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1 Introduction

In the previous two talks we introduced the one-dimensional Aubry-Mather theory and dis-
cussed some results. We now want to see how we can apply this to monotone twist maps.

Definition 1. A monotone twist map is a C1-diffeomorphism

φ : R× (a, b)→ R× (a, b)

(x0, y0) 7→ (x1, y1)

that satisfies φ(x0 + 1, y0) = φ(x0, y0) + (1, 0) and the following properties:

(i) φ∗dx1 ∧ dy1 = dx0 ∧ dy0 (φ preserves the area and orientation),

(ii) φ preserves the boundaries in the sense that y1 → a, b as y0 → a, b. If a, b are finite, we
additionally require φ to extend to the boundaries by rotations by some fixed angles ω±,

(iii) the monotone twist condition ∂x1
∂y0

> 0.

Example 1. Integrable twist maps
The most simple examples are maps of the form φ(x, y) = (x+ f(y), y) where f

′
> 0.

Example 2. Billiard
Consider a strictly convex domain Ω in the Euclidean plane with smooth boundary ∂Ω. Imag-
ine a mass point moving freely inside Ω and starting at some point on the boundary with some
initial direction pointing into Ω. Each time the mass point hits the boundary, its velocity vec-
tor is reflected on the boundary’s tangent such that the reflection angle equals the incident
angle (See Figure 1). By this description we get a map that can be lifted to some map:

φ : R× (0, π)→ R× (0, π), (l, ϕ) 7→ φ(l, ϕ).

This doesn’t preserve the volume form yet, so we still need to do a slight transformation
(l, ψ) = (l,− cos(ϕ)).
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Figure 1: Billiard

2 The discrete Lagrangian for monotone twist maps

Because ∂x1
∂y0

> 0, vertical lines {x0}× (a, b) ⊂ R× (a, b) are mapped to graphs over the x-axis
(See figure 2). Thus, for each pair x0, x1 we can find y0, y1 such that φ(x0, y0) = (x1, y1).
This means that any orbit (xi, yi)i∈Z of φ is already fully determined by the sequence (xi)i∈Z.
We now want to find a discrete Lagrangian that we can apply to such sequences. Because φ
is symplectic, we know that there exists, at least locally, a generating function H such that

y0 = −∂1H(x0, x1)

y1 = ∂2H(x0, x1).
(1)

If we can extend H to R2 then ∂1H(xi, xi+1) + ∂2H(xi−1, xi) = 0 for a sequence (xi)i∈Z if
and only if it corresponds to an orbit (xi, yi)i∈Z of φ. This means that if we take H to be
our discrete Lagrangian, we can interpret our results on minimizing sequences of the discrete
action functional αH =

∑
i∈ZH(xi, xi+1) on statements about certain types of orbits of φ.

We now construct a function H : R2 → R that satisfies (1) and the discrete Lagrangian
properties.

2.1 Geometrical construction of the discrete Lagrangian

The geometrical definition was taken from ([3], section 9.3). Consider the vertical lines {x0}×
(a, b) as well as {x1} × (a, b) and its image and preimage under φ respectively. Without loss
of generality, we assume a = 0 and define H(x0, x1) to be the area of Ax0,x1 , which is the
domain enclosed by the image of {x0}× (a, b), the vertical line {x1}× (a, b) and the horizontal
R × {a} or in other words, the area under the graph of x1 7→ y1(x0, y0(x0, x1)) (See figure
2). It’s now clear that ∂H

∂x1
= y1. Because φ preserves the area, H also describes the area of

Bx0,x1 which is the area under y0, but on the right side of {x0} × (a, b), implying ∂H
∂x0

= −y0.
At first, H is only defined on the strip {(x0, x1) ∈ R2|x0 + w− < x1 < x0 + w+}, but we can
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Figure 2: Geometrical definition of H

extend φ by

(x, y) 7→ (x+ ω− + (y − a), y) for y ≤ a and

(x, y) 7→ (x+ ω+ + (y − b), y) for y ≥ b.

to get an extension of H that satisfies the discrete Lagrangian properties:

(i) H(x0 + 1, x1 + 1) = H(x0, x1) follows from the periodicity of φ.

(ii) H(x0, x1 + ξ) → ∞ as ξ → ∞ can be seen from the geometrical definition after H has
been extended to R2.

(iii) For any x0 < x̄0, x1 < x̄1, we have H(x0, x1) +H(x̄0, x̄1) < H(x0, x̄1) +H(x̄0, x1). This
follows from figure 2 after adding another vertical on each side, the corresponding image
and preimage and comparing the enclosed areas.

(iv) If x0, x1, x2 and x̄0, x̄1, x̄2 are minimal segments and x1 = x̄1, then the segments cross.
Assume they don’t cross. From figure 2 we can easily see that ∂1H and ∂2H are
monotone, but then ∂1H(x0, x1) + ∂2H(x−1, x0) and ∂1H(x̄0, x̄1) + ∂2H( ¯x−1, x̄0) can’t
be both zero.

2.2 Some properties

The monotone twist condition implies ∂2∂1H < 0. Indeed, remember that y0 is determined
by x0, x1, so we can write x1 = x1(x0, y0(x0, x1)), and have 1 = ∂x1

∂x1
= ∂x1

∂y0
∂y0
∂x1

, indicating that
∂y0
∂x1

> 0 because ∂x1
∂y0

> 0. Thus ∂2∂1H = −∂1y1 < 0. Recall that Mρ = {x ∈ M|ρ(x) = ρ}
with ρ being the rotation number ρ := limi→∞

xi

i . We have previously seen that if ρ is

irrational, then there exists f ∈ G̃+, where

G̃+ := {f : R→ R homeomorphism |f(x+ 1) = f(x) + 1 ∀x ∈ R},

such that ρ(f) = ρ and f(xi) = xi+1 ∀x ∈ Mρ,∀i ∈ Z. For monotone twist maps, f will be
bi-Lipschitz. The proof was taken from ([2], 3.19).
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Lemma 1. If ρ is irrational and ∂2∂1H < 0, then there exists a bi-Lipschitz function f ∈ G̃+

such that ρ(f) = ρ and ∀x ∈Mρ,∀i ∈ Z : f(xi) = xi+1.

Proof. We only need to show that the f ∈ G̃+ we got from previous talks is bi-Lipschitz. Fix
some x̄ ∈ Mρ, then |x1 − x0| ≤ |x̄1 − x̄0| + 1 for all x ∈ Mρ, because Mρ is totally ordered
by theorem 2 of talk 6. Similarly |x−1 − x0| ≤ |x̄0 − x̄0|+ 1, thus |x1 − x0| and |x−1 − x0| are
uniformly bounded for all x ∈ Mρ. Now let x and x̄ be arbitrary elements in Mρ. Because
H(x0 + 1, x1 + 1) = H(x0, x1) and the T-invariance of Mρ, it suffices to consider the case
0 ≤ x0 ≤ x̄0 < 2. Then x−1 < x̄−1, x1 < x̄1 and x−1, x0, x1, x̄−1, x̄0, x̄1 are all contained in
some compact interval I. Therefore, there exist δ > 0, L > 0 such that ∂2∂1H < −δ < 0 on
I × I and ∂1H, ∂2H are Lipschitz on I × I with Lipschitz constant L. Then we can estimate:

δ(x̄1 − x1) ≤ δ(x̄−1 − x−1) + δ(x̄1 − x1)
mean value theorem ≤ ∂2H(x̄−1, x0)− ∂2H(x−1, x0) + ∂1H(x0, x̄1)− ∂1H(x0, x1)

x and x̄ are stationary = ∂2H(x̄−1, x0)− ∂2H(x̄−1, x̄0) + ∂1H(x0, x̄1)− ∂1H(x̄0, x̄1)

≤ 2L(x̄0 − x0)

Hence, x̄1 − x1 ≤ 2L
δ (x̄0 − x0) and similarly x̄−1 − x−1 ≤ 2L

δ (x̄0 − x0).

3 Mather sets

This section was mainly taken from ([2], section 7). For ρ = q
p reduced, we get so called

Birkhoff orbits of minimum type. If x ∈ Mq,p = M ∩ Pq,p, then the corresponding orbit
(xi, yi)i∈Z satisfies (xi+q, yi+q) = (xi + p, yi).
For ρ ∈ R \Q we get Mather sets.

Theorem 1. For any irrational ρ ∈ (ω−, ω+), there exists a φ-invariant set Mρ ⊂ R× (a, b)
with the following properties.

(i) Mρ is the graph of a Lipschitz function ψρ : Aρ → (a, b) defined on a closed set Aρ ⊂ R.

(ii) φ has rotation number ρ on Mρ, i.e. there exists h ∈ G̃+ with ρ(h) = ρ such that
h(Aρ) = Aρ and φ(ξ, ψρ(ξ)) = (h(ξ), ψρ(h(ξ))) for all ξ ∈ Aρ.

(iii) The set M rec
ρ of recurrent points of Mρ projects either to a Cantor set in R or to all of

R. In the latter case Mρ is a φ-invariant Lipschitz curve.

Proof. Define

Mρ := {(ξ, y) ∈ R× (a, b)| there exists x ∈Mρ such that ξ = x0, y = −∂1H(x0, x1)}.

Mρ is φ-invariant. By Theorem 2 of talk 6Mρ is totally ordered. Hence, Mρ has a one-to-one

projections onto a closed set Aρ ⊂ R. Lemma 1 gives us a Lipschitz h ∈ G̃+ such that
h(x0) = x1 for all x ∈ Mρ. Thus ψρ(ξ) := −∂1H(ξ, h(ξ)) for ξ ∈ Aρ is Lipschitz as well.
This proves (i) and (ii). In last talk we already discussed that Rech = p0(Mrec

ρ ) = px(Mρ) is
either R or a Cantor set in R.

In the following, when we talk about φ-invariant circles, then we mean the lifts of embed-
ded, homotopically non-trivial, curves in S1 × (a, b) to R× (a, b) that are φ-invariant.
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Remark 1. Consider a perturbed integrable twist map ϕ(x, y) = (x+f(y) + ε(x, y), y). KAM
theorem tells us that if the perturbation ε is small enough, then most ϕ-invariant circles with
sufficient irrational rotation number survive. Theorem 1 tells us that the destroyed circles
become Cantor sets.

Theorem 2. If C is a φ-invariant circle and if φ|C has rotation number ρ, then C ⊆Mρ and
C = Mρ if ρ is irrational.

Proof. According to Birkhoff’s Theorem (See [1]), C is the graph of a Lipschitz function
ψ : R→ (a, b). Hence, φ(ξ, ψ(ξ)) = (h(ξ), ψ(h(ξ))) for some h ∈ G̃+ with ρ(h) = ρ.
Define S := {x ∈ RZ| xi+1 = φx(xi, ψ(xi)) = h(xi) ∀i ∈ Z}. S is a closed, totally ordered set of
stationary trajectories with regard to H. We now need to show that S ⊆M. Let (xi, . . . , xj)
be a segment of some x ∈ S. Let (x̄i, . . . , x̄j) be a minimal segment with x̄i = xi and x̄j = xj .
We can find a maximal x∗ ∈ S such that (x∗i , . . . , x

∗
j ) ≤ (x̄i, . . . , x̄j). For every ξ ∈ R we can

find a x∗∗ ∈ S such that x∗∗0 = ξ, so, if (x∗i , . . . , x
∗
j ) < (x̄i, . . . , x̄j), then (x∗i , . . . , x

∗
j ) can’t

be maximal. This implies x∗k = x̄k for some k, i ≤ k ≤ j. The argument for the discrete
lagrangian property (iv) holds for stationary segments as well. Thus, x∗i = x̄i or x∗j = x̄j
and because S is totally ordered we get x∗ = x and therefore, (xi, . . . , xj) ≤ (x̄i, . . . , x̄j).
Similarly (xi, . . . , xj) ≥ (x̄i, . . . , x̄j) and we get (xi, . . . , xj) = (x̄i, . . . , x̄j). If ρ is irrational,
then S =Mρ because Mρ is totally ordered.

We still need to show that the orbits corresponding to trajectories inMρ lie in the domain
of φ.

Lemma 2. Suppose x ∈Mρ and ρ ∈ (ω−, ω+) then the orbit (xi, yi)i∈Z, yi = −∂1H(xi, xi+1),
is contained in R× (a, b).

Proof. By Theorem 2, for s = a, b, we have {x ∈ RZ| xi+1 = fs(xi) ∀i ∈ Z} ⊂ Mρ Let
x ∈ Mρ and ω− < ρ < ω+. Define

¯
x ∈ Mω− , x̄ ∈ Mω+ by

¯
xi = f ia(x0), x̄i = f ib(x0). From

talk 5 lemma 2 we know that two elements from M cross at most once. Since
¯
x, x, x̄ then

cross only in 0 and ω− < ρ < ω+ we have
¯
x1 < x1 < x̄1. Hence,

a = −∂1H(
¯
x0,

¯
x1) < −∂1H(x0, x1) < −∂1H(x̄0, x̄1) = b.

Since y0 = −∂1M(x0, x1), we get a < y0 < b
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