tilde{\rho}_1 + \tilde{\sigma}_1 \tilde{\rho}_2 + \tilde{\sigma}_2 = \tilde{\sigma}_1 (\tilde{\rho}_1 + \tilde{\rho}_2) + \tilde{\sigma}_2 = \tilde{\sigma}_1 + \tilde{\sigma}_2 = 1. \qquad \Box$$

Aufgabe 9. Es sei $\sigma_{\mathrm{Nord}}: S^n \setminus \{e_{n+1}\} \to \mathbb{R}^n$ die stereographische Projektion aus dem Nordpol $e_{n+1} \in S^n$, wobei $\sigma_{\mathrm{Nord}}(x)$ die Eigenschaft hat, dass e_{n+1}, x und $(\sigma_{\mathrm{Nord}}(x), 0)$ kollinear in \mathbb{R}^{n+1} sind. Zeigen Sie, dass σ_{Nord} eine Karte ist. Es sei $\sigma_{\mathrm{Sud}}: S^n \setminus \{-e_{n+1}\}$ die stereographische Projektion aus dem Südpol. Zeigen Sie, dass $\{\sigma_{\mathrm{Nord}}, \sigma_{\mathrm{Sud}}\}$ einen Atlas auf S^n liefert. Zeigen Sie, dass die Übergangsabbildung für n=2 in komplexen Koordinaten durch

$$\sigma_{\text{Sud}} \circ \sigma_{\text{Nord}}^{-1} : \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}, \qquad z \mapsto 1/\bar{z}$$

dargestellt werden kann.

Beweisidee. Wir betrachten die Zerlegung $\mathbb{R}^{n+1} \cong \mathbb{R}^n \times \mathbb{R}$. Es sei $(q,h) \in S^n$ mit $z \neq 1$. Wir betrachten die Gerade $t \mapsto (tq,th+1-t)$. Die Bedingung th+1-t=0 liefert $t=\frac{1}{1-h}$. Daher

$$\sigma_{\text{Nord}}(q,h) = \frac{q}{1-h}.$$

Diese Abbildung ist klarerweise stetig, da die Einschränkung einer stetigen Abbildung von $\mathbb{R}^{n+1}\setminus\{h=1\}$ auf $S^{n+1}\setminus\{e_{n+1}\}$ ist. Es sei nun $z\in\mathbb{R}^n$. Wir wollen nun $(q,h)\in S^n$ finden mit (1-h)z=q. Es muss gelten $(1-h)^2|z|^2+h^2=1$ also $(1-h)|z|^2=1+h$. Wir können dann h als Funktion von $|z|^2$ finden und in q=(1-h)z einsetzen:

$$\sigma_{\text{Nord}}^{-1}(z) = \left(\frac{2z}{1+|z|^2}, \frac{|z|^2-1}{1+|z|^2}\right)$$

Diese Abbildung ist klarerweise stetig. Es sei nun $\tau: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ die Spiegelung an der Hyperebene $\{h=0\}$. Dann ist $\sigma_{\text{Sud}} = \sigma_{\text{Nord}} \circ \tau$. Also

$$\sigma_{\text{Sud}}(q,h) = \frac{q}{1+h}.$$

Wir berechnen die Abbildung $\sigma_{\text{Sud}} \circ \sigma_{\text{Nord}}^{-1} : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}$:

$$\sigma_{\text{Sud}} \circ \sigma_{\text{Nord}}^{-1}(z) = \frac{1}{1 + \frac{|z|^2 - 1}{1 + |z|^2}} \frac{2z}{1 + |z|^2} = \frac{z}{|z|^2}$$

die glatt mit glatter Inverse $w\mapsto w/|w|^2$ ist. Also ist die Übergangsabbildung ein Diffeomorphismus. Wenn nun n=2 können wir \mathbb{R}^2 mit \mathbb{C} identifizieren. Für $z\in\mathbb{C}\setminus\{0\}$ gilt $|z|^2=z\bar{z}$ und daher

$$\sigma_{\text{Sud}} \circ \sigma_{\text{Nord}}^{-1}(z) = \frac{z}{|z|^2} = \frac{z}{z\overline{z}} = \frac{1}{\overline{z}}.$$

Aufgabe 10. (a) Zeigen Sie, dass die Abbildung

$$F: \mathbb{CP}^1 \to S^2, \qquad F([z_0:z_1]) = \begin{cases} \sigma_{\text{Nord}}^{-1}(z_0/z_1) & \text{falls } [z_0:z_1] \neq [1:0], \\ \sigma_{\text{Sud}}^{-1}(\bar{z}_1/\bar{z}_0) & \text{falls } [z_0:z_1] \neq [0:1] \end{cases}$$

wohldefiniert und ein Diffeomorphismus ist, wobei

$$\sigma_{\text{Nord}}(q,h) = \frac{q}{1-h}, \qquad \sigma_{\text{Sud}}(q,h) = \frac{q}{1+h}$$

die stereographischen Projektionen aus dem Nord- und Südpol sind.

(b) Es seien $p,q:\mathbb{C}\to\mathbb{C}$ komplexe Polynome einer komplexen Variable ohne gemeinsame Nullstellen mit $\mathrm{Grad}q>\mathrm{Grad}p$. Es sei

$$g: \mathbb{C} \setminus \{q=0\} \to \mathbb{C}, \qquad g(z) = \frac{p(z)}{q(z)}.$$

Zeigen Sie, dass eine glatte Abbildung $G: \mathbb{CP}^1 \to \mathbb{CP}^1$ existiert, die g erweitert: G([z:1]) = [g(z):1] für alle $z \in \mathbb{C} \setminus \{q=0\}$. Berechnen Sie G([z:1]) für $z \in \{q=0\}$ und G([1:0]).

Beweisidee. (a) Wir wissen, dass $\{\sigma_{\mathrm{Nord},\sigma_{\mathrm{Sud}}}\}$ ein Atlas für S^2 ist, mit Übergangsabbildung

$$\sigma_{\mathrm{Sud}} \circ \sigma_{\mathrm{Nord}}^{-1}(z) = \frac{1}{\bar{z}}.$$

Daher für $[z_0:z_1] \notin \{[1:0], [0:1]\}$ gilt

$$\sigma_{\mathrm{Sud}}^{-1}(\bar{z}_1/\bar{z}_0) = \sigma_{\mathrm{Sud}}^{-1} \circ \sigma_{\mathrm{Sud}} \circ \sigma_{\mathrm{Nord}}^{-1}(z_0/z_1) = \sigma_{\mathrm{Nord}}^{-1}(z_0/z_1).$$

Die Abbildung F ist bijektiv (warum?). Es seien $\varphi_0 : \mathbb{CP}^1 \setminus \{[0:1]\} \to \mathbb{C}$ und $\varphi_1 : \mathbb{CP}^1 \setminus \{[1:0]\} \to \mathbb{C}$ die Karten des Standardatlas von \mathbb{CP}^1 .

Wir haben $F(\mathbb{CP}^1 \setminus \{[1:0]\}) = S^2 \setminus \{e_3\}$ und $F(\mathbb{CP}^1 \setminus \{[0:1]\}) = S^2 \setminus \{-e_3\}$. Dann ist

$$\begin{split} &\sigma_{\mathrm{Nord}}\circ F\circ \varphi_1^{-1}:\mathbb{C}\to \mathbb{C}, & \sigma_{\mathrm{Nord}}\circ F\circ \varphi_1^{-1}(z)=\sigma_{\mathrm{Nord}}\circ F([z:1])=z, \\ &\sigma_{\mathrm{Sud}}\circ F\circ \varphi_0^{-1}:\mathbb{C}\to \mathbb{C}, & \sigma_{\mathrm{Sud}}\circ F\circ \varphi_0^{-1}(w)=\sigma_{\mathrm{Nord}}\circ F\circ [1:w]=\bar{w}. \end{split}$$

Beide dieser Abbildungen sind Diffeomorphismen. DaF auch bijektiv ist folgt es, dass F ein Diffeomorphismus ist.

Wir setzen $k:=\operatorname{Grad} q-\operatorname{Grad} p$. Es seien $P:\mathbb{C}^2\to\mathbb{C}$ und $Q:\mathbb{C}^2\to\mathbb{C}$ die homogenen Polynome desselben Grad wie p und q, sodass

$$z_1^{\text{Gradp}} p(z_0/z_1) = P(z_0, z_1), \quad z_1^{\text{Gradq}} q(z_0/z_1) = Q(z_0, z_1), \quad \forall \, z_0 \in \mathbb{C}, \, z_1 \in \mathbb{C} \setminus \{0\}).$$

Insbesondere, wenn $p(z) = \sum_{i=0}^{\operatorname{Grad}p} a_i z^i$ und $q(z) = \sum_{i=0}^{\operatorname{Grad}q} b_i z^i$, dann

$$P(z_0, z_1) = \sum_{i=0}^{\text{Grad}p} a_i z_0^i z_1^{\text{Grad}p-i}, \qquad Q(z_0, z_1) = \sum_{i=0}^{\text{Grad}q} b_i z_0^i z_1^{\text{Grad}q-i}.$$

Für $z_1 \neq 0$ gilt

$$\frac{p(z_0/z_1)}{q(z_0/z_1)} = \frac{z_1^k P(z_0, z_1)}{Q(z_0, z_1)}.$$

und wir definieren

$$G([z_0:z_1]) = [z_1^k P(z_0,z_1): Q(z_0,z_1)], \quad \forall [z_0:z_1] \in \mathbb{CP}^1.$$

Wir zeigen, dass die Abbildung wohldefiniert ist. Es sei $(z_0, z_1) \in \mathbb{C}^2$ mit $z_1^k P(z_0, z_1) = 0$ und $Q(z_0, z_1) = 0$. Wir haben zwei Fälle. Wenn $z_1 = 0$, dann $Q(z_0, 0) = 0$. Aber $Q(z_0, 0) = b_{\operatorname{Grad}q} z_0^{\operatorname{Grad}q}$. Daher $z_0 = 0$. Wenn $z_1 \neq 0$, dann wäre z_0/z_1 eine gemeinsame Nullstelle zwischen p und q, ein Widerspruch. Da $z_1^k P$ und q beide homogen des Grades Gradq sind, hängt q0 nicht vom Repräsentanten ab.

Wir zeigen, dass G glatt ist. Es sei $[z_0:z_1] \neq [1:0]$. Dann ist entweder $P(z_0,z_1)$ oder $Q(z_0,z_1)$ ungleich null. Im ersten Fall

$$\varphi_0 \circ G \circ \varphi_1^{-1} : \mathbb{C} \setminus \{p = 0\} \to \mathbb{C}, \qquad \varphi_0 \circ G \circ \varphi_1^{-1}(z) = \frac{q(z)}{p(z)}.$$

Insbesondere wenn q(z) = 0 bekommen wir G([z:1]) = [1:0]. Im zweiten Fall

$$\varphi_1 \circ G \circ \varphi_1^{-1} : \mathbb{C} \setminus \{q = 0\} \to \mathbb{C}, \qquad \varphi_1 \circ G \circ \varphi_1^{-1}(z) = \frac{p(z)}{q(z)},$$

die offenbar glatt sind. Wenn $[z_0:z_1]=[1:0]$ dann $Q(z_0,z_1)\neq 0$ und

$$\varphi_1 \circ G \circ \varphi_0^{-1} : \mathbb{C} \setminus \{z \in \mathbb{C} \setminus \{0\} \mid q(1/z) = 0\} \to \mathbb{C}, \qquad \varphi_1 \circ G \circ \varphi_0^{-1}(z) = \frac{z^k P(z, 1)}{Q(z, 1)},$$

die nochmal glatt ist. Für z=0 bekommen wir G([1:0])=[0:1].

Aufgabe 11. Zeigen Sie, dass die folgende Abbildung ein Diffeomorphismus ist:

$$F:\mathbb{R}^{n+1}\setminus\{0\}\to (0,+\infty)\times S^n,\quad x\mapsto \Big(|x|,\frac{x}{|x|}\Big).$$

Schließen Sie daraus, dass die Projektion $\mathbb{R}^{n+1}\setminus\{0\}\to S^n,\ x\mapsto x/|x|$ eine Submersion ist.

Beweisidee. Wir definieren die Abbildung

$$G: (0, +\infty) \times S^n \to \mathbb{R}^{n+1} \setminus \{0\}, \qquad G(r, y) = r \cdot y,$$

die die Umkehrabbildung von F ist. Wir zeigen, dass F glatt ist. Das gilt genau dann, wenn die Koordinaten glatt sind. Die erste Koordinate $x\mapsto |x|$ ist offensichtlich glatt um $x\neq 0$. Die zweite Koordinate ist glatt als Abbildung von $\mathbb{R}^{n+1}\setminus\{0\}$ in $\mathbb{R}^{n+1}\setminus\{0\}$. Da $S^n\to\mathbb{R}^{n+1}$ eine Untermannigfaltigkeit ist, gilt nach der charakteristischer Eigenschaft von injektiven Immersionen (insbesondere Satz 5.19 und 5.23), dass die zweite Koordinate auch glatt mit Werten in S^n ist. Wir zeigen, dass G glatt ist. Diese Abbildung ist die Einschränkung der glatten Abbildung $(0,\infty)\times\mathbb{R}^{n+1}\setminus\{0\}\to\mathbb{R}^{n+1}\setminus\{0\},\ (r,y)\mapsto y$ auf der Untermannigfaltigkeit $(0,\infty)\times S^n$. Daher ist G glatt. Nun ist $x\mapsto x/|x|$ als Verkettung der Sumbersionen F und $\pi_2:(0,\infty)\times S^n$, $\pi_2(r,y)=y$ eine Submersion.

Aufgabe 12. Es sei $v \in \mathbb{R}^2 \setminus \{0\}$ und betrachten Sie die Abbildung

$$\iota_v : \mathbb{R} \to \mathbb{T}^2, \qquad \iota_v(t) = [tv].$$

Zeigen Sie, dass ι_v glatt ist und dass ihr Differential injektiv in allen Punkten ist. Für welche Vektore v ist ι_v injektiv? Ist für diese Vektoren ι_v auch eine Einbettung? Falls ι_v nicht injektiv ist, zeigen Sie, dass es eine Einbettung \jmath_v : $\mathbb{T}^1 \to \mathbb{T}^2$ gibt, sodass $\jmath_v(\mathbb{T}^1) = \iota_v(\mathbb{R})$.

Beweisidee. Die Abbildung ι_v ist die Verkettung zwischen den glatten Abbildungen $\hat{\iota}_v: \mathbb{R} \to \mathbb{R}^2$, $\hat{\iota}(t) = t \cdot v$ und $\pi: \mathbb{R}^2 \to \mathbb{T}^2$. Daher ist glatt. Wir haben $\mathrm{d}\hat{\iota} \cdot \frac{\partial}{\partial t} = v$. Also ist $\hat{\iota}_v$ eine Immersion. Da π ein lokaler Diffeomorphismus ist, ist ι_v auch eine Immersion.

Es sei nun angenommen, dass [tv] = [sv] für $s,t \in \mathbb{R}$. Dann $(t-s)v \in \mathbb{Z}^2$. Also entweder t=s oder $v \in c\mathbb{Z}^2$ mit $c \neq 0$. Umgekehrt sei $v=c\mathbb{Z}^2$ mit $c \neq 0$. Wir können annehmen, dass v=c(p,q), wobei $(p,q) \in \mathbb{Z}^2$ primitiv ist. Das heißt: wenn $\lambda \cdot (p,q) = (p',q')$ für $(p',q') \in \mathbb{Z}^2$ und $\lambda \in \mathbb{R}$, dann $\lambda \in \mathbb{R}$. Dann $(t-s)c \cdot (p,q) \in \mathbb{Z}^2$ genau dann, wenn $(t-s)c \in \mathbb{Z}$. Also $t-s \in c^{-1}\mathbb{Z}$.

Wir haben festgestellt, dass ι_v genau dann injektiv ist, wenn

$$v \notin (0, \infty) \cdot \mathbb{Z}^2 = \{(v_x, v_y) \in \mathbb{R}^2 \mid v_x \neq 0, v_y/v_x \text{ ist irrational } \}.$$

Für diese Vektoren ι_v ist keine Einbettung. Denn wenn ι_v eine Einbettung wäre, würde eine offene Umgebung U von $[(0,0)] \in \mathbb{T}^2$ existieren, sodass $\iota_v((-1/v_x,1/v_x)) = \iota_v(\mathbb{R}) \cap U$. Nun da v_y/v_x irrational ist, gibt es für $n \in \mathbb{N}$ beliebig ein $p_n \in \mathbb{N}_+$ und $q_n \in \mathbb{Z}$, sodass $|p_n \frac{v_y}{v_x} - q_n| < 1/n$. Dann ist $\iota_v(p_n/v_x) \notin \iota((-1/v_x,1/v_x))$ aber $\iota_v(p_n/v_x) = [p_n, p_n v_y/v_x] = [0, p_n v_y/v_x - q_n] \in \iota_v(\mathbb{R}) \cap U$ für n groß genug: Widerspruch. Es sei nun v = c(p,q), wobei $(p,q) \in \mathbb{Z}^2$ primitiv ist. Es sei nun v = c(p,q), wobei $(p,q) \in \mathbb{Z}^2$ primitiv ist. Dann ist

$$j_v : \mathbb{T}^1 \to \mathbb{T}^2, \qquad j_v([s]) = \iota_v(sc^{-1}v)$$

wohldefiniert und injektiv. Da $\mathbb{R} \to \mathbb{T}^1$ eine Submersion ist, ist \jmath_v glatt nach der charakteristischen Eigenschaft von Submersionen. Da \mathbb{T}^1 kompakt und \mathbb{T}^2 hausdorffsch ist, ist \jmath abgeschlossen. Daher ist \jmath ein Homöomorphismus auf dem Bild. Dies zeigt, dass \jmath eine Einbettung ist mit $\jmath_v(\mathbb{T}^1) = \iota_v(\mathbb{R})$.

Aufgabe 13. Es sei $\mathrm{Sym}_{n+1}(\mathbb{R})\cong\mathbb{R}^{\frac{(n+1)(n+2)}{2}}$ der Vektorraum der reellen symmetrischen $(n+1)\times(n+1)$ -Matrizen. Betrachten Sie die Veronese Abbildung

$$V: \mathbb{R}^{n+1} \to \operatorname{Sym}_{n+1}(\mathbb{R}), \qquad V(x)_{ij} = x_i x_j$$

mit Werten in dem Raum der symmetrischen Matrizen. Schreiben Sie die Matrix V(x) für n=2 explizit. Zeigen Sie, dass die Abbildung $V\circ\iota:S^n\to\mathrm{Sym}_{n+1}(\mathbb{R})$ glatt ist und dass sie eine glatte Abbildung $F:\mathbb{RP}^n\to\mathrm{Sym}_{n+1}(\mathbb{R})$ mit der Eigenschaft $F\circ\pi'=V\circ\iota$ induziert, wobei $\pi':S^n\to\mathbb{RP}^n$ die Quotientenabbildung ist. Zeigen Sie, dass F eine Einbettung ist.

Beweisidee. Für n=2 haben wir

$$V(x_1, x_2, x_3) = \begin{pmatrix} x_1^2 & x_1 x_2 & x_1 x_3 \\ x_1 x_2 & x_2^2 & x_2 x_3 \\ x_1 x_3 & x_2 x_3 & x_3^2 \end{pmatrix}$$

Die Abbildung V ist glatt, da alle Koordinaten glatt sind. Da $\iota: S^n \to \mathbb{R}^{n+1}$ auch glatt ist, ist $V \circ \iota$ glatt. Wenn wir $\mathrm{Mat}_{\mathbb{R}}(n+1,n+1)$ mit $\mathbb{R}^{n+1} \otimes \mathbb{R}^{n+1}$ identifizieren, lässt sich V schreiben als

$$V(x) = x \otimes x, \qquad \forall x \in \mathbb{R}^{n+1}.$$

Dann

$$V(-x) = (-x) \otimes (-x) = x \otimes x = V(x).$$

Daher existiert eine Abbildung $F: \mathbb{RP}^n \to \operatorname{Sym}_{n+1}(\mathbb{R})$ mit $F \circ \pi' = V \circ \iota$. Diese Abbildung ist glatt nach der charakteristischen Eigenschaft von surjektiven Submersionen, da π' ein lokaler Diffeomorphismus ist. Wir zeigen außerdem, dass F injektiv ist. Es seien $[x]', [y]' \in \mathbb{RP}^n$ mit F([x]') = F([y]'). Es sei angenommen $x_i \neq 0$. Wir betrachten $e^i \in (\mathbb{R}^{n+1})^*$, das Funktional, das die i-te Koordinate wiedergibt. Dann können wir die lineare Abbildung $e^i \otimes \operatorname{id}_{\mathbb{R}^{n+1}} : \mathbb{R}^{n+1} \otimes \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ betrachten. Es gilt

$$x_i \cdot x = e^i \otimes \mathrm{id}_{\mathbb{R}^{n+1}}(x \otimes x) = e^i \otimes \mathrm{id}_{\mathbb{R}^{n+1}}(y \otimes y) = y_i \cdot y$$

Daher ist $x = \pm y$ und [x]' = [y]'. Da \mathbb{RP}^n kompakt ist und $\mathrm{Sym}_{n+1}(\mathbb{R})$ hausdorffsch, sehen wir, dass F ein Homöomorphismus auf dem Bild ist. Es bleibt nur zu zeigen, dass $\mathrm{d}F$ injektiv ist. Da π' ein lokaler Diffeomorphism ist, reicht es zu zeigen, dass $\mathrm{d}W := \mathrm{d}(v \circ \iota)$ injektiv ist. Wir berechnen mittels der Leibniz-Regel

$$d_x W \cdot v = v \otimes x + x \otimes v, \qquad \forall x \in S^n, \forall v \in \mathbb{R}^{n+1}, \langle x, v \rangle = 0.$$

Es sei nun angenommen, dass $d_x W \cdot v = 0$. Wenn $v \neq 0$ gibt es $\phi \in (\mathbb{R}^{n+1})^*$ mit $\phi(x) \neq 0$ und $\phi(v) \neq 0$. In unserem Fall kann man $\phi = \langle x + v, \cdot \rangle$ nehmen, da $\phi(x) = |x|^2$ und $\phi(v) = |v|^2$. Dann

$$0 = \phi \otimes \phi(\mathbf{d}_x W \cdot v) = \phi \otimes \phi(v \otimes x + x \otimes v) = 2\phi(x)\phi(v).$$

Das ist ein Widerspruch, wenn $v \neq 0$. Also $d_x W$ ist injektiv.

Aufgabe 14. Zeigen Sie, dass

$$F: \mathbb{R}^3 \to \mathbb{R}^4, \qquad F(x) = (x_1^2 - x_2^2, x_1 x_2, x_2 x_3, x_3 x_1)$$

eine Einbettung von \mathbb{RP}^2 in \mathbb{R}^4 induziert.

Beweisidee. Wir nehmen \mathbb{RP}^2 als Quotient von S^2 . Wenn $x \in \mathbb{R}^3$ dann F(x) = F(-x) denn die Koordinaten von F homogene Polynome zweiten Grades sind. Also gibt es eine Abbildung $\bar{F}: \mathbb{RP}^2 \to \mathbb{R}^4$, sodass $\bar{F} \circ \pi' = F \circ \iota$, wobei $\pi': S^2 \to \mathbb{RP}^2$ und $\iota: S^2 \to \mathbb{R}^3$ die kanonische Abbildungen sind. Da S^2 eine Untermannigfaltigkeit ist und π' ein lokaler Diffeomorphism ist, folgt aus der charakteristischen Eigenschaft der surjektiven Submersionen, dass \bar{F} glatt ist. Wir wollen nun zeigen, dass \bar{F} und $d_{[x]}$, \bar{F} injektiv sind. Somit ist \bar{F} ein Homöomorphismus auf dem Bild und eine Immersion, also eine Einbettung. Für die Injektivität müssen wir zeigen, dass F(x) = F(y) die Gleichung $x = \pm y$ impliziert für alle $x, y \in S^2$. Wir betrachten zwei Fälle. Für $x_1 \neq 0$ haben wir aus der zweiten und vierten Koordinate von F(x) = F(y), dass

$$x_2 = \lambda y_2, \quad x_3 = \lambda y_3, \quad \lambda := y_1/x_1.$$

Es bleibt zu zeigen, dass $x_1 = \lambda y_1$, nämlich $\lambda^2 = 1$. Das folgt aus der ersten Koordinate von F(x) = F(y)

$$x_1^2 - x_2^2 = y_1^2 - y_2^2 \quad \iff \quad x_1^2 - y_1^2 = x_2^2 - y_2^2 \quad \iff \quad 1 - \lambda^2 = \frac{y_2^2}{x_1^2} (\lambda^2 - 1).$$

Die letzte Gleichung ist äquivalent zu $\lambda^2=1$, wie gewünscht. Die Injektivität von $\mathrm{d}_{[x]'}\bar{F}$ ist äquivalent zu der Injektivität von $\mathrm{d}_x(F\circ\iota)$ für alle $x\in S^2$. Es sei dann $v\in\mathbb{R}^3$ mit $\langle v,x\rangle=0$. Wir berechnen

$$d_x(F \circ \iota) \cdot v = (2x_1v_1 - 2x_2v_2, x_1v_2 + x_2v_1, x_2v_3 + x_3v_2, x_3v_1 + x_1v_3).$$

Es sei angenommen $d_x(F \circ \iota) \cdot v = 0$. Wir haben zwei Fälle. Wenn $(x_1, x_2) \neq (0, 0)$ gilt, bekommen wir aus der ersten zwei Koordinaten

$$\langle (-x_2, x_1), (v_2, v_1) \rangle = 0, \qquad \langle (x_1, x_2), (v_2, v_1) \rangle = 0.$$

Da (x_1, x_2) und $(-x_2, x_1)$ eine Basis des \mathbb{R}^2 bilden, finden wir, dass $v_1 = 0$ und $v_2 = 0$. Aus der letzten zwei Koordinaten lesen wir $x_2v_3 = 0$ und $x_1v_3 = 0$ ab. Also muss auch $v_3 = 0$ sein. Wir kommen nun zu dem Fall $x_1 = 0$ und $x_2 = 0$. Aus der letzten zwei Koordinaten lesen wir $x_3v_1 = 0$ und $x_3v_2 = 0$ also $v_1 = 0$ und $v_2 = 0$. Da $\langle x, v \rangle = 0$ folgt es, dass v = 0.

Aufgabe 15. Es seien M und N glatte Mannigfaltigkeiten und M zusammenhängend. Es sei $F: M \to N$ eine glatte Abbildung. Zeigen Sie, dass F konstant genau dann ist, wenn $d_pF = 0$ für alle $p \in M$.

Beweisidee. Es sei $p \in M$ beliebig. Da F glatt ist, existiert eine Karte (U_N, φ_N) um F(p) und eine Karte (U_M, φ_M) um p, sodass $F(U_M) \subset U_N$ und $G := \varphi_N \circ F\varphi_M^{-1}$ ist glatt. Es sei nun angenommen, dass F konstant ist. Dann ist G auch konstant. Daher ist die Jacobi-Matrix $d_{\varphi_M(p)}G^{(1)}$ von G gleich null. Wir wissen aber, dass diese Matrix die Darstellung vom Differential $d_pF: T_pM \to T_{F(p)}N$ in einer Basis ist. Also ist auch d_pF gleich null. Es sei umgekehrt angenommen, dass $d_pF=0$ für alle $p \in M$. Für alle $q \in N$ betrachten wir das Urbild $M_q:=F^{-1}(q)$. Wir zeigen nun, dass M_q offen ist. Da

$$M = \bigsqcup_{q \in N} M_q$$

gilt, liefert der Zusammenhang von M, dass es ein $q_0 \in N$ gibt, für das $M = M_{q_0}$, wie gewünscht. Es sei nun $p \in M_q$. Wir nehmen die obigen Karten und Abbildung G. Wir wissen, dass $\mathrm{d}G^{(1)} = 0$, da $\mathrm{d}G^{(1)} = 0$ die Matrixdarstellung von $\mathrm{d}F = 0$ ist. Nach Analysis I-II-II wissen wir, dass G konstant auf einem offenen Ball $B_r(\varphi_M(p))$. Daher ist F auf der offenen Menge $\varphi_M^{-1}(B_r(\varphi_M(p)))$ konstant und $\varphi_M^{-1}(B_r(\varphi_M(p))) \subset M_q$.

Aufgabe 16. Es sei $n \geq 2$ und $H_n \subset GL_n(\mathbb{R})$ die Menge aller Matrizen $A = (A_j^i)$, wobei

•
$$A_i^i = 1, \quad \forall i = 1, \dots, n,$$
 • $A_j^i = 0, \quad \forall i, j = 1, \dots, n, i > j.$

Zeigen Sie, dass H_n eine Untergruppe von $GL_n(\mathbb{R})$ ist. Zeigen Sie weiter, dass H_n ein affiner Unterraum von $\operatorname{Mat}_{\mathbb{R}}(n,n)$ ist und daher eine abgeschlossene

Untermannigfaltigkeit von $GL_n(\mathbb{R})$ mit globaler Karte $\varphi_n: H_n \to \mathbb{R}^{\frac{n(n-1)}{2}}$. Schließen Sie daraus, dass H_n eine Lie-Gruppe ist.

Schreiben Sie die Gruppenverknüpfung und die Inversion explizit in der Karte φ_n für n=2 und n=3. Zeigen Sie, dass H_n genau dann als Gruppe isomorph zu $\mathbb{R}^{\frac{n(n-1)}{2}}$ mit der Standardaddition ist, wenn n=2.

Beweisidee. Die Elementen $A \in H_n$ sind Matrizen, die auf der Diagonale alle 1 haben und unten alle 0. Insbesondere gilt det A = 1.

Es seien $A, B \in H_n$. Dann für i beliebig und für i > j gilt

$$\begin{split} (AB)_i^i &= \sum_{k=1}^n A_k^i B_i^k = A_i^i B_i^i + \sum_{k < i}^n A_k^i B_i^k + \sum_{k > i}^n A_k^i B_i^k \\ &= 1 \cdot 1 + \sum_{k < i}^n 0 \cdot B_i^k + \sum_{k > i}^n A_k^i \cdot 0 \\ &= 1, \end{split}$$

und $(AB)^i_j = \sum_{k=1}^n A^i_k B^k_j = 0$ denn k > j wenn $i \le k$. Wir möchten nun zeigen, dass $A^{-1} \in H_n$ wenn $A \in H_n$. Der Eintrag $(A^{-1})^i_i$ ist die Determinante einer Matrix in H_{n-1} . Also ist 1. Der Eintrag $(A^{-1})^i_j$ mit i > j ist die Determinante einer Matrix B mit $B^k_\ell = 0$ für $k > \ell$ und $B^k_k = 1$ für k < j und $k \ge i$ und $B^k_k = 0$ für $k \le i$. Also ist 0. Wir haben somit gezeigt, dass H_n eine Gruppe ist.

Es seien $e_i^j: \operatorname{Mat}_{\mathbb{R}}(n,n) \to \mathbb{R}$ die Koordinatenfunktionen, die die Einträge der Matrix geben. Die Menge H_n ist durch die lineare Gleichung $e_i^j(A) = 0$ für i > j und $e_i^i(A) = 1$ gegeben. Daher ist H_n ein affiner Unterraum. Insbesondere ist H_n abgeschlossen und $(\operatorname{Mat}_{\mathbb{R}}(n,n),\operatorname{id})$ ist eine Karte, die zu H_n angepasst ist. Daher ist H_n eine Untermannigfaltigkeit von $\operatorname{Mat}_{\mathbb{R}}(n,n)$ mit globaler Karte $\varphi_n := \varphi_n : H_n \to \mathbb{R}^{\frac{n(n-1)}{2}}$, deren Koordinaten $\varphi_n(A)_j^i = e_i^j(A)$ mit i < j sind. Die Umkehrabbildung $\psi_n : \mathbb{R}^{\frac{n(n-1)}{2}} \to H_n$ ist gegeben durch $\psi_n(x) = A$, wobei $A_i^i = 1, A_j^i = 0$ für i > j und $A_j^i = x_j^i$ für j > i.

Da $G\check{L}_n(\mathbb{R})$ eine offene Teilmenge von $\operatorname{Mat}_{\mathbb{R}}(n,n)$ ist, ist H_n auch eine abgeschlossene Untermannigfaltigkeit von $GL_n(\mathbb{R})$. Nach der charakteristischen Eigenschaft von injektiven Immersionen, sind die Gruppenverknüpfung und die Inversion in H_n glatt, da H_n eine Untergruppe der Lie-Gruppe $GL_n(\mathbb{R})$ ist. Also ist H_n auch eine Lie-Gruppe. Für n=2 haben wir

$$\psi_2(s) \cdot \psi_2(t) = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & s+t \\ 0 & 1 \end{pmatrix} = \psi_2(s+t).$$

Also in Koordinaten ist die Gruppenverknüpfung die Standardaddition auf \mathbb{R} . Für n=3 haben wir

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & x' & z' \\ 0 & 1 & y' \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x+x' & z+z'+xy' \\ 0 & 1 & y+y' \\ 0 & 0 & 1 \end{pmatrix}.$$

Also ist die Gruppenverküpfung auf \mathbb{R}^3 gegeben als

$$(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + xy'),$$

die nicht kommutativ ist:

$$(1,0,0) \cdot (0,1,0) = (1,1,1), \qquad (0,1,0) \cdot (1,0,0) = (1,1,0).$$

Für $n \geq 3$ haben wir einen injektiven Gruppenhomomorphismus $F: H_3 \to H_n$ gegeben in Koordinaten durch

$$F(x, y, z)_{j}^{i} = \begin{cases} x & \text{falls } (i, j) = (1, n - 1) \\ y & \text{falls } (i, j) = (n - 1, n) \\ z & \text{falls } (i, j) = (1, n) \\ 0 & \text{ansonsten} \end{cases}$$

Daher ist H_n nicht kommutativ für $n \geq 3$.

Aufgabe 17. Es sei $n \ge 1$ und

$$M_a = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} \mid |x|^2 - t^2 = a\} \subset \mathbb{R}^{n+1}, \quad \forall a \in \mathbb{R}.$$

Für welche Werte von a ist M_a eine Untermannigfaltigkeit von \mathbb{R}^{n+1} ? Von welcher Dimension? Wann ist M_a diffeomorph zu zwei Kopien von \mathbb{R}^n , wann zu $S^{n-1} \times \mathbb{R} \cong \mathbb{R}^n \setminus \{0\}$? Zeigen Sie: jedes $A \in O(n,1)$ liefert einen Diffeomorphismus $M_a \to M_a$.

Beweisidee. Es sei $f: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$, $f(x,t) = |x|^2 - t^2$. Wir berechnen $d_{(x,t)}f = (2x, -2t)$ und wir haben

$$d_{(x,t)} f \cdot (x, -t) = 2(|x|^2 + t^2).$$

Also f ist eine Submersion bei allen Punkten $x \neq 0$. Da $0 \in M_0$, folgt es, dass für $a \neq 0$ die Menge M_a eine Untermannigfaltigkeit der Kodimension 1 in $\mathbb{R}^n \times \mathbb{R}$ ist. Wir zeigen nun, dass M_0 keine Mannigfaltigkeit ist. Wir wissen, dass $M_0 \setminus \{0\}$ eine Mannigfaltigkeit der Kodimension 1 ist. Für n = 1 hat $M_0 \setminus \{0\}$ vier Zusammenhangskomponenten, die die möglichen Vorzeichen von x und t entsprechen. Für $n \geq 1$ ist $M_0 \setminus \{0\}$ nicht zusammenhängend (eigentlich hat genau zwei Zusammenhangskomponenten aber wir brauchen das nicht hier), die das Vorzeichen von t entsprechen. Es sei nun angenommen, dass M_0 eine Mannigfaltigkeit (der Kodimension 1) ist. Für n = 1 hat 0 eine Umgebung U in M_0 , die homöomorph zu einem offenen Intervall ist. Daher hat $U \setminus \{0\}$ zwei Komponenten. Allerdings sollte $U \setminus \{0\} = U \cap (M_0 \setminus \{0\})$ zumindest vier Komponenten haben. Für n > 1 hat 0 eine Umgebung U in M_0 , die homöomorph zu einem offenen Ball der Dimension n ist. Daher ist $U \setminus \{0\}$ zusammenhängend. Allerdings sollte $U \setminus \{0\} = U \cap (M_0 \setminus \{0\})$ zusammenhängend. Allerdings sollte $U \setminus \{0\} = U \cap (M_0 \setminus \{0\})$ zusammenhängend.

Es sei nun a > 0. Wir definieren

$$F: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n \times \mathbb{R}, \qquad F(y,t) = \left(\sqrt{a+t^2}y, t\right).$$

Diese Abbildung ist ein Diffeomorphism mit Umkehrabbildung

$$G: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n \times \mathbb{R}, \qquad G(x,t) = \left(\frac{1}{\sqrt{a+t^2}}x, t\right).$$

Es gilt $F(S^{n-1} \times \mathbb{R}) = M_a$. Nach der charakteristischen Eigenschaft von injektiven Immersionen ist die Einschränkung $F\Big|_{S^{n-1} \times \mathbb{R}}^{M_a}$ ein Diffeomorphismus denn $S^{n-1} \times \mathbb{R}$ und M_a sind Untermannigfaltigkeiten von $\mathbb{R}^n \times \mathbb{R}$.

Es sei nun a<0. Wir haben $M_a=M_a^+\sqcup M_a^-$, wobei $M_a^\pm:=M_a\cap\{(x,t)\in\mathbb{R}^n\times\mathbb{R}\mid \pm t>0\}$. Es sei $\pi:\mathbb{R}^n\times\mathbb{R}^n$ die Projektion $\pi(x,t)=x$ und

$$F^{\pm}: \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}, \qquad F^{\pm}(x) = (x, \pm \sqrt{|x|^2 - a}).$$

Dann sind π und F^{\pm} glatt, $\pi \circ F^{\pm} = \mathrm{id}_{\mathbb{R}^n}$ und $F^{\pm}(\mathbb{R}^n) = M_a^{\pm}$. Nach der charakteristischen Eigenschaft von injektiven Immersionen ist $\pi|_{M_a^{\pm}}$ ein Diffeomorphism mit Umkehrabbildung $F^{\pm}|_{M_a^{\pm}}$. Jede $A \in O(n,1)$ liefert einen Diffeomorphismus $\mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n \times \mathbb{R}$, $p \mapsto A \cdot p$. Wir behaupten, dass für alle $p \in \mathbb{R}^n \times \mathbb{R}$:

$$p \in M_a \iff A \cdot p \in M_a$$
.

Denn

$$f(A \cdot p) = (A \cdot p)^T \cdot I^{n,1} \cdot (A \cdot p) = p^T \cdot A^T \cdot I^{n,1} \cdot A \cdot p = p^T \cdot I^{n,1} \cdot p = f(p).$$

Daher ist $(p\mapsto A\cdot p)|_{M_a}^{M_a}$ ein Diffeomorphismus nach der charakteristischen Eigenschaft der injektiven Immersionen.

Aufgabe 18. Finden Sie eine Lie-Untergruppe von U(n), die diffeomorph zu \mathbb{T}^n ist. Finden Sie eine Lie-Untergruppe von SO(m), die diffeomorph zu $\mathbb{T}^{k(m)}$ ist, wobei k(m) = m/2 falls m gerade ist und k(m) = (m-1)/2 falls m ungerade ist

Beweisidee. Es sei $S^1 \subset \mathbb{C}$. Dann ist S^1 eine Lie-Gruppe mit der von \mathbb{C} induzierten Multiplikation. Wir haben den Diffeomorphismus

$$\mathbb{T}^1 \to S^1, \qquad [\theta] \mapsto e^{2\pi i \theta},$$

der auch ein Isomorphismus von Lie-Gruppen ist. Nun haben wir eine Einbettung

$$F: \mathbb{T}^n \to \operatorname{Mat}_{\mathbb{C}}(n, n), \qquad F([\theta_1, \dots, \theta_n])_k^j = \begin{cases} e^{2\pi i \theta_j} & \text{falls } j = k, \\ 0 & \text{falls } j \neq k. \end{cases}$$

Es gilt $F(\mathbb{T}^n) \subset U(n)$, da $\overline{F([\theta])}^T = F([\theta])$. Es folgt es, dass $F|^{U(n)} : \mathbb{T}^n \to U(n)$ ein Einbettung ist. Außerdem ist $F([\theta]+[\eta]) = F([\theta]) \cdot F([\eta])$ für alle $[\theta], [\eta] \in \mathbb{T}^n$. Das heißt, dass $F|^{U(n)}(\mathbb{T}^n)$ eine Lie-Untergruppe von U(n) ist, die Isomorph zu \mathbb{T}^n ist.

Die Aussage über die spezielle orthogonale Gruppe folgt, wenn wir zeigen, dass U(n) eine Lie-Untergruppe von SO(2n) ist. Aus der Vorlesung wissen wir, dass U(n) eine Lie-Untergruppe von $GL_n(\mathbb{C})$. Es bleibt daher zu zeigen, dass $GL_n(\mathbb{C})$ eine Lie-Untergruppe von $GL_{2n}(\mathbb{R})$ ist und, dass $U(n) \subset SO(2n)$. Die erste Aussage folgt aus der Tatsache, dass $\mathrm{Mat}_{\mathbb{C}}(n,n)$ ein Untervektorraum von $\mathrm{Mat}_{\mathbb{R}}(2n,2n)$ ist, wenn wir \mathbb{C}^n mit \mathbb{R}^{2n} identifizieren. Daher ist $GL_n(\mathbb{C}) = GL_{2n}(\mathbb{R}) \cap \mathrm{Mat}_{\mathbb{C}}(n,n)$ eine Untermannigfaltigkeit von $GL_{2n}(\mathbb{R})$. Für die zweite Aussage setzen wir $\langle \cdot, \cdot \rangle_{\mathbb{C}}$ für das euklidische Produkt und $\langle \cdot, \cdot \rangle_{\mathbb{C}}$ für das hermitische Produkt. Es gilt

$$\Re \langle w, z \rangle_{\mathbb{C}} = \Re \Big(\sum_{j=1}^n w_j \cdot \bar{z}_j \Big) = \sum_{j=1}^n \Re w_j \Re z_j + \Im w_j \Im z_j = \langle w, z \rangle_{\mathbb{R}}.$$

Daher für alle $A \in U(n)$ ist

$$\langle A \cdot w, A \cdot z \rangle_{\mathbb{R}} = \Re \langle A \cdot w, A \cdot z \rangle_{\mathbb{C}} = \Re \langle w, z \rangle_{\mathbb{C}} = \langle w, z \rangle_{\mathbb{R}}.$$

Das heißt $A \in O(n)$. Außerdem gilt

$$z^j \wedge \bar{z}^j = -2i\Re z^j \wedge \Im z^j$$

Deswegen ist

$$z^{1} \wedge \bar{z}^{1} \wedge \ldots \wedge z^{n} \wedge \bar{z}^{n} = (-2i)^{n} \Re z^{1} \wedge \Im z^{1} \wedge \ldots \Re z^{n} \wedge \Im z^{n}.$$

Nun A wirkt auf der linken Seite durch Multiplikation durch $\det_{\mathbb{C}} A \times \overline{\det_{\mathbb{C}} A} = |\det_{\mathbb{C}}|^2$ und auf der rechten Seite durch Multiplikation durch $\det_{\mathbb{R}} A$. Es folgt, dass $\det_{\mathbb{R}} A = |\det_{\mathbb{C}} A|^2 > 0$. Also $A \in SO(n)$.

Aufgabe 19. Es sei $\pi: E \to M$ ein Vektorbündel. Es sei U eine offene Menge von M. Zeigen Sie: es gibt eine Trivialisierung $\chi: E_U \to U \times \mathbb{R}^k$ über U genau dann, wenn π einen glatten Rahmen über U besitzt. Schließen Sie daraus: π ist ein triviales Vektorbündel genau dann, wenn ein Rahmen von π über M existiert.

Beweisidee. Es sei $\chi: E_U \to U \times \mathbb{R}^k$ eine Trivialisierung. Es sei e_i der *i*-te Koordinatenvektor im \mathbb{R}^k . Wir setzen

$$\sigma_i: U \to E_U, \qquad \sigma_i(p) = \chi^{-1}(p, e_i), \qquad \forall p \in U.$$

Die Abbildung σ_i ist glatt als Verkettung der glatten Abbildungen $U \to U \times \mathbb{R}^k$, $p \mapsto (p, e_i)$ und $\chi^{-1}: U \times \mathbb{R}^k \to E_U$. Es gilt $\pi \circ \sigma_i(p) = \pi \circ \chi^{-1}(p, e_i) = \pi_1(p, e_i) = p$, wobei $\pi_1: U \times \mathbb{R}^k \to U$ die Projektion auf dem ersten Faktor ist. Die Abbildung σ_i ist daher ein glatter Schnitt von E über U. Für alle $p \in U$ sind $(\sigma_i(p))$ eine Basis von E_p , da $(\pi_2 \circ \chi(\sigma_i(p)) = e_i)$ eine Basis von \mathbb{R}^k sind (hier ist $\pi_2: U \times \mathbb{R}^k \to \mathbb{R}^k$ die Projektion)

Es sei umgekehrt angenommen, dass $\sigma_1, \ldots, \sigma_k$ glatte Schnitte von E_U , sodass $\sigma_1(p), \ldots, \sigma_k(p)$ eine Basis von E_p für alle $p \in U$ bilden. Wir betrachten die Abbildung

$$\psi: U \times \mathbb{R}^k \to E_U, \qquad \psi(p, v) = v^1 \sigma_1(p) + \ldots + v^k \sigma_k(p).$$

Wir haben, dass $\pi \circ \psi = \pi_1$. Da die $\sigma_i(p)$ eine Basis von E_p bilden, ist diese Abbildung bijektiv. Wir wollen nun zeigen, dass ψ ein Diffeomorphismus. Es würde daraus folgen, dass ψ^{-1} eine Trivialisierung ist. Wir nehmen dafür $p \in U$ und eine Trivialisierung $\chi: E_{U'} \to U' \times \mathbb{R}^k$ um eine offene Menge U' mit $p \in U' \subset U$. Dann gilt $\psi(U' \times \mathbb{R}^k) = E_{U'}$ und wir berechnen

$$\chi \circ \psi(p, v) = \left(p, \sum_{i=1}^{k} v^{i} \pi_{2} \circ \chi(\sigma_{i}(p))\right) = \left(p, A(p) \cdot v\right),$$

wobei $\pi_2: U' \times \mathbb{R}^k \to \mathbb{R}^k$ die kanonische Projektion ist und $A(p) \in \mathfrak{gl}_k(\mathbb{R})$ die Matrix ist, deren Spalten die Vektoren $\pi_2 \circ \chi(\sigma_i(p))$ sind. Da die Schnitte σ_i glatt sind, folgt es, dass $\pi_2 \circ \chi \circ \sigma_i$ auch glatt ist, und daher auch $A: U' \to \mathfrak{gl}_k(\mathbb{R})$. Es folgt, dass $\chi \circ \psi$ und daher ψ glatt ist.

Wir bemerken nun, dass $A \in GL_k(\mathbb{R})$, da die $\pi_2 \circ \chi(\sigma_i(p))$ eine Basis von \mathbb{R}^k bilden. Folglich ist $A^{-1}: U' \to GL_k(\mathbb{R})$ glatt. Daher

$$(p,v) \mapsto \psi^{-1} \circ \chi^{-1}(p,v) = (\chi \circ \psi)^{-1}(p,v) = (p,A^{-1}(p) \cdot v)$$

ist auch glatt. Es folgt, dass ψ^{-1} glatt ist und daher ψ ist ein Diffeomorphismus.

П