
TALK 4A: THE HAMILTON-JACOBI METHOD

1. Time-dependent subsolutions of the HJ-equation

The Hamilton-Jacobi method is very useful to find action minimizing orbits. It comes into
two flavours that are adapted to the case of Tonelli minimizers and of time-free minimizers. In
the following discussion, L : TM → R will be a Tonelli Lagrangian on a manifold M endowed
with a complete metric and H : T ∗M → R will be the associated Hamiltonian.

Definition 1.1. Let [a, b] be an interval and S : M × [a, b]→ R be a C1-function. We write
St := S(·, t) for every t ∈ [a, b]. The L-gradient of S is the time-dependent vector field on M
given by

gradLSt(x) = Leg−1(dxSt), ∀ (x, t) ∈M × [a, b].

Definition 1.2. Let [a, b] be an interval. A C1-function S : M×[a, b]→ R is a time-dependent
subsolution of the Hamilton-Jacobi equation if

H(x,dxSt) + ∂tSt(x) ≤ 0, ∀ (x, t) ∈M × [a, b].

We denote by NS ⊂M×[a, b] the set of pairs (x, t), where equality holds. We call S a solution
if NS = M × [a, b].

Theorem 1.3. Let S be a time-dependent subsolution in the interval [a, b]. Let x0 and x1 be
two points in M . Then, for all γ ∈ Cacx0,x1([a, b],M), there holds

AL(γ) ≥ Sb(x1)− Sa(x0)
with equality if and only if γ is a flow line of the L-gradient of S such that (t, γ(t)) ∈ NS for
all t ∈ [a, b]. Therefore, each such flow line would be a Tonelli minimizer in Cacx0,x1([a, b],M).

Proof. By the Fenchel inequality we have

L(x, v) +H(x, dxSt) ≥ dxSt · v
with equality if and only if v = gradLSt(x). Thus,

L(x, v) ≥ dxSt · v −H(x, dxSt) ≥ dxSt · v + ∂tSt(x) = d(x,t)S · (v + ∂t)

with equality if and only if v = gradLSt(x) and (x, t) ∈MS . Therefore,

AL(γ) ≥
∫ b

a
d(γ(t),t)S · (γ̇(t), 1)dt =

∫ b

a

d

dt

[
S(γ(t), t)

]
dt = Sb(x1)− Sa(x0). �

We want to use Theorem 1.3 to prove the first version of Weierstrass Theorem. The second
version follows actually from the first one and an implicit function theorem. Indeed, what
one needs is that if K ⊂ M is compact and C > 0 is a constant, then there exists a δ0 such
that for all δ < δ0 and all x ∈ K the map

{v ∈ TxM | |v|x < C} →M, v 7→ γx,v(δ)

is an embedding containing the ball B̄Cδ(x) = {y ∈M | d(x, y) ≤ Cδ}.
To use Theorem 1.3 we need the existence of local solutions of the HJ-equation with arbi-

trary initial condition.
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Theorem 1.4. Let K̃ be a compact set of TM . There are δ, ε > 0 such that for all (x, v) ∈ K̃
there exists a time-dependent HJ-solution S : Bε(x) × [0, δ] → M such that v = gradLS0(x).

�

The proof of Theorem 1.4 is a nice exercise in symplectic geometry and can be found in
Section 2.8 of Fathi’s book.

Theorem 1.5 (Weierstrass (Part 1)). Let L be bounded from below on TM and let K̃ be
a compact set in TM . There exists δ > 0 such that the EL-solution γ(x,v) : [0, δ] → M is
well-defined and the unique Tonelli minimizer in Cacx,γ(x,v)(δ)

([0, δ],M).

Proof of Weierstrass (Part 1). By Theorem 1.4 we can find δ and ε like in the statement.

For (x, v) ∈ K̃ consider now the HJ-solution S on Bε(x) × [0, δ] with v = gradLS0(x) given
above. By Theorem 1.3 the flow line of gradLSt passing through x is a Tonelli minimizer
among curves contained in Bε(x) and therefore coincides with γ(x,v) : [0, δ] → Bε(x) (up to
shrinking δ so that γ(x,v)([0, δ]) ⊂ Bε(x)). It is left to show that γ(x,v) minimizes the action
also among curves γ : [0, δ] → M with γ(0) = x and γ(δ) = γ(x,v)(δ) whose image is not
contained in Bε(x). Up to adding a constant we can suppose L ≥ 0 since L is bounded
from below. Therefore, if δ1 is the first time in [0, δ] with γ(δ1) ∈ ∂Bε(x), we have for some
constant B

AL(γ) ≥
∫ δ1

0
L(γ, γ̇)dt ≥ d(γ(0), γ(δ1)) +Bδ1 ≥ ε− |B|δ ≥ ε/2,

where the second inequality follows by the superlinearity of L and the third by taking a smaller
δ. However, since K̃ is compact, L is bounded from above by a constant C on (γ(x,v), γ̇(x,v)).
Thus, AL(γ(x,v)) ≤ Cδ < ε/2 where the second inequality follows by taking a smaller δ. �

Remark 1.6. As you can see, the question of existence of global (meaning defined on M×R)
(sub)solutions to the HJ-equation is very important and represent an interesting problem in
the theory of PDE. In general, only (sub)solutions in some weak sense will exist and there
will be no classical solutions as the one considered here.

2. k-subsolutions of the HJ-equation

Definition 2.1. Let k be a real number. A C1-function u : M → R is a k-subsolution of the
Hamilton-Jacobi equation if

H(x, dxu) ≤ k, ∀x ∈M.

We denote by Mu ⊂ M the set of points x, where equality holds. We call u a solution if
Mu = M .

Remark 2.2. If u is a k-subsolution, then S(x, t) = u(x) − kt for all (x, t) ∈ M × R is a
time-dependent subsolution.

Remark 2.3. If M is closed, there exists at most one value of k for which solutions might
exist. Indeed, if u1 is a k1-solution and u2 is a k2-solution, there exists a point x ∈ M for
which dx(u2 − u1) = 0 since M is closed. Then k1 = H(x, dxu1) = H(x, dxu2) = k2. We
will see later that weak solutions always exists and the corresponding unique energy value k
is exactly the Mañé critical value c(L).
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Remark 2.4. If L(x, v) = 1
2 |v|

2
x for some Riemannian metrics then the radial coordinate

r : Bε(x) → (0,∞) in normal coordinates is a 1
2 -solution of the HJ-equation since by Gauss

Lemma |dr| = 1. Indeed, this function was essential to prove that geodesics locally minimize
the length which is the Riemannian analogue of Weierstrass theorem.

A k-subsolution u will give us (global) time-free minimizers under certain conditions be-
tween Mu and gradLu. The proof of the result is analogous to the one of Theorem 1.3 and is
left to the reader.

Theorem 2.5. Let u be a k-subsolution. For all γ : [0, T ]→M there holds

AL+k(γ) ≥ u(γ(T ))− u(γ(0))

with equality if and only if γ is a flow line of gradLu contained in the set Mu. Therefore,
each such flow line would be a time-free minimizer for L+ k in⋃

T ′>0

Cacγ(0),γ(T )([0, T
′],M).

If the flow is define on the whole R, then γ is a global time-free minimizer. �

Remark 2.6. Let us consider Lθ := L + θ where θ is a closed 1-form. Then, the new
Hamiltonian is Hθ(x, p) = H(x, p− θx). Therefore, a k-subsolution uθ for Lθ satisfies

H(x,dxu− θx) ≤ k, ∀x ∈M.

Finding such a function u is equivalent to finding a closed 1-form θ̃ on M satisfying

H(x, θ̃x) ≤ k, ∀x ∈M, [θ̃] = −[θ] ∈ H1(M ;R).

Moreover, Mu = {x ∈ M | H(x, θ̃x)} and gradLθu = Leg−1L (θ̃), so we can read off Mu and

gradLθu directly from θ̃.

Thanks to the above remark, we understand better what we did in the case of the pendulum.
There we showed that for k ≥ 0

H(x,−θ±k ) = k, ∀x ∈ S1

so that we obtain that the orbits with energy k are time-free minimizer for L+θ±k +k. Actually

θ±0 is not C2 but only continuous. However, we can write θ±0 = η±0 − du± for some smooth
1-form η±0 and some C1-function u±0 . Then, u±0 is a HJ-solution for L+ η±0 . For r ∈ [0, 1] we
have

H(x,−rθ±0 ) ≤ 0

and the equality holds exactly at x = 0. Therefore, the unstable equilibrium x = 0 is the
only time-free minimizer for L + rθ±0 . As before, one can substitute the forms rθ±0 with the
smooth rη±0 for r ∈ (0, 1). Actually, in this case one can also smoothen rθ±0 to some 1-form
βr with same cohomology class as rθ±0 and satisfying H(x,−βr) ≤ 0 with equality exactly at
x = 0.
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