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Introduction

The Hamilton-Jacobi method is a powerful way to find orbits
minimizing the action. Two flavours:
I time dependent

• good for time-fixed (Tonelli) minimizers,
• we use it to prove Weierstrass’ theorem;

I time independent

• good for time-free minimizers,
• we use it for the pendulum.

Notation:

I L : TM → R Tonelli Lagrangian on manifold M,

I H : T ∗M → R associated Tonelli Hamiltonian.



Time-dependent subsolutions of HJ-equation

Definition (L-gradient)

Let S : M × [a, b]→ R be C 1 and write St := S(·, t) ∀ t ∈ [a, b].
The L-gradient of S is the time-dependent vector field on M

gradLSt(x) = Leg−1(dxSt), ∀ (x , t) ∈ M × [a, b].

Definition (Time-dependent subsolutions)

A C 1-function S : M × [a, b]→ R is a time-dependent subsolution
of the Hamilton-Jacobi equation if

H(x ,dxSt) + ∂tSt(x) ≤ 0, ∀ (x , t) ∈ M × [a, b].

We denote by NS ⊂ M × [a, b] the set of pairs (x , t), where
equality holds. We say that S is a solution if NS = M × [a, b].



Time-dependent subsolutions yield Tonelli minimizers

Theorem (A)

Let S : M × [a, b]→ R be a subsolution and x0, x1 ∈ M. Then,

AL(γ) ≥ Sb(x1)− Sa(x0), ∀ γ ∈ C ac
x0,x1([a, b],M)

with equality iff γ is a flow line of gradLSt with (t, γ(t)) ∈ NS , ∀ t.
Each such flow line is a Tonelli minimizer.



Proof.

For all (x , v) ∈ TM we have by the Fenchel inequality

L(x , v) + H(x ,dxSt) ≥ dxSt · v

with equality if and only if v = gradLSt(x). Therefore,

L(x , v) ≥ dxSt · v − H(x , dxSt) ≥ dxSt · v + ∂tSt(x)

= d(x ,t)S · (v + ∂t)

with equality if and only if v = gradLSt(x) and (x , t) ∈ NS . Thus,

AL(γ) ≥
∫ b

a
d(γ(t),t)S · (γ̇(t) + ∂t)dt =

∫ b

a

d

dt

[
S(γ(t), t)

]
dt

= S(γ(b), b)− S(γ(a), a)

= Sb(x1)− Sa(x0).



Reminder of Weierstrass Theorem

Theorem (Part I)

Let L be bounded from below. For all K̃ ⊂ TM compact there
exists δ > 0 such that for all (x , v) ∈ K̃ the EL-solution

γ(x ,v) : [0, δ]→ M, (γ(x ,v)(0), γ̇(x ,v)(0)) = (x , v)

is well-defined and the unique minimizer in C ac
x ,γ(x,v)(δ)

([0, δ],M).

Theorem (Part II)

Let L be bounded from below. For all K ⊂ M compact there exist
C , δ > 0 such that for all x ∈ K and y ∈ M with d(x , y) ≤ Cδ
there is a (unique) EL-Solution

γ : [0, δ]→ M, γ(0) = x , γ(δ) = y

which is the unique minimizer in C ac
x ,y ([0, δ],M).



The proof

Part I ⇒ Part II.

By the implicit function theorem there exist C , δ > 0 such that for
all x ∈ K

K̃x := {v ∈ TxM | |v |x ≤ 2C} → M, v 7→ γ(x ,v)(δ)

is an embedding whose image contains B̄Cδ(x). To deduce Part II,
apply Part I to K̃ = ∪x∈K K̃x .

To prove Part I we use local existence of HJ-solutions.

Lemma

Let K̃ be a compact set of TM. There are δ, ε > 0 such that for all
(x , v) ∈ K̃ there exists a time-dependent HJ-solution of class C 2

S : Bε(x)× [0, δ]→ M with v = gradLS0(x).



The proof

Proof of Part I.

Given K̃ ⊂ TM let δ and ε as in the lemma:

∀(x , v) ∈ K̃ , ∃S : Bε(x)× [0, δ]→ R,C 2 solution, v = gradLS0(x).

Theorem (A) ⇒ flow line γ(x ,v) : [0, δ]→ Bε(x) of gradLSt
through x is unique minimizer in C ac

x ,y ([0, δ],Bε(x)), y := γ(x ,v)(δ).
γ ∈ C 2 ⇒ γ is EL-solution with initial condition (x , v).
Left to show: γ(x ,v) unique minimizer in C ac

x ,y ([0, δ],M).
Take γ in this set with γ([0, δ1)) ⊂ Bε(x), γ(δ1) ∈ ∂Bε(x) for a δ1.
WLOG: L ≥ 0 as L bounded from below. Then:

AL(γ)
L ≥ 0

≥
∫ δ1

0
L(γ, γ̇)dt

L Tonelli

≥ d(γ(0), γ(δ1)) + Bδ1 ≥ ε− |B|δ
δ small

≥ ε/2,

Then: K̃ compact ⇒ L((γ(x ,v), γ̇(x ,v))) ≤ C for some C . Thus,

AL(γ(x ,v)) ≤ Cδ
δ small

< ε/2.



k-subsolutions of the HJ-equation

Definition (k-subsolutions)

Let k ∈ R. A C 1-function u : M → R is a k-subsolution of the
Hamilton-Jacobi equation if

H(x ,dxu) ≤ k , ∀ x ∈ M.

We denote by Mu ⊂ M the set of points x , where equality holds.
We say that u is a k-solution if Mu = M.

Remark
I If u is a k-subsolution, S(x , t) = u(x)− kt is a

time-dependent subsolution on M × R.

I If M is closed and u1 is a k1-solution, u2 is a k2 solution, then
k1 = k2 (∃x ∈ M,dxu1 = dxu2).

I If L(x , v) = 1
2 |v |

2
x then the geodesic radial coordinate

r : Bε(x)→ (0,∞) is a 1
2 -solution: by Gauss Lemma |dr | = 1.



k-subsolutions yield time-free minimizers for L + k

Theorem (B)

Let u : M → R be a k-subsolution and x0, x1 ∈ M. Then,

AL+k(γ) ≥ u(x1)− u(x0), ∀ γ ∈
⋃
T>0

C ac
x0,x1([0,T ],M)

with equality iff γ is a flow line of gradLu contained in Mu. Each
such flow line is a time-free minimizer.
Hence, a flow line γ : R→ M of gradLu with γ(R) ⊂ Mu is a
global time-free minimizer for L + k .

Proof.

Same ideas as in Theorem (A).



k-subsolutions with other cohomology classes

Let θ be a closed 1-form on M with c := [θ] ∈ H1(M;R).
Set Lθ := L + θ. New Hamiltonian is Hθ(x , p) = H(x , p − θx).
A function uθ : M → R is a k-subsolution for Lθ iff

∀ x ∈ M, H(x , dxuθ − θx) ≤ k .

Finding uθ is equivalent to finding θ̃ closed 1-form on M with

∀ x ∈ M, H(x , θ̃x) ≤ k , [θ̃] = −c .

Moreover,

Muθ = {x ∈ M | H(x , θ̃x) = k}, gradLθuθ = Leg−1L (θ̃).



Application to the pendulum

Consider the pendulum L : TS1 → R, L(x , v) = 1
2 |v |

2 + (1− cos x).
∀ k ≥ 0, ∃ θ±k two closed forms with c±k := [θ±k ] ∈ H1(S1;R) and

H(x ,−(θ±k )x) = k , ∀ x ∈ S1.

Leg−1(−θ±k )-flowlines are global time-free minimizers of Lθ±k
+ k.

For all r ∈ [0, 1) the closed forms rθ±0 have [rθ±0 ] = rc±0 and satisfy

H(x ,−(rθ±0 )x) ≤ 0, ∀ x ∈ S1

with equality only at x = 0, where Leg−1(−rθ±0 ) = 0. Hence, the
constant orbit at x = 0 is a global time-free minimizer for Lrθ±0

.

It will follow from the general theory that these are the only global
time-free minimizers for the pendulum (try direct proof).


