1 Energy

In this section the setting is as in the previous talk, i.e. M is a connected, closed
manifold and L : TM — R Tonelli.

Definition 1.1. Let L be a Tonelli Lagrangian on M. Recall the definition of
the Hamiltonian

H:T*M — R, H(z,p) := p(Leg~*(z,p)) — L(Leg™*(z,p)).
The energy associated to L is the function E : TM — R, E := H o Leg, i.e.

E(z,v) = g—i(x,v)(v) — L(z,v)

Remark 1.2. If L is Tonelli then its associated energy E is Tonelli as well.

Ezample 1.3. We consider the electromagnetic Lagrangians
1
L(z,v) = igx(v,v) +0,(v) —U(x)

where g is a Riemannian metric on M, § € QY(M) a 1-form and U € C*°(M)
a function on M. To compute the energy and Hamiltonian we first have to
compute the conjugate momentum. For that we choose local coordinates on M
and get:
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Therefore the energy is given by:

1 1
B(z,v) = g(v,v) +0(v) = (592(v,v) + 02(v) = U(2)) = 592(v, ) + U(2).
This is just the sum of the kinetic and potential energy, the 1-form 6 doesn’t
affect the energy. Recall that the norm |-|, on 7 M induces a norm also denoted
by | - |» on T M, which is given by |p|, = SUD e, M, ], <1 [p(w)|. Now setting
(z,p) = Leg(x,v) we compute the Hamiltonian:

1 1 1
H(z,p) = B(z,0) = 5P + U(x) = 5lga(0, )2 + Ul@) = 3lp = 0af2 + U(a)
Ezample 1.4. Let L be a Tonelli Lagrangian, ¢ a 1-form and U a function on
M. Let L(z,v) := L(x,v) + 0,(v) — U(x). For the associated energies F, E we
get:

E(z,v) = E(z,v) + U(x).



2 Tonelli Theorem and action minimizers

In this section let a,b € R with a < b and M a connected manifold.

Theorem 2.1. Let M be a connected, closed manifold, L a Tonelli Lagrangian.
For each xg,x1 € M and homotopy class h of curves connecting xo and x1, there
is a~y, € C2 . ([a,b], M;h) minimizing the action in the set C2 . ([a,b], M;h).

Z0o,T1 Z0,T1

Firstly we will consider absolutely continuous curves to get better compact-
ness properties. Secondly, the idea is to lift the problem of finding action min-
imizers in a fixed homotopy class to the universal cover M of M. On M the
task will then be to find action minimizers. So far we have only considered M
compact. But we don’t know whether the universal cover M is compact as well.
We therefore have to consider the non-compact case as well.

Definition 2.2. Let d be the metric on M obtained by some fized Riemannian
metric on M.

A curve v : [a,b] — M s called absolutely continuous if for each € > 0 there
exists § > 0 such that for any familiy of disjoint intervals (Ja;, bi[)i=1,...,
included in [a,b] and satisfying >, (b; —a;) < &, we have Y, d(v(b;),v(a;)) < €.
We denote by C*([a.b], M) the set of absolutely continuous curves v : [a,b] —
M.

Remark 2.3. For a curve 7 : [a,b] — M the property of being absolutely con-
tinuous is independent of the chosen Riemannian metric, see [5, Proposition

3.18).

Remark 2.4. Let v : [a,b] — M be an absolutely continuous curve. Then:
4 € Ty M exists almost everywhere on [a,b] and

b
d(y(a), (b)) < / ()l sy s

Remark 2.5. For a Tonelli Lagrangian L and an absolutely continuous curve
v : [a,b] — M the action A (y) is well defined and in R U {oo}.(Since L is
bounded below)

Definition 2.6. Let L be Tonelli, xg,x1 € M. An absolutely continuous curve
v € C% . ([a,b], M) is called Tonelli minimizer if

Zo,T1

Ap(y) = min Ar(7)

veose . (la.b].M)

Theorem 2.7. (Tonelli theorem) Let M be a connected manifold, L : TM — R
a Tonelli Lagrangian bounded below by a complete Riemannian metric on M,
i.e. there exist a complete Riemannian metric g on M and some B € R such
that L(z,v) > |v|, + B.

Then for each xo,x1 € M there exists a Tonelli minimizer.

Remark 2.8. If M is compact, then the assumption of L being Tonelli suffices.



Proof. We only sketch the proof for the Tonelli theorem. The main idea is to
show that for each zg,z1 € M,C € R the set
Seitt ={y € €30 4, ([a,b], M) | AL(v) < C}

Z0,T1

is a compact subset of C?([a,b], M) for the topology of uniform convergence.

Using this fact one can proceed as follows: Set C' := inf : Ar(7y)(exists

veCse 4, (a6, M

since L is bounded below). Then the sets Séf”ﬂl form a decreasing sequence of

n

non-empty compact sets. Therefore the intersection [ Sé‘fj is nonempty. Each
n o

curve in this intersection is a minimizer. O
We now sketch how the compactness of the sets S7** in the Tonelli theorem
can be proven when M is compact:

1. The sets S¢ = {y € C*([a,b], M)|AL(y) < C} are absolutely equicontin-
uous, i.e for each € > 0, there exists § > 0 such that for each disjoint family
n n
(Jai, bi[)i=1,...n C [a,b] with > (b; —a;) < 0 we have > d(y(a;),v(b;)) < e
i=1 i=1
for all v € Sc.(Here one needs superlinearity) This implies clcoSe C
C*([a,b], M).
2. If (Yn)n C Sc converges uniformly to «, then Ar(y) < lirr_1>inf Ar(vn)-

3. Apply the Arzela-Ascoli theorem: By 1. and 2., S¢ is closed and equicon-
tinuous. Since M is compact, the sets {y(¢)|y € Sc} are precompact for
all t € [a,b]. Thus Sc is compact in the C? topology. S&"™ C Sc is
compact as a closed subset of a compact set.

In the following we will always assume L > 0. This is possible by adding a
constant, since L is bounded below.

Proof. of 1.:
Set for r > 0:

L(z,v)
|v]o

K(r) :=inf{ | (x,v) € TM,|v|, >r}

By superlinearity of L
lim K(r) = +o0.

=00

Thus for given € > 0 we can find r > 0 with

O e
K(r) 2



N
Let v € S, J := U [a;,b;] and E := J N {|¥|, > r}. Then

=1

N
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i=1 J=
< [ L) e)ds + Kyl
E
< C+ K(r)yru(J) (L > 0).
Dividing by K (r) we obtain:

N

Z d(y(ai), (b)) < % +ru(J),

which proves that the set S¢ is absolutely equicontinuous. Here p denotes the
lebesque measure. (This also implies clgoSe C C%, since the uniform limit of
an absolutely equicontinuous family of absolutely continuous curves is absolutely
continuous) O

Proof. of 2.: Let (,) C S¢ converge uniformly to 7. From the above discussion
we know v € C*([a, b], M) and want to show A (v) < liminf Ar(y,). The main
n—oo

steps to show this are:
e Reduction to the case im~y C U where (U, ¢) is a chart on M.
We cover im~y by finitely many charts U; such that there is a subdivision
a=ay<a <..<ap=">with y([ai—1,a;]) C U;. By uniform conver-
gence of v, we can assume v, ([a;—1,a;]) C U;. If the assertion holds for
imy C U, where U is a chart on M, then:

n—oo n— o0

Ar(y) = ZAL(’Y\[ai_uai]) < ZlimianL('yn[thai]) < liminf Ap, (vy).

By the identification U = ¢(U) we can from now on assume that im~y is
contained in an open subset U of R”.

e Lemma: Let K C U be compact, r > 0,e > 0. There exists § > 0 such
that if z € K,y € K, |x —y| <6 and v,w € R™, [v| < r , then

L(x,v) + g—i(aﬁ,v)(w —v) —e < Ly, w).

Proof. We define
L
Ch = sup{|g—v(x7v)| |z € K, [v] <r},

Cy :=sup{L(z,v) — g—f(x,v)v | x € K, |v| <7}



Then we choose s > 0 such that for all R > s:
K(S)RZCQ+C1R,

where K (s) is from the above proof. If |w| > s, then
OL
Ly, w) 2 K(s)lw| 2 C2 + Cifw| 2 L(z,v) + o (2, v)(w — v).

Hence we only have to find a § such that the asserted inequality holds if
|w| < s. Since L is convex,

L
Lz, w) > Lz,0) + 22 (2, v)(w —v).
ov
By compactness of {(z,w) | z € K, |w| < s} we obtain the desired 6. O

e Apply this lemma with the compact (due to uniform convergence) set
K =im~yUJimy, and set E, := {|%| < r} to get for n big enough:
n

[ 12003+ S = 4) = dds < [ L duds < Asr).

r T

e Show

oL, .. ,. )
/ [y(%’)’)(Vn—’Y)]dS—)O, as n — 0o.
E, 0OV

This follows from Lemma 1.3.3 in [I, Maz]. To apply this Lemma note
that as in the proof of 1. we see that (%), is uniformly integrable and
therefore 4,, — ¥ is uniformly integrable.

e Let r — 0o and get:

Ar(y) —€lb—a|] < liminf Ay (yy,).
n—oo

o Let € = 0, then Az () < liminf Az (yy,).
n— oo
O

This proof doesn’t work for the noncompact case, since superlinearity holds
only above compact subsets of M. Even if we could show that S¢ is equicon-
tinuous, we couldn’t apply Arzela-Ascoli, because the sets {y(t)|y € S&™}
aren’t necessarily precompact. But we can modify this proof to obtain that for
K C M compact, the sets Sc g = {y € Sclimy C K} are equicontinuous
and therefore compact. Let’s see how the fact that L is bounded below by a
complete Riemannian metric can be used to show that SZ°*' is compact. Let
v € SE", then for each t € [a, b]:

d(1(a), () < / ilyds < Ap(y) — B+ (t—a) <C+ B(b—a) = R,



and hence S¢”*! C S¢, B.,(R)- Since the Riemannian metric is complete, closed
metric balls in M are compact. Thus SZ*! is compact, because it is a closed
subset of the compact set S¢ B.y(R):

In the next talk we will see that for a Tonelli Lagrangian, Tonelli minimizers
have the same regularity as the Lagrangian.

Theorem 2.9. Suppose that L is a Tonelli Lagrangian on M. Let vp be a
Tonelli minimizer. If L is C", then vy, is C" as well.

Let us now return to Theorem which stated the existence of action
minimizers in a given homotopy class. Let 7 : M — M be the universal cover.
We fix 79 € 77 (z0). Then we have a bijection f : [Cyy 2,] — 7 (1) between
homotopy classes of curves connecting z(, 1 and elements of the fiber of z;. For
(7] € [Cyrp,er] We choose a lift 5 of v and set f([y]) = 4(b). For each homotopy
class h € [Cy,.2,] we have a bijection h — Cy r(ny,y — 7 where 7 is the lift of
~ with y(a) = @y and 5(b) = f(h) .

Proof. of

The idea is to apply the Tonelli theorem to the universal cover M of M and use
the 1 : 1 correspondence between curves in h and curves in M with end point
0 i

First we consider the universal cover 7 : M — M and set g := 7*g. We now
show the the Lagrangian L := L odr on TM satifies the assumptions of the
Tonelli theorem. L Tonelli can easily be verified.. Since M is compact g is
complete. Since 7w is a Riemannian covering, ¢ is also complete. Since L is
superlinear we can find C' € R such that L(z,v) > |v|g .+ C for all (z,v) € TM
and therefore L(%,7) = L(n,dnd) > |drd|y s + C = |0l + C.

By the Tonelli theorem there is a 3, € C& ;. ([a,b], M) such that

Az (Ap) = min Az () = min Ap(7).
g FECEE 1y ([a,b], M) £9) YECES o, ([a,0],M;h) =)

In the second equation we used the bijection h — Cy ¢n),y — 7 and the
following two facts for a lift 4 of some curve v € C([a, b], M):
1) A; (3) = Ar(7) if v is absolutely continuous and
2) « absolutely continuous iff 4 absolutely continuous: Let U, C M,UyCM
such that 7 : U, :— U, is a diffeomorphism, U, and U, are uniformly normal
neighborhoods and the U, covering im#4. There is a lebesque number d; > 0 such
that for s,¢ € [a,b],|s — t| < &y, we have 6([s, t]) C U, for some a. For such s, ¢
we have: dy(Y(s),7(t)) = dg_(7(s),7(t)) = du,(7(s),7(t)) = da(v(s),7(t))
where the first and third equality follow from U,, U, being uniformly normal
neighborhoods and the second from 7 : Uy :— U, being a isometry. The stated
equivalence now follows if we choose § < dg. This can be shown more easily if
we use the definition of absolute continuity using charts.

Therefore the curve ~y, := w07, has the desired property. By the preceeding
regularity theorem, 73, is C?. O



Remark 2.10. Let M be compact and L Tonelli. Fix xg,x1 € M. Then

C2 o (ab,M)= [ C2 . (la,b], M;h).

x0,T1 Z0,T1
he[CzO,wl]

For h € [Cyy ¢, there exists a minimizer vy, for Ay in CZ, . ([a,b], M;h). More-

over there exists a minimizer vy, for Ay, in Cgo’m([a, b], M). In particular there

exists a homotopy class h € [Cy, 5] such that v, = -y, and

A = min A .
r(vz) helCon o] ()
Now consider a closed 1-form 6. By talk 1 4, is still a minimizer for Ay ¢ in
ngl ([a,b], M;h), with Apo(vn) = AL(yn) + Ch for some constant Cj. If 6 is
exact, then C}, is independent of h and

{IVL € ng,zl([a’b]vM)} = {7L+9 € ng,ml([&b}vM)}'

However, if 6 is not exact, then it might happen that this is false because

Arvo(vr+e) = , rgin ](AL('Yh) + Ch),

[ xQ,T]

AL_;,_Q(’}/L) = he[%lin ]AL('Yh) + C[’YL]
20,

If ¢ € Hj.ppam (M), we can then consider Ton¢ := {y1o € C3¢ . ([a,b], M)},
where [#] = ¢. By the discussion above T'on® does not depend on the repre-
sentative §. We will see the role of H!(M;R) and of H;(M;R) in more details

when we will consider minimizing measures.

2.1 Appendix

Proposition 2.11. Let (M,d) be a metric space and (K,,) a family of decreasing
nonempty compact subsets of M. Then (| K; is nonempty.

ieN
Proof. Let z,, € K. Since (z,), is contained in the compact set K, there is a
subsequence (x,,) converging to some 2 € K;. For each n and j with n; > n,
Tpn,; € Ky. Since K, is compact this implies x € K. O
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