The Setting

@ M is a smooth compact n-dimensional manifold without boundary with a
Riemannian metric g

@ tangent bundle TM, cotangent bundle T*M

@ We denote points by: xe M, ve T\M, pe T;M
= (x,v) € TM, (x,p) € T*M
@ the by g induced vector norms on T,M and T;)M are both denoted by || - ||x



Langragian and the action functional

Definition

A C? function L : TM — R is called a Lagrangian on M.

Definition
For xp,x1 € M, a < b we set

Co i ([3, b], M) == {v € C*([a, b], M)| () = x0,7(b) = x1 }.
Additionally given a homotopy class of paths between xp and x; « we define

Ca o ([a,b], M; @) := CZ , ([a, b], M) N cx

X0,X1

Then the action < : C2 , ([a, b], M; @) — R is given by:

X0,X1

b
() = / L(xv(2),5(8)) dt




Variation and extremizing curves

Definition
A C? variation I : (—¢,¢) x [a, b] — M (also denoted by vs) of a C? curve
7 : [a, b] = M is a C?> mapping with £ > 0, s.t.

e I(0,t) =~(t), Vt € [a, b] and

e I(s,a) =~(a) and (s, b) = y(b), Vs € (—¢,¢).

Definition
A C? curve is called an extremizer or motion or just extremizing curve of the C?
Lagrangian L, if

d

FARRAUCRIEL

for each C? variation I' : (—¢,¢) x [a,b] = M




Action extremizers and the Euler-Lagrange equation

Is there a different way to characterize those extremizing curves v7 Extremizing
curves are exactly the curves, that satisfy the Euler-Lagrange equation in local

coordinates:
d OL

&L 0(0),4(0) — 9-(1(8). (1) = 0 1)

Consider some variation I : (—¢,¢) X [a, b] — M of an extremal curve
v : [a, b] = M. Consider the subdivision a = rg < --- < ry, = b, such that each
Y([r, rk+1]) is contained in some coordinate chart denoted by (Ux, ¢«)-
We'll set: or
U(t) = E(O, t) and Uk(t) = Ay(t) Pk U(t) (2)



Action minimizers and the Euler-Lagrange equation

b
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Action extremizers and the Euler-Lagrange equation

Theorem
Let L be a C? Lagrangian on M and let y : [a, b] — M be a C? curve. Then:
(i) v is extremal = V [d/, b'] C [a, b], s.t. v([&', b']) is contained in a chart
(U, ), then 7|(y 1 solves the Euler-Lagrange equation.

(i) If for every t € [a, b] there exists an [a', b'] C [a, b] containing t, s.t.
v([2, b']) lies in an coordinate chart (U, ¢) and 7|, 1, solves the
Euler-Lagrange equation, then ~ is an extremal curve.




The Action functional and the Euler-Lagrange equation

For now we want to consider what happens to the Euler-Lagrange equation and
the action functional, when we add a function f : TM — R to our Lagrangian L.

How does this change look like?
Euler-Lagrange:

O(L + f) dd(L+1) oL, .. daL

e (7, 7%) — T (v,7%) = 5(%7) prie = (1,7)
of , .. dof
+ 5(%7) priE ~—(77)
(1)
The action &

b b
)= [+ N6) de =)+ [ F05) de
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The Action functional and the Euler-Lagrange equation

First case: f : TM — R is a constant function with f = C for some C € R.
= (1) equal to 0 and (2) is equal to C(b — a)
Second case: consider the function  : TM — R, 8(x, v) := 0,(v), where
0 € Q}(M) is a 1-form.
= (1) is equal to the exterior derivative —dfy(x,-) = 0. If 6 closed. (2) is a
constant and only depends on homotopy class «.

Let I' be variation of ~:

/0 (t),T

Z/M <go(v(t) A(8)) — igiwa),ﬁ(r))) ok(t) dt =0

k=0 "k

= —db,((3(t),) = 0

If 0 is exact, meaning 6 = du, for some function u € C>(M)
= (2) = u(x1) — u(x0) is independent of «



The Legendre condition and the Euler-Lagrange vector field X
@ We now want to study the Euler-Lagrange equation itself a little further.
Using chain rule, we can expand the EL to:

2 2
25 0(04(0) = 5L (03030 + 553N
2 2
= DL AR = - ((E,3(8) ~ s (1), A1)

@ Legendre condition:

—2L( ) d t ( )6 M < d t—zL( ) 0
non- ner *
v2X’V is non-degenerate V(x, v I e v2X’V
o Legendre-condition is met = we can solve for fy"(t) and we can define a vector

field X;, Euler-Lagrange vector field, on TM
X (x,v) = (x, v, v, X (x,V)) € Ty T,

where X; satisfies the equation above (corresponding to %), and (if it exists)
¢t denotes the Euler-Lagrange flow

@ Since Lis C?, X, is just CO = we cannot apply the theorem on existence
and uniqueness of solutions of ordinary differential equations (this would
require X to be locally Lipschitz)



The Legendre transform and Tonelli-Lagrangians

Definition
Let L be a Lagrangian on M. We define the (global) Legendre transform as:

L
Leg: TM — T*M, (x,v) — g—(x, v)e T;M (3)
v
Definition
We will call L: TM — R a Tonelli-Lagrangian if:
(1) Lis C?

(2) ¥(x,v) € TM: Z5(x, v) is positive definite

(3) L is superlinear in each fiber:

vxeM: fm LV _

lIvile—oo |[V]]x

e VxeMAeR,IBeR: L(x,v) > Allv||x — B.

@ Since M is compact, the superlinearity is uniform over M and independent of
the metric g.



Theorem
The (global) Legendre-transform Leg: TM — T*M is a diffeomorphism if L is a

Tonelli-Lagrangian.

Proof: Leg is fiber-preserving = we must only consider the restriction
Leg‘T v TxM — TgM. Proof with the following Lemma.

Lemma
Let V be (finite dimensional) vector space. For F : V — R, C? and strictly convex
(HessF > 0) we have: F superlinear < dF : V — V* is a diffeomorphism

=1 » HessF is pos. def. = dF is a local diffeomorphism by the inverse function
theorem
» dF is bijective:
* surjectivity: For some pg € V* define F? : V — R by FP(v) = F(v) — po(v).
This function is superlinear, thus it reaches its minimum for some vp € V =

deu(Vo) =0= dF(Vo) = Po.
* injectivity: HessF™ pos. def. = FP® can at most have one critical point



.<" For some k > 0, we define the compact set
Sk :={v e V\{0} |dF(v)| = k}.
Since dF is a diffeomorphism, there exists a unique vo € V/, such that

dF (vo) = ,k‘< ),

where (-, ) is some inner product on V. We have dF(v) € S and
dF (vp)v = k|v|. Thus by convexity of F we have:

F(v) — F(vo) > dF(vo)[v — v
F(v) > dF(v)v + F(w) — dF(vo)vo
> klv| + nggk{F(W) — dF(w)w}

which shows, that F is superlinear.



Regularity of extremizers

Theorem

Let L be Tonelli. Then every extremizing curve v : [a,b] — M is just as smooth as
its Lagrangian L'. That means if L is C", r > 2, then ~ will be C" as well.




Example

The electromagnetic Lagrangian

L(x,v) = %gx(v, v) + 04 (v) — U(x)

where g is the Riemannian metric, U : M — R and 6 is a 1-form.
@ In physics the first term would correspond to the kinetic energy of particle
@ the U-term corresponds to electromagnetic potential of the electric field E
@ the 1-form 6 corresponds to the 'vector potential’ of the magnetic field B
It's solutions satisfy Newton's equation:

ok = —VU(x) — Yy x

where ¥V, is the Levi-Civita connection. VU is the gradient of U with respect to
g and the vector field Y is the Lorentz force defined by:

gx(Yx - u,v) =dby(u,v), Vx € M, u,ve T,M



The Hamiltonian

Definition
Let L be Tonelli Leg : TM — T*M the Legendre transform. We define the
Hamiltonian H by

H:T*M = R, H(x,p) = (p,Leg™*(x,p))x — L(Leg " (x, p)) (4)

where (-, )« is the canonical pairing between the tangent and cotangent bundles.
We say that H is the Legendre dual of L.

Definition
We say that a Hamiltonian H: T*M — R is a Tonelli-Hamiltonian if:
(1) His C?
2
(2) ZH(,) >0
(3) H is superlinear in each fiber:

Vx e M: Ilim M——i—oo

lpllx—oo [|Pllx
e VxeMAeR,IBeR: H(x,p) > Allpllx — B.




The Hamiltonian

Properties

Lemma

Let L be Tonelli and H its Legendre dual. Let x e M, v € T,M, p € T; M,
s.t. p= Leg(x,v). Then:

(i)
(i)
(iii)
(iv)

%—'g(x,p) =v
%_g(xvp) = _%(Xa V)

H is Tonelli
(Fenchel inequality): Vp' € TM,v' € T,M:

(p',V')x < L(x, V') + H(x, p)

with equality if and only if p' = Leg(x, v')
H(x, p) = supyrem [(p, v/)x — L(x, V')]
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The Hamiltonian vector field Xy

First we define the tautological 1-form or Liouville form A of T*M, which is given

by
A=Y pidx’
i=1

in local coordinates.(This definition is independent from the used coordinates.)
The canonical symplectic structure is then defined by w = —dA, given in local
coordinates by

w= zn:dxi A dp;.

i=1

This 2-form is closed and non-degenerate.



The Hamiltonian vector field Xy

Definition
The Hamiltonian vector field Xy is the vector field that satisfies the following

equation:
W(XH(Xa P), ) = d(x,p)H

This means that the Hamiltonian vector field Xy is given in local coordinates by:

oy
Op; Ox'  Ox' Op;

o) o) e} o : *
where BT D Doy Dy 15 2 basis for T p) T*M



The Hamiltonian equations and the Hamiltonian flow

e His C?> = Xy is C! and can be locally integrated and its integral curves
satisfy the Hamiltonian equations:

oH .
7(Xa pX) =X

a(xa px) = —Px

o We can then define the Hamiltonian flow ¢!

@ It turns out that H is an integral of motion, meaning it is constant along its
integral curves, because

w antisymm.

S H(!) = dH(E) = dHOXH(9!)) = w(X(o), Xu(o) * ™™ 0

@ The sets {(x,p) € T*M| H(x,p) = K} for all K € R are compact (by
superlinearity of H) and invariant by ¢! = ¢! is complete.



Lagrangians and Hamiltonians

@ The projection onto M of the solutions (v, p,) solve the Euler-Lagrange
equation. And using (i) and (ii) from the Lemma above, we obtain:

dix,vLeg - Xi(x,v) = Xy o Leg(x,v), VY(x,v) € TM

In other words: The Lagrangian and Hamiltonian flows are conjugated by the
Legendre transform:

Lego ¢y = ¢f o Leg
(bi =Lleglo ¢?’ oleg

o ¢! is well defined = ¢L is well defined = solutions to EL are unique
o ¢t is complete = ¢l is complete.

Theorem

v : [a, b] = M is a solution to the Euler-Lagrange equation if and only if
7 = Leg(v,%) : [a, b] = T*M is a solution to the Hamiltonian equations




Minimizers of Tonelli-Lagrangians

o Lastly, if L is Tonelli = there exist special extremizers (minimizers), that
minimize the action in C2 , ([a, b], M; @)

@ Proof of existence in the next talk



Lagrangian & and Hamiltonian vector fields

@ The Euler-Lagrange vector field:

0L oL 0°L
52K V), ) = 5o (xv) = 5 () ()

= X (x,v) = (x,v, v, X (x,v)) € Ty ™™

@ derivation of the identity above:

Lo Xux,v) = (5,9, v. T B 0)(v) + 2 B ) (R )
0L 0L
= (s g (o)) s (e)(EL ), )

= (P, 5o = (P, G (x0p) — 5 (x.9)

OH OH
= (X7 p, a_p o Leg(x, V)7 _a o Leg(x, V)) =Xpo Leg(x, V)



Proof of compactness of {(x,p) € T*M| H(x,p) = K} VK € R

By uniform superlinearity we have
K = H(x,p) = |[pllx — B
for some B € R. Thus we have:

{(x,p) € T"M| H(x,p) = K} € {(x,p) € T"M| ||p|lx < K+ B} .

TV
closed compact




Fenchel-inequality

Fix some x € M and let v € T,M and p € T;M be arbitrary. We have
p= %(x, w) for some w € T, M:

L v) + HOx,p) — pulv) = Lk, v) — (5o (e, w) — 5 w)()
= L(x,v) — L(x,w) — %(X, w)[v — w]
>0,

if L is convex. Since L is strictly convex, equality holds if and only if v = w.
Superlinearity is uniform over compact subsets of M, because for some
A€ (0, +00):
Lix,v) > max {p(v) — H(x, p)}
[lplIx<A

= ||I§r\]|féA{pX(v)} N H;ﬂféA{H(X’ P)}

> Allvilx — max{H(x. p)| (<, F) € T*M,||p|l < K}
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