
Weierstrass Theorem and global minimizers

Camillo Tissot

May 4, 2020

Camillo Tissot Weierstrass Theorem and global minimizers May 4, 2020 1 / 32



Overview

We are going to take a look at:
1 Regularity of minimizers
2 Global minimizers and (global) time-free minimizers
3 Energy level e0(L)
4 Example of pendulum.
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Recap

We will consider a Tonelli Lagrangian L : TM → R on (Riemannian)
manifold M (Projection π : TM → M) with Action functional
AL(γ) =

∫ b
a L(γ(t), γ̇(t))dt as before. We denote the Euler-Lagrange flow

by φt .
A curve γ : [a, b] → Rn is absolutely continuous (Cac), if ∀ε > 0 : ∃δ > 0
s.t. for each family (ai , bi)i∈N of disjoint intervals in [a, b] with∑

i∈N(bi − ai) < δ, we have
∑

i∈N d(γ(bi), γ(ai)) < ε. An important
property is, that the derivative of an absolutely continuous curve exists
almost everywhere on [a, b]. Also we will write Cx ,y ([a, b],M) for the
curves connecting x and y , i.e. γ(a) = x , γ(b) = y .
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Weierstrass Theorem

We consider L Tonelli-Lagrangian on manifold M with inf(x ,v)∈TM L(x , v)
finite.

Theorem (Part 1)
Then for each compact subset K ⊂ TM there exists a constant δ0 > 0
such that

for (x , v) ∈ K the local flow φt(x , v) is defined for |t| ≤ δ0.
for each (x , v) ∈ K and δ ∈ (0, δ0], the extremal curve

γ(x ,v ,δ) : [0, δ] → M, t 7→ πφt(x , v)

is such that for any absolutely continuous curve γ1 : [0, δ] → M, with
γ1(0) = x , γ1(δ) = πφδ(x , v), γ1 6= γ(x ,v ,δ) it holds
AL(γ1) > AL(γ(x ,v ,δ)).
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Weierstrass Theorem

We consider L Tonelli-Lagrangian on manifold M with inf(x ,v)∈TM L(x , v)
finite.

Theorem (Part 2)
Let d be a distance on M given by a Riemannian metric. If K ⊂ M is
compact and C > 0 a constant, then there exists a constant δ0 > 0 such
that, if x ∈ K , y ∈ M and δ ∈ (0, δ0] satisfy d(x , y) ≤ Cδ, then there
exists an extremal curve γ(x ,y ,δ) : [0, δ] → M with
γ(x ,y ,δ)(0) = x , γ(x ,y ,δ)(δ) = y and for every absolutely continuous curve
γ : [0, δ] → M which satisfies γ(0) = x , γ(δ) = y , γ 6= γ(x ,y ,δ) it holds that
AL(γ) > AL(γ(x ,y ,δ)).
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Regularity of Tonelli minimizers

Let L ∈ C r (TM) be a Tonelli Lagrangian on a Riemannian manifold M.

Theorem
For an absolutely continuous curve γ : [a, b] → M that minimizes the
action AL(γ) ≤ AL(γ1) in the space of absolutely continuous curves
γ1 : [a, b] → M with γ1(a) = γ(a), γ1(b) = γ(b). Then the curve γ is an
extremal curve and therefore C r .

Keep in mind, that extremizers are C2 by definition.
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Proof of regularity

Proof.
Sufficient to consider M = U ⊂ Rn an open subset of euclidean space.
First step is to show:
If γ̇(t0) exists, then γ coincides with an extremal curve in neighborhood of
t0.
To show this we choose C > ‖γ̇(t0)‖ and by the existence of γ̇(t0) we find
η > 0 such that 0 < |t − t0| ≤ η ⇒ ‖γ(t)− γ(t0)‖ < C |t − t0|. By the
uniform superlinearity of L on compact subsets we know that the
Lagrangian is bounded from below on a compact neighborhood of
γ([a, b]).
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Proof of regularity

Proof.
Now C is a constant and γ([a, b]) is a compact subset, so we can use
Weierstrass theorem to find δ0 > 0 (Wlog. δ0 ≤ η) and an extremal curve
γ1 : [0, δ0] → M, s 7→ γ(s + t0 − δ0

2 ), which minimizes the action among
curves connecting γ(t0 − δ0

2 ), γ(t0 +
δ0
2 ). Indeed,∥∥∥∥γ(t0 −

δ0
2 )− γ(t0 +

δ0
2 )

∥∥∥∥ ≤ C |t0 −
δ0
2 − (t0 +

δ0
2 )| = Cδ0

That means, the restriction of γ to [t0 − δ0
2 , t0 +

δ0
2 ] is extremal as it is the

unique minimizer on this subinterval. For t0 ∈ {a, b} don’t substract/add
the fraction.
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Proof of regularity

Proof.
The second step is to show that the open subset O ⊂ [a, b] formed by the
points, such that γ coincides with an extremal curve in their neighborhood
is O = [a, b].
We notice that for every connected component I of O the restriction to Ī
solves the Euler-Lagrange equation.
Now assume O 6= [a, b] and consider the case I = (α, β) (other possible
cases: [a, β), (α, b]). α, β /∈ O, [α, β] compact and γ|[α,β] extremal (C2),
hence γ̇ is bounded. Apply Weierstrass to compact subset γ([a, b]) and
constant C > ‖γ̇‖∞,(α,β) to find δ0 > 0. There holds:

‖γ(β)− γ(β − δ0
2 )‖ ≤

∫ β

β− δ0
2

‖γ̇(s)‖ds < C δ0
2
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Proof of regularity

Proof.
Hence for ε > 0 sufficiently small we get that
‖γ(β + ε)− γ(β − δ0

2 )‖ < C(ε+ δ0
2 ) < Cδ0. Therefore γ coincides with

the Weierstrass minimizer on [β − δ0
2 , β + ε] 3 β. Hence β ∈ O which is a

contradiction. Therefore γ is an extremal curve and with result from talk 1
in C r .
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Global Tonelli minimizers

Problem
Are there curves γ : R → M such that γ|[a,b] is Tonelli minimizer in
Cac
γ(a),γ(b)([a, b],M) for all a < b. What is their energy?

This leads us to the definition of global minimizers.

Definition (global minimizer)
An absolutely continuous curve γ : R → M is a global (Tonelli) minimizer
for L if, for any given a < b ∈ R

AL(γ|[a,b]) = min
σ∈Cac

γ(a),γ(b)([a,b],M)
AL(σ).
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Time-free minimizer

There is also a related Problem which will help us answer the problem
above:

Problem
Find time-free minimizers of L connecting two points x and y. This means
to minimize the action on the set

⋃
T>0 Cac

x ,y ([0,T ],M).

The time-free minimizers for L and for L + k might be different:
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Example L vs. L + k

Example
Let γ : [0,T ] → M, σ : [0,T ′] → M with
T ′ < T , γ(0) = σ(0), γ(T ) = σ(T ′), such that∫ T

0 L(γ(t), γ̇(t))dt = AL(γ) < AL(σ) =
∫ T ′

0 L(σ(t), σ̇(t))dt. Now we
choose k > 1

T−T ′ (AL(σ)− AL(γ)). Hence

AL+k(γ) = AL(γ) + kT = AL(γ) + k(T − T ′) + kT ′ >

> AL(γ) + (AL(σ)− AL(γ)) + kT ′ = AL(σ) + kT ′ = AL+k(σ).

This inverts the inequality.
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Energy of time-free minimizers

There is a relation between k and the Energy E = ∂L
∂v · v − L for time-free

minimizers of L + k.

Theorem
Time-free minimizers of L + k connecting x and y have energy E = k.

Proof.
Consider A(λ) := AL+k(γλ) where γλ(t) := γ(λt) and calculate the first
derivative of A with the help of a clever substitution λt = s.

A(λ) =

∫ T
λ

0
[L(γ(λt), λγ̇(λt)) + k]dt =

∫ T

0
[L(γ(s), λγ̇(s)) + k] 1

λ
ds
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Energy of time-free minimizers

Proof.
Hence A′(1) =

∫ T
0 [∂L

∂v (γ(s), γ̇(s)) · γ̇(s)− L(γ(s), γ̇(s))− k]ds =∫ T
0 [E(γ(t), γ̇(t))− k]dt. Now γ is a time-free minimizer and therefore a

solution of the Euler-Lagrange equation and hence the Energy is constant,
which implies, that 0 = A′(1) = T (E − k).

This means, that finding a time-free minimizer yields orbits connecting two
points with given energy.
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Global time-free minimizers

Definition (Global time-free minimizers)
An absolutely continuous curve γ : R → M is a global time-free minimizer
for L if, for any a, b ∈ R, a < b

AL(γ|[a,b]) = min
σ∈

[⋃
a′<b′ Cac

γ(a),γ(b)([a′,b′],M)
] AL(σ)
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Relation time-free minimizers, global minimizers

Obviously a global time-free minimizer for L + k is a global minimizer (for
L). In general the converse is not true, but for a special k it holds and the
time-free minimizers does exist.

Theorem
There exists c(L) ∈ R called Mañé critical value of L such that

for all k > c(L), x , y ∈ M there exists a time-free minimizer of L + k
connecting x , y
there exists global time-free minimizers of L + c(L)
global Tonelli minimizers are global time-free minimizers of L + c(L)
(in particular, all global time-free minimizers have energy c(L)).
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Global Tonelli minimizers

With this result we get the answers to our problem:
there exists a global minimizer. We have to find c(L) and the
corresponding global time-free minimizer, which then is a global
minimizer.
the energy of a global Tonelli minimizer is E = c(L).

We will take a closer look to the energy:

Camillo Tissot Weierstrass Theorem and global minimizers May 4, 2020 18 / 32



Energy level

Recall that the energy, given by
E : TM → R,E(x , v) = H ◦ Leg(x , v) = ∂L

∂v (x , v) · v − L(x , v), is constant
for solutions of the Euler-Lagrange equation:

d
dt E =

d
dt

∂L
∂v · γ̇ +

∂L
∂v · γ̈ − ∂L

∂x · γ̇ − ∂L
∂v · γ̈ = 0

We want to look at the maximal critical value of the Energy. So let us
calculate the critical point of E for a fixed x ∈ M.
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Energy level

Therefore define fx : TxM ∼= Rn → R, fx(v) := E(x , v) and look at
∇fx(v) = ∂2L

∂v2 (x , v) · v + ∂L
∂v (x , v)−

∂L
∂v (x , v) =

∂2L
∂v2 (x , v) · v . The

convexity of L implies, that v · ∂2L
∂v2 · v > 0 for v 6= 0. This yields v = 0 as

the only possible critical point. In fact this is a minimum for fx because of
the same inequality from above:

U(x) := min
v∈Tx M

E(x , v) = E(x , 0) = −L(x , 0).

Now we can define the energy level

e0(L) := max
x∈M

U(x) = −min
x∈M

L(x , 0).
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Energy level

We notice, that x is a critical point of U if and only if the constant curve
x(t) = x solves the Euler-Lagrange equation. The idea behind is:
d
dt

∂L
∂v (x , 0) = 0 for x constant.

Now we can define the level sets

Sk := {(x , v) ∈ TM|E(x , v) = k}

and claim the following properties:
Sk = ∅ for k < minx∈M U(x).
π(Sk) 6= M for minx∈M U(x) ≤ k < e0(L).
π(Sk) = M for k ≥ e0(L).
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Energy level

Let k < minx∈M U(x) and assume there exists (x , v) ∈ TM such that
E(x , v) = k. Hence E(x , v) = k < minx∈M minv∈Tx M E(x , v), what yields
a contradiction. This means there is no motion with that energy.
Now let minx∈M U(x) ≤ k < e0(L) and assume that for all x ∈ M exists a
vx ∈ TxM such that E(x , vx) = k. This implies

e0(L) = max
x∈M

min
v∈Tx M

E(x , v) ≤ max
x∈M

E(x , vx) = k.

Therefore π|Sk can’t be surjective. Physical this means, there are regions,
which can’t be accessed with this energy.
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Energy level

For the last case k ≥ e0(L) we first notice, that for a Tonelli Lagrangian L
the energy E is also Tonelli. Therefore in particular the energy is
superlinear. Hence

lim
|v |→∞

E(x , v) = +∞.

If a x ∈ M wouldn’t be in π(Sk), by continuity of E this would imply that
E(x , v) < k for all v ∈ TxM. This is a contradiction to the limit above.
Therefore π|Sk is surjective.
This means e0(L) = min{k ∈ R |π : Sk → M is surjective} and hence
there are solutions passing through every point.
Now we will find time-free minimizers of the simple pendulum:
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Simple Pendulum
Example
We consider pendulum with L : TS1 → R, L(x , v) = 1

2v2 − U(x), where
S1 = R/2πZ and U(x) := −(1 − cos(x)). This obviously defines a Tonelli
Lagrangian. First we want to draw the trajectories in coordinates (x , v)
and then interpret the results with the energy level e0(L). The trajectories
are exactly the level sets for the energy
E(x , v) = ∂L

∂v (x , v)v − L(x , v) = v2 − 1
2v2 + U(x) = 1

2v2 + U(x). Hence
for E = k this means, that v1/2(x) = ±

√
2(k − U(x)).

x g

U = 0
x1

x2
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Simple Pendulum
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Simple Pendulum

Example
For the energy level we have e0(L) = maxx∈S1 E(x , 0) = maxx∈S1 U(x) = 0
at x = 0 and minx∈S1 U(x) = −2 at x = π. Comparing this to our plot we
have that for energy E < −2 we have no motion and therefore no level
sets in the plot. For the energy between −2 and 0 we have a motion, but
can’t reach every point. Of course especially not x = 0. If the energy is
E ≥ 0 we have enough energy to reach every point (even x = 0). In the
plot we can see this aswell in the region outside E = 0.
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Simple Pendulum

Example
Now define θ±k := ±

√
2(k − U(x))dx . We observe, that we get all

cohomology classes in H1(S1;R) with the 1-forms rθ±0 , θ±k , with r ∈ [0, 1]
and k ≥ 0. Therefore if we find the global minimizers for
L + rθ±0 , L + θ±k + k we have all possible global time-free minimizers. Note
that we have to add k to the second type of Lagrangian, which
corresponds to the Energy (Theorem from above).
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Simple Pendulum
Example
For a fixed x ∈ M and r ∈ [0, 1] we have

(L + rθ±0 )(x , v) = 1
2v2 − U(x)± r

√
2(−U(x))dx(x , v) =

=
1
2v2 ± r

√
2(−U(x))v − U(x) =

=
1
2

(
v ± r

√
−2U(x)

)2
− (1 − r2)U(x).

If we want to calculate the zero points, we observe:
for U(x) = 0 there is only one solution v = 0
for U(x) 6= 0, r < 1 there is no solution
for U(x) 6= 0, r = 1 there is only one solution v = ∓

√
−2U(x).

Where the ∓ gives the sign corresponding to θ. In summary we can say
L + rθ±0 ≥ 0 for all r ∈ [0, 1]
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Simple Pendulum

Example
Analogous

(L + θ±k )(x , v) + k =
1
2v2 ±

√
2(k − U(x))v − U(x) + k =

=
1
2

(
v ±

√
2(k − U(x))

)2

There is only one zero point: v = ∓
√

2(k − U(x)). Thus L + θ±k + k ≥ 0
for all k ≥ 0.
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Simple Pendulum

Example
So in summary we know L + rθ±0 , L + θ±k + k ≥ 0 which implies, that
AL+rθ±0

,AL+θ±k +k ≥ 0. The equality is achieved for the trajectories
v(x) = ∓

√
−2U(x), v(x) = ∓

√
2(k − U(x)) and the constant trajectory

v(x) = 0, x = 0 depending on the Lagrangian we are looking at. Hence
these describe the global minimizers for the Energy k and therefore are all
possible time-free minimizers. As we can see the time-free minimizers
depend on adding a 1-form to L.
Nice side note:
Leg : TS1 → T ∗S1, Leg(x , v) = (x , ∂L

∂v (x , v)) = (x , v) ∈ T ∗
x S1 is trivial.
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Summary
Let us summarize (not formal), we have:

Weierstrass Theorem I: The local flow exists and defines a unique
minimizer.
Weierstrass Theorem II: For any two points close enough together
there exists a unique minimizer connecting those points.
If L ∈ C r a minimizer is in C r as well.
Time-free minimizers depend on adding a constant to L.
There exists a time-free minimizer between any two points for L + k
for k big enough.
Global minimizers correspond to global time-free minimizers by
adding a special constant to L.
Global time-free minimizers have a fixed Energy.
We can find e0(L) = min{k|π(Sk) = M}.
Adding a closed one-form to L does change stuff.
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