
For this presentation we will consider M to be a closed (= compact and without
boundary) smooth manifold of dimension dim M = n. Let TM be the tangent bundle
M and π : TM → M the projection. We will denote a point in TM by (x, v), where
x ∈ M and v ∈ TxM := π−1(x). Thus π is just the projection onto the first factor.
Similarly we will consider the cotangent bundle T ∗M . A point in T ∗M is denoted by
(x, p), where p ∈ T ∗xM . Furthermore let g be a Riemannian metric on M and we will
denote the induced norms on TxM and T ∗xM both by || · ||x for each x ∈M .

1 Lagrangian-Mechanics

Definition 1. A C2 function L : TM → R is called a Lagrangian on M.

Definition 2. For x0, x1 ∈M , a ≤ b we set

C2
x0,x1

([a, b],M) := {γ ∈ C2([a, b],M)| γ(a) = x0, γ(b) = x1}.

Additionally given a homotopy class α we define

C2
x0,x1

([a, b],M ;α) := C2
x0,x1

([a, b],M) ∩ α.

Then the action A : C2
x0,x1

([a, b],M ;α)→ R is given by:

A (γ) :=

∫ b

a

L(γ(t), γ̇(t)) dt

Remark 1. Of course, at this point we could have defined the action A for a greater
class of curves γ : [a, b]→M , for example any curve, that would have made the function
t 7→ L(γ(t), γ̇(t)) integrable. Later we’ll look into absolutely continuous curves as our
domain for A .

Definition 3. A C2 variation Γ : (−ε, ε)× [a, b]→M of a C2 curve γ : [a, b]→M is a
C2 mapping with ε > 0, s.t.

• Γ(0, t) = γ(t), ∀t ∈ [a, b] and

• Γ(s, a) = γ(a) and Γ(s, b) = γ(b), ∀s ∈ (−ε, ε).

Definition 4. A C2 curve is called an extremizer (or motion) of the Lagrangian L, if

d

ds

∣∣∣∣
s=0

A (Γ(s, ·)) = 0

for each C2 variation Γ : (−ε, ε)× [a, b]→M

1



It turns out, that the extremizers γ of L are the C2 curves, that satisfy the Euler-
Lagrange equation in local coordinates:

d

dt

∂L

∂v
(γ(t), γ̇(t))− ∂L

∂x
(γ(t), γ̇(t)) = 0 (1)

To see this, we just calculate the derivative of A with respect to s directly. Let
Γ : (−ε, ε)× [a, b]→M be the variation of a C2 extremal curve γ : [a, b]→M . Then we
consider a subdivision a = r0 < r1 < · · · < rn = b, such that the support γ([rk, rk + 1])
is contained in some coordinate chart (Uk, φk) for each k = 0, . . . , n−1. For convenience
we are going to set

σ(t) :=
∂Γ

∂s
(0, t), ∀t ∈ [a, b].

and
σk(t) := dγ(t)φk · σ(t).

0
!

=
d

ds

∣∣∣∣∣
s=0

A (Γ(s, ·))

=
n−1∑
k=0

∫ rk+1

rk

(
∂L

∂x
(γ(t), γ̇(t))σk(t) +

∂L

∂v
(γ(t), γ̇(t))σ̇k(t)

)
dt

=
n−1∑
k=0

∫ rk+1

rk

(
∂L

∂x
(γ(t), γ̇(t))− d

dt

∂L

∂v
(γ(t), γ̇(t))

)
σk(t) dt

+
n−1∑
k=0

(
∂L

∂v
(γ(rk+1), γ̇(rk+1))σ(rk+1)−

∂L

∂v
(γ(rk), γ̇(rk))σ(rk)

)
︸ ︷︷ ︸

telescope sum
= ∂L

∂v
(γ(b),γ̇(b))σ(b)− ∂L

∂v
(γ(a),γ̇(a))σ(a)=0

=
n−1∑
k=0

∫ rk+1

rk

(
∂L

∂x
(γ(t), γ̇(t))− d

dt

∂L

∂v
(γ(t), γ̇(t))

)
︸ ︷︷ ︸

(∗)

σk(t) dt

The sum in the second to last equation vanishes completely, because the variation
fixes the endpoints, meaning its derivatives in (s,a) and (s,b) vanish ∀s ∈ (−ε, ε). In
order for the integral above to equal 0 for any variation Γ, by the fundamental lemma
of calculus of variations, (∗) must be equal to zero.
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Theorem 1. Let L be a C2 Lagrangian on M and let γ : [a, b] → M be a C2 curve.
Then:

(i) γ is extremal ⇒ ∀ [a′, b′] ⊆ [a, b], s.t. γ([a′, b′]) is contained in a chart (U, φ), then
γ|[a′,b′] solves the Euler-Lagrange equation.

(ii) If for every t ∈ [a, b] there exists an [a′, b′] ⊆ [a, b] containing t, s.t. γ([a′, b′]) lies
in an coordinate chart (U, φ) and γ|[a′,b′] solves the Euler-Lagrange equation, then
γ is an extremal curve.

For now we want to consider what happens to the Euler-Lagrange equation and the
action functional, when we add a function f : TM → R to our Lagrangian L. How does
this change look like?

Euler-Lagrange:

∂(L+ f)

∂x
(γ, γ̇)− d

dt

∂(L+ f)

∂v
(γ, γ̇) =

∂L

∂x
(γ, γ̇)− d

dt

∂L

∂v
(γ, γ̇) +

∂f

∂x
(γ, γ̇)− d

dt

∂f

∂v
(γ, γ̇)︸ ︷︷ ︸

(1)

the action A :

Ã (γ) =

∫ b

a

(L+ f)(γ, γ̇)dt = A (γ) +

∫ b

a

f(γ, γ̇)dt︸ ︷︷ ︸
(2)

First let f : TM → R be a constant function with f = C for some C ∈ R. Obviously
(1) equal to 0 and (2) is equal to C(b− a), which is a constant dependent on the length
of the interval.
For some 1-form θ ∈ Ω1(M) we will set the function θ̃ : TM → R, θ̃(x, v) := θx(v). In
this case, (1) is equal to the exterior derivative −dθx(ẋ, ·). Hence (1) vanishes if θ is
closed. In this case, (2) only depends on the homotopy class α (and thus it constant if
α is fixed). We can verify this directly in two different ways:

1. Notice
∫ b
a
θγ(t)γ̇(t)dt =

∫
γ
θ =

∫
γ̃
θ for some other C2 curve γ̃ : [a, b] → M homo-

topic to γ. This result is derived from Stoke’s theorem; this approach works even
if the curves are just C1.

2. Another way is to look at some variation Γ of a curve γ and calculate the derivative
of the action term directly:

d

ds

∫ b

a

θ̃(γ(t)), γ̇(t) dt =
n−1∑
k=0

∫ rk+1

rk

(
∂θ̃

∂x
(γ(t), γ̇(t))− d

dt

∂θ̃

∂v
(γ(t), γ̇(t))

)
︸ ︷︷ ︸

= −dθγ(t)(γ̇(t),·) = 0

σk(t)dt = 0

In the case of θ being exact, that is θ = du for some function u ∈ C∞(M), then the
integral is equal to u(x1) − u(x0) which depends only on the end points x0, x1 but not
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on the homotopy class α.

We will now study the Euler-Lagrange equation itself a little further. Using chain
rule, we can expand the EL to:

∂2L

∂v2
(γ(t), γ̇(t))γ̈(t) =

∂L

∂x
(γ(t), γ̇(t))− ∂2L

∂v∂x
(γ(t), γ̇(t))γ̇(t)

If ∂2L
∂v2

(x, v) is non-degenerate at every point (x, v) ∈ TM , which is equivalent to

det
∂2L

∂v2
(x, v) 6= 0,

which we will refer to as the Legendre-condition. If it is met, then we can solve for γ̈(t).
Thus we can define a vector field XL on TM

XL(x, v) = (x, v, v, X̃L) ∈ T(x,v)TM ,

where X̃L satisfies the equation above (corresponding to γ̈(t)). Thus its solutions are
exactly the solutions to the Euler-Lagrange equation. Appropriately we call this vector
field XL the Euler-Lagrange vector field and its flow φLt (if it exists) is called the Euler-
Lagrange flow associated with L. Since L is C2, XL is only C0 and we cannot apply the
theorem on existence and uniqnesss of solutions of ordinary differential equations (for
that you need XL locally Lipschitz). To solve this problem, we consider the Legendre
transform.

Definition 5. Let L be a Lagrangian on M. We will define the (global) Legendre trans-
form as:

Leg : TM → T ∗M, (x, v) 7→ ∂L

∂v
(x, v)

When we introduce the Hamiltonian later in this presentation, we get a lot of nice
properties and a duality between certain Lagrangians and their corresponding Hamil-
tonians H, if the (global) Legendre-transform is a diffeomorphism. In the following we
define a class of Lagrangians, for which this will be the case:

Definition 6. Let (M, g) be a Riemannian manifold. We will call L : TM → R a
Tonelli-Lagrangian if:

(1) L is C2

(2) ∀(x, v) ∈ TM : ∂2L
∂v2

(x, v) is positive definite

(3) L is superlinear:

∀x ∈M : lim
||v||x→∞

L(x, v)

||v||x
= +∞

or equivalently:

∀x ∈M,A ∈ R,∃B ∈ R : L(x, v) ≥ A||v||x −B

4



Remark 2. Instead of (2) we could also require ∂2L
∂v2

(x, v) to be non-degenerate for all
(x, v) ∈ TM and L to be convex.

Remark 3. The fiberwise superlinearity is in fact uniform over compact subsets of M
(and thus M itself), this means we can modify (3) and the constant B can be chosen to
be independent from x ∈M .

Remark 4. Since M is compact, the superlinearity is independent of the metric g.

Theorem 2. The (global) Legendre transform Leg : TM → T ∗M is diffeomorphism if
L is a Tonelli-Lagrangian.

Proof. Since Leg is fiber-preserving, we only need to consider the restriction Leg
∣∣
TxM

:
TxM → T ∗xM . Applying the following lemma will finish the proof.

Lemma 1. Let V be a (finite dimensional) vector space. For F : V → R, C2 and strictly
convex (HessF > 0) we have:

F superlinear⇔ dF : V → V ∗ is a diffeomorphism

"⇒": define F p0 : Rn → R by F p0(v) = F (v) − p0(v) for p0 ∈ (Rn)∗ arbitrary but
fixed. This function is superlinear, thus it reaches its minimum for some v0 ∈ V
⇒ dF p0(v0) = 0 ⇒ dF (v0) = p0 (surjectivity). Since the Hessian of F p0 is positive
definite, it can at most have one critical point, thus dF is injective. Thus F
is bijective and due to the Hessian being positive definite, we apply the inverse
function theorem and see that dF is bijective local diffeomorphism.

"⇐": For every k > 0, we define the compact set

Sk := {v ∈ V \ {0}| |dF (v)| = k}.

Since dF is a diffeomorphism, there exists a unique v0 ∈ V , such that

dF (v0) =
k

|v|
〈v, ·〉,

where 〈·, ·〉 is some inner product on V . We have v0 ∈ Sk and dF (v0)v = k|v|.
Thus by convexity of F we have:

F (v) ≥ dF (v0)v + F (v0)− dF (v0)v0

≥ k|v|+ inf
w∈Sk
{F (w)− dF (w)w}

which shows, that F is superlinear.

Theorem 3. Let L be Tonelli. Then every extremizing curve γ : [a, b] → M is ’just as
smooth as its Lagrangian L’. That means if L is Cr, r ≥ 2, then γ will be Cr as well.
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After this rather long discussion lets look at an example for a Tonelli-Lagrangian: the
electromagnetic Lagrangian:

L(x, v) =
1

2
gx(v, v) + θx(v)− U(x)

where g is the Riemannian metric, U : M → R and θ is a 1-form. In physics the
first term would correspond to the kinetic energy of particle, the U -term is its potential
energy (in this specific case the electric potential of the electric field ~E) and the 1-form
corresponds to the ’vector potential’ of the magnetic field ~B. Its solutions satisfy the
Newton’s equation:

x∇∂tẋ = −∇U(x)− Yx · ẋ,

where ∇U is the gradient of U with respect to g and Y is the Lorentz force defined
by:

gx(Yx · u, v) = dθx(u, v), ∀x ∈M, u, v ∈ TxM

2 Hamiltonian Mechanics

Definition 7. Let L be Tonelli and Leg : TM → T ∗M the Legendre transform. We
define the Hamiltonian H by

H : T ∗M → R, H(x, p) := 〈p,Leg−1(x, p)〉x − L(Leg−1(x, p))

where 〈·, ·〉x is the canonical pairing between the tangent and cotangent bundles. We
say that H is the Legendre dual of L.

Remark 5. For now, all we know is that H is C1 since Leg is C1.

Definition 8. We say that a Hamiltonian H : T ∗M → R is a Tonelli-Hamiltonian if:

(1) H is C2

(2) ∂2H
∂p2

(·, ·) > 0

(3) H is superlinear:

∀x ∈M : lim
||p||x→∞

H(x, p)

||p||x
= +∞

or equivalently:

∀x ∈M,A ∈ R,∃B ∈ R : H(x, p) ≥ A||p||x −B.

Remark 6. As before, sinceM is compact, the superlinearity is uniform and independent
of the metric g.
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A few properties of the Hamiltonian H are given in this lemma:

Lemma 2. Let L be Tonelli and H its Legendre dual. Let x ∈M , v ∈ TxM , p ∈ T ∗xM ,
s.t. p = Leg(x, v). Then:

(i) ∂H
∂p

(x, p) = v

(ii) ∂H
∂x

(x, p) = −∂L
∂x

(x, v)

(iii) H is Tonelli

(iv) (Fenchel inequality): ∀p′ ∈ T ∗xM, v′ ∈ TxM :

〈p′, v′〉 ≤ L(x, v′) +H(x, p′)

with equality if and only if p′ = Leg(x, v′)

(v) H(x, p) = supv′∈TxM [〈p, v′〉 − L(x, v′)]

Like we did for our Lagrangian L, we can also define a vector field XH for the Hamilto-
nian. First we equip the cotangent bundle T ∗M with its canonical symplectic structure
ω, which can be defined through the tautological 1-form or Liouville form λ of T ∗M ,
which is given by

λ =
n∑
i=1

pidx
i

in local coordinates. (This definition is independent from the used coordinates.) The
canonical symplectic structure is defined by ω = −dλ, given in local coordinates by

ω =
n∑
i=1

dxi ∧ dpi.

This 2-form is closed and non-degenerate. Thus we can define the Hamiltonian vector
field XH by:

ω(XH(x, p), ·) = d(x,p)H

This means that the Hamiltonian vector field XH is in local coordinates given by:

XH =
n∑
i=1

∂H

∂pi

∂

∂xi
− ∂H

∂xi
∂

∂pi

Since H is C2 this vector field is C1 and can be locally integrated. Its integral curves
satisfy the Hamiltonian equations :

∂H

∂p
(x, px) = ẋ

∂H

∂x
(x, px) = −ṗx
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We can then define the Hamiltonian flow φHt . It turns out that H is an integral of
motion, meaning it is constant along its integral curves, because

d

dt
H(φHt ) = dH(XH(φHt )) = ω(XH(φHt ), XH(φHt ))

ω antisymm.
= 0.

For everyK ∈ R the sets {(x, p) ∈ T ∗M | H(x, p) = K} are compact (by superlinearity
of H) and invariant by φHt . Thus φHt is complete if M is compact.

Given the definition of the Hamiltonian H, we might ask, whether the projection onto
M of the solutions (γ, pγ) of the Hamilton equations solve the Euler-Lagrange equation
as well. This turns out to be the case. In fact, from (i) and (ii) in Lemma 2 we obtain
the relation:

d(x,v)Leg ·XL(x, v) = XH ◦ Leg(x, v), ∀(x, v) ∈ TM

In other words: The Lagrangian and Hamiltonian flows are conjugated by the Legendre
transform:

Leg ◦ φLt = φHt ◦ Leg
φLt = Leg−1 ◦ φHt ◦ Leg

Since the Hamiltonian flow is well defined, the Lagrangian flow is also well defined mak-
ing the solutions to the Euler-Lagrange equations unique as well. Since the Hamiltonian
flow φHt is complete, the Euler-Lagrange flow φLt is then also complete.

Lastly, we’d like to mention that for Tonelli-Lagrangians L one can find extremizers,
that minimize the action in C2([a, b],M ;α), which are called minimizers. Their existence
will be shown in the next talk.
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