
1 Energy

In this section the setting is as in the previous talk, i.e. M is a connected, closed
manifold and L : TM → R Tonelli.

Definition 1.1. Let L be a Tonelli Lagrangian on M . Recall the definition of
the Hamiltonian

H : T ∗M → R, H(x, p) := p(Leg−1(x, p))− L(Leg−1(x, p)).

The energy associated to L is the function E : TM → R, E := H ◦ Leg, i.e.

E(x, v) :=
∂L

∂v
(x, v)(v)− L(x, v)

Remark 1.2. If L is Tonelli then its associated energy E is Tonelli as well.

Example 1.3. We consider the electromagnetic Lagrangians

L(x, v) =
1

2
gx(v, v) + θx(v)− U(x)

where g is a Riemannian metric on M , θ ∈ Ω1(M) a 1-form and U ∈ C∞(M)
a function on M . To compute the energy and Hamiltonian we first have to
compute the conjugate momentum. For that we choose local coordinates on M
and get:

∂L

∂v
(x, v) =

∂L

∂vi
dxi =

∂

∂vi
(
1

2
gjkv

jvk + θj(x)vj − U(x))dxi = gx(v, ·) + θx

Therefore the energy is given by:

E(x, v) = g(v, v) + θ(v)− (
1

2
gx(v, v) + θx(v)− U(x)) =

1

2
gx(v, v) + U(x).

This is just the sum of the kinetic and potential energy, the 1-form θ doesn’t
affect the energy. Recall that the norm |·|x on TxM induces a norm also denoted
by | · |x on T ∗xM , which is given by |p|x = supw∈TxM,|w|x≤1 |p(w)|. Now setting
(x, p) = Leg(x, v) we compute the Hamiltonian:

H(x, p) = E(x, v) =
1

2
|v|2x + U(x) =

1

2
|gx(v, ·)|2x + U(x) =

1

2
|p− θx|2x + U(x).

Example 1.4. Let L be a Tonelli Lagrangian, θ a 1-form and U a function on
M . Let L̃(x, v) := L(x, v) + θx(v)− U(x). For the associated energies E, Ẽ we
get:

Ẽ(x, v) = E(x, v) + U(x).
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2 Tonelli Theorem and action minimizers

In this section let a, b ∈ R with a < b and M a connected manifold.

Theorem 2.1. Let M be a connected, closed manifold, L a Tonelli Lagrangian.
For each x0, x1 ∈M and homotopy class h of curves connecting x0 and x1, there
is a γh ∈ C2

x0,x1
([a, b],M ;h) minimizing the action in the set C2

x0,x1
([a, b],M ;h).

Firstly we will consider absolutely continuous curves to get better compact-
ness properties. Secondly, the idea is to lift the problem of finding action min-
imizers in a fixed homotopy class to the universal cover M̃ of M . On M̃ the
task will then be to find action minimizers. So far we have only considered M
compact. But we don’t know whether the universal cover M̃ is compact as well.
We therefore have to consider the non-compact case as well.

Definition 2.2. Let d be the metric on M obtained by some fixed Riemannian
metric on M .
A curve γ : [a, b] → M is called absolutely continuous if for each ε > 0 there
exists δ > 0 such that for any familiy of disjoint intervals (]ai, bi[)i=1,...,n all
included in [a, b] and satisfying

∑
i(bi− ai) < δ, we have

∑
i d(γ(bi), γ(ai)) < ε.

We denote by Cac([a.b],M) the set of absolutely continuous curves γ : [a, b] →
M .

Remark 2.3. For a curve γ : [a, b] → M the property of being absolutely con-
tinuous is independent of the chosen Riemannian metric, see [5, Proposition
3.18].

Remark 2.4. Let γ : [a, b] → M be an absolutely continuous curve. Then:
γ̇ ∈ TγM exists almost everywhere on [a, b] and

d(γ(a), γ(b)) ≤
∫ b

a

||γ̇(s)||γ(s)ds

Remark 2.5. For a Tonelli Lagrangian L and an absolutely continuous curve
γ : [a, b] → M the action AL(γ) is well defined and in R ∪ {∞}.(Since L is
bounded below)

Definition 2.6. Let L be Tonelli, x0, x1 ∈M . An absolutely continuous curve
γL ∈ Cacx0,x1

([a, b],M) is called Tonelli minimizer if

AL(γL) = min
γ∈Cacx0,x1 ([a,b],M)

AL(γ)

Theorem 2.7. (Tonelli theorem) Let M be a connected manifold, L : TM → R
a Tonelli Lagrangian bounded below by a complete Riemannian metric on M ,
i.e. there exist a complete Riemannian metric g on M and some B ∈ R such
that L(x, v) ≥ |v|g +B.
Then for each x0, x1 ∈M there exists a Tonelli minimizer.

Remark 2.8. If M is compact, then the assumption of L being Tonelli suffices.
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Proof. We only sketch the proof for the Tonelli theorem. The main idea is to
show that for each x0, x1 ∈M,C ∈ R the set

Sx0,x1

C := {γ ∈ Cacx0,x1
([a, b],M) | AL(γ) ≤ C}

is a compact subset of Cac([a, b],M) for the topology of uniform convergence.
Using this fact one can proceed as follows: Set C := inf

γ∈Cacx0,x1 ([a,b],M)
AL(γ)(exists

since L is bounded below). Then the sets Sx0,x1

C+ 1
n

form a decreasing sequence of

non-empty compact sets. Therefore the intersection
⋂
n
Sx0,x1

C+ 1
n

is nonempty. Each

curve in this intersection is a minimizer.

We now sketch how the compactness of the sets Sx0,x1

C in the Tonelli theorem
can be proven when M is compact:

1. The sets SC = {γ ∈ Cac([a, b],M)|AL(γ) ≤ C} are absolutely equicontin-
uous, i.e for each ε > 0, there exists δ > 0 such that for each disjoint family

(]ai, bi[)i=1,...,n ⊂ [a, b] with
n∑
i=1

(bi−ai) < δ we have
n∑
i=1

d(γ(ai), γ(bi)) < ε

for all γ ∈ SC .(Here one needs superlinearity) This implies clC0SC ⊂
Cac([a, b],M).

2. If (γn)n ⊂ SC converges uniformly to γ, then AL(γ) ≤ lim inf
n→∞

AL(γn).

3. Apply the Arzela-Ascoli theorem: By 1. and 2., SC is closed and equicon-
tinuous. Since M is compact, the sets {γ(t)|γ ∈ SC} are precompact for
all t ∈ [a, b]. Thus SC is compact in the C0 topology. Sx0,x1

C ⊂ SC is
compact as a closed subset of a compact set.

In the following we will always assume L ≥ 0. This is possible by adding a
constant, since L is bounded below.

Proof. of 1.:
Set for r > 0:

K(r) := inf{L(x, v)

|v|x
| (x, v) ∈ TM, |v|x ≥ r}

By superlinearity of L
lim
r→∞

K(r) = +∞.

Thus for given ε > 0 we can find r > 0 with

C

K(r)
<
ε

2
.
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Let γ ∈ SC , J :=
N⋃
i=1

[ai, bi] and E := J ∩ {|γ̇|γ > r}. Then

K(r)

N∑
i=1

d(γ(ai), γ(bi)) ≤ K(r)

∫
E

|γ̇(s)|γ(s)ds+K(r)

∫
J−E
|γ̇(s)|γ(s)ds

≤
∫
E

L(γ(s), γ̇(s))ds+K(r)rµ(J)

≤ C +K(r)rµ(J) (L ≥ 0).

Dividing by K(r) we obtain:

N∑
i=1

d(γ(ai), γ(bi)) ≤
ε

2
+ rµ(J),

which proves that the set SC is absolutely equicontinuous. Here µ denotes the
lebesque measure. (This also implies clC0SC ⊂ Cac, since the uniform limit of
an absolutely equicontinuous family of absolutely continuous curves is absolutely
continuous)

Proof. of 2.: Let (γn) ⊂ SC converge uniformly to γ. From the above discussion
we know γ ∈ Cac([a, b],M) and want to show AL(γ) ≤ lim inf

n→∞
AL(γn). The main

steps to show this are:

• Reduction to the case imγ ⊂ U where (U, φ) is a chart on M .
We cover imγ by finitely many charts Ui such that there is a subdivision
a = a0 < a1 < ... < ak = b with γ([ai−1, ai]) ⊂ Ui. By uniform conver-
gence of γn we can assume γn([ai−1, ai]) ⊂ Ui. If the assertion holds for
imγ ⊂ U , where U is a chart on M , then:

AL(γ) =
∑
i

AL(γ|[ai−1,ai]) ≤
∑
i

lim inf
n→∞

AL(γn[ai−1,ai]) ≤ lim inf
n→∞

AL(γn).

By the identification U = φ(U) we can from now on assume that imγ is
contained in an open subset U of Rn.

• Lemma: Let K ⊂ U be compact, r > 0, ε > 0. There exists δ > 0 such
that if x ∈ K, y ∈ K, |x− y| ≤ δ and v, w ∈ Rn, |v| ≤ r , then

L(x, v) +
∂L

∂v
(x, v)(w − v)− ε ≤ L(y, w).

Proof. We define

C1 := sup{|∂L
∂v

(x, v)| | x ∈ K, |v| ≤ r},

C2 := sup{L(x, v)− ∂L

∂v
(x, v)v | x ∈ K, |v| ≤ r}.
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Then we choose s > 0 such that for all R ≥ s:

K(s) ·R ≥ C2 + C1 ·R,

where K(s) is from the above proof. If |w| ≥ s, then

L(y, w) ≥ K(s)|w| ≥ C2 + C1|w| ≥ L(x, v) +
∂L

∂v
(x, v)(w − v).

Hence we only have to find a δ such that the asserted inequality holds if
|w| ≤ s. Since L is convex,

L(x,w) ≥ L(x, v) +
∂L

∂v
(x, v)(w − v).

By compactness of {(x,w) | x ∈ K, |w| ≤ s} we obtain the desired δ.

• Apply this lemma with the compact (due to uniform convergence) set
K = imγ ∪

⋃
n
imγn and set Er := {|γ̇| ≤ r} to get for n big enough:

∫
Er

[L(γ, γ̇) +
∂L

∂v
(γ, γ̇)(γ̇n − γ̇)− ε]ds ≤

∫
Er

L(γn, γ̇n)ds ≤ AL(γn).

• Show ∫
Er

[
∂L

∂v
(γ, γ̇)(γ̇n − γ̇)]ds→ 0, as n→∞.

This follows from Lemma 1.3.3 in [1, Maz]. To apply this Lemma note
that as in the proof of 1. we see that (γ̇n)n is uniformly integrable and
therefore γ̇n − γ̇ is uniformly integrable.

• Let r →∞ and get:

AL(γ)− ε|b− a| ≤ lim inf
n→∞

AL(γn).

• Let ε→ 0, then AL(γ) ≤ lim inf
n→∞

AL(γn).

This proof doesn’t work for the noncompact case, since superlinearity holds
only above compact subsets of M . Even if we could show that SC is equicon-
tinuous, we couldn’t apply Arzela-Ascoli, because the sets {γ(t)|γ ∈ Sx0,x1

C }
aren’t necessarily precompact. But we can modify this proof to obtain that for
K ⊂ M compact, the sets SC,K := {γ ∈ SC |imγ ⊂ K} are equicontinuous
and therefore compact. Let’s see how the fact that L is bounded below by a
complete Riemannian metric can be used to show that Sx0,x1

C is compact. Let
γ ∈ Sx0,x1

C , then for each t ∈ [a, b]:

d(γ(a), γ(t)) ≤
∫ t

a

|γ̇|γds ≤ AL(γ)−B · (t− a) ≤ C +B(b− a) =: R,
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and hence Sx0,x1

C ⊂ SC,B̄x0 (R). Since the Riemannian metric is complete, closed

metric balls in M are compact. Thus Sx0,x1

C is compact, because it is a closed
subset of the compact set SC,B̄x0 (R).
In the next talk we will see that for a Tonelli Lagrangian, Tonelli minimizers
have the same regularity as the Lagrangian.

Theorem 2.9. Suppose that L is a Tonelli Lagrangian on M . Let γL be a
Tonelli minimizer. If L is Cr, then γL is Cr as well.

Let us now return to Theorem 2.1, which stated the existence of action
minimizers in a given homotopy class. Let π : M̃ → M be the universal cover.
We fix x̃0 ∈ π−1(x0). Then we have a bijection f : [Cx0,x1

]→ π−1(x1) between
homotopy classes of curves connecting x0, x1 and elements of the fiber of x1. For
[γ] ∈ [Cx0,x1

] we choose a lift γ̃ of γ and set f([γ]) = γ̃(b). For each homotopy
class h ∈ [Cx0,x1 ] we have a bijection h→ Cx̃0,f(h), γ → γ̃ where γ̃ is the lift of
γ with γ(a) = x̃0 and γ̃(b) = f(h) .

Proof. of 2.1
The idea is to apply the Tonelli theorem to the universal cover M̃ of M and use
the 1 : 1 correspondence between curves in h and curves in M̃ with end point
f(h).
First we consider the universal cover π : M̃ → M and set g̃ := π∗g. We now
show the the Lagrangian L̃ := L ◦ dπ on TM̃ satifies the assumptions of the
Tonelli theorem. L̃ Tonelli can easily be verified.. Since M is compact g is
complete. Since π is a Riemannian covering, g̃ is also complete. Since L is
superlinear we can find C ∈ R such that L(x, v) ≥ |v|g,x+C for all (x, v) ∈ TM
and therefore L̃(x̃, ṽ) = L(πx̃, dπṽ) ≥ |dπṽ|g,πx̃ + C = |ṽ|g̃,x̃ + C.

By the Tonelli theorem there is a γ̃h ∈ Cacx̃0,f(h)([a, b], M̃) such that

AL̃(γ̃h) = min
γ̃∈Cac

x̃0,f(h)
([a,b],M̃)

AL̃(γ̃) = min
γ∈Cacx0,x1 ([a,b],M ;h)

AL(γ).

In the second equation we used the bijection h → Cx̃0,f(h), γ → γ̃ and the
following two facts for a lift γ̃ of some curve γ ∈ C([a, b],M):
1) AL̃(γ̃) = AL(γ) if γ is absolutely continuous and

2) γ absolutely continuous iff γ̃ absolutely continuous: Let Ũα ⊂ M̃, Uα ⊂ M
such that π : Ũα :→ Uα is a diffeomorphism, Ũα and Uα are uniformly normal
neighborhoods and the Ũα covering imγ̃. There is a lebesque number δ0 > 0 such
that for s, t ∈ [a, b], |s− t| < δ0, we have δ̃([s, t]) ⊂ Ũα for some α. For such s, t
we have: dM̃ (γ̃(s), γ̃(t)) = dŨα(γ̃(s), γ̃(t)) = dUα(γ(s), γ(t)) = dM (γ(s), γ(t))

where the first and third equality follow from Uα, Ũα being uniformly normal
neighborhoods and the second from π : Ũα :→ Uα being a isometry. The stated
equivalence now follows if we choose δ < δ0. This can be shown more easily if
we use the definition of absolute continuity using charts.

Therefore the curve γh := π ◦ γ̃h has the desired property. By the preceeding
regularity theorem, γh is C2.
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Remark 2.10. Let M be compact and L Tonelli. Fix x0, x1 ∈M . Then

C2
x0,x1

([a, b],M) =
∐

h∈[Cx0,x1 ]

C2
x0,x1

([a, b],M ;h).

For h ∈ [Cx0,x1 ] there exists a minimizer γh for AL in C2
x0,x1

([a, b],M ;h). More-
over there exists a minimizer γL for AL in C2

x0,x1
([a, b],M). In particular there

exists a homotopy class h ∈ [Cx0,x1
] such that γL = γhL and

AL(γL) = min
h∈[Cx0,x1 ]

AL(γh).

Now consider a closed 1-form θ. By talk 1 γh is still a minimizer for AL+θ in
C2
x0,x1

([a, b],M ;h), with AL+θ(γh) = AL(γh) +Ch for some constant Ch. If θ is
exact, then Ch is independent of h and

{γL ∈ Cacx0,x1
([a, b],M)} = {γL+θ ∈ Cacx0,x1

([a, b],M)}.

However, if θ is not exact, then it might happen that this is false because

AL+θ(γL+θ) = min
h∈[Cx0,x1 ]

(AL(γh) + Ch),

AL+θ(γL) = min
h∈[Cx0,x1 ]

AL(γh) + C[γL]

If c ∈ H1
deRham(M), we can then consider Tonc := {γL+θ ∈ Cacx0,x1

([a, b],M)},
where [θ] = c. By the discussion above Tonc does not depend on the repre-
sentative θ. We will see the role of H1(M ;R) and of H1(M ;R) in more details
when we will consider minimizing measures.

2.1 Appendix

Proposition 2.11. Let (M,d) be a metric space and (Kn) a family of decreasing
nonempty compact subsets of M . Then

⋂
i∈N

Ki is nonempty.

Proof. Let xn ∈ Kn. Since (xn)n is contained in the compact set K1, there is a
subsequence (xnj ) converging to some x ∈ K1. For each n and j with nj > n,
xnj ∈ Kn. Since Kn is compact this implies x ∈ Kn.
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