The Setting

- M is a smooth compact n-dimensional manifold without boundary with a Riemannian metric g
- tangent bundle $T M$, cotangent bundle $T^{*} M$
- We denote points by: $x \in M, v \in T_{x} M, p \in T_{x}^{*} M$ $\Rightarrow(x, v) \in T M,(x, p) \in T^{*} M$
- the by g induced vector norms on $T_{x} M$ and $T_{x}^{*} M$ are both denoted by $\|\cdot\|_{x}$

Langragian and the action functional

Definition

A C^{2} function $L: T M \rightarrow \mathbb{R}$ is called a Lagrangian on M.

Definition

For $x_{0}, x_{1} \in M, a \leq b$ we set

$$
C_{x_{0}, x_{1}}^{2}([a, b], M):=\left\{\gamma \in C^{2}([a, b], M) \mid \gamma(a)=x_{0}, \gamma(b)=x_{1}\right\} .
$$

Additionally given a homotopy class of paths between x_{0} and $x_{1} \alpha$ we define

$$
C_{x_{0}, x_{1}}^{2}([a, b], M ; \alpha):=C_{x_{0}, x_{1}}^{2}([a, b], M) \cap \alpha .
$$

Then the action $\mathscr{A}: C_{x_{0}, x_{1}}^{2}([a, b], M ; \alpha) \rightarrow \mathbb{R}$ is given by:

$$
\mathscr{A}(\gamma):=\int_{a}^{b} L(\gamma(t), \dot{\gamma}(t)) d t
$$

Variation and extremizing curves

Definition

A C^{2} variation $\Gamma:(-\varepsilon, \varepsilon) \times[a, b] \rightarrow M$ (also denoted by $\left.\gamma_{s}\right)$ of a C^{2} curve $\gamma:[a, b] \rightarrow M$ is a C^{2} mapping with $\varepsilon>0$, s.t.

- $\Gamma(0, t)=\gamma(t), \forall t \in[a, b]$ and
- $\Gamma(s, a)=\gamma(a)$ and $\Gamma(s, b)=\gamma(b), \forall s \in(-\varepsilon, \varepsilon)$.

Definition

A C^{2} curve is called an extremizer or motion or just extremizing curve of the C^{2} Lagrangian L, if

$$
\left.\frac{d}{d s}\right|_{s=0} \mathscr{A}(\Gamma(s, \cdot))=0
$$

for each C^{2} variation $\Gamma:(-\varepsilon, \varepsilon) \times[a, b] \rightarrow M$

Action extremizers and the Euler-Lagrange equation

Is there a different way to characterize those extremizing curves γ ? Extremizing curves are exactly the curves, that satisfy the Euler-Lagrange equation in local coordinates:

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial v}(\gamma(t), \dot{\gamma}(t))-\frac{\partial L}{\partial x}(\gamma(t), \dot{\gamma}(t))=0 \tag{1}
\end{equation*}
$$

Consider some variation $\Gamma:(-\varepsilon, \varepsilon) \times[a, b] \rightarrow M$ of an extremal curve $\gamma:[a, b] \rightarrow M$. Consider the subdivision $a=r_{0}<\cdots<r_{m}=b$, such that each $\gamma\left(\left[r_{k}, r_{k+1}\right]\right)$ is contained in some coordinate chart denoted by $\left(U_{k}, \varphi_{k}\right)$. We'll set:

$$
\begin{equation*}
\sigma(t):=\frac{\partial \Gamma}{\partial s}(0, t) \text { and } \sigma_{k}(t):=d_{\gamma(t)} \varphi_{k} \cdot \sigma(t) \tag{2}
\end{equation*}
$$

Action minimizers and the Euler-Lagrange equation

$$
\begin{aligned}
& \left.0 \stackrel{!}{=} \frac{d}{d s}\right|_{s=0} \mathscr{A}(\Gamma(s, \cdot))=\left.\int_{a}^{b} \frac{d}{d s}\right|_{s=0} L(\gamma(t), \dot{\gamma}(t)) d t \\
& =\sum_{k=0}^{m-1} \int_{r_{k}}^{r_{k+1}}(\frac{\partial L}{\partial x}(\gamma(t), \dot{\gamma}(t)) \sigma_{k}(t)+\underbrace{\frac{\partial L}{\partial v}(\gamma(t), \dot{\gamma}(t)) \dot{\sigma}_{k}(t)}) d t \\
& =-\frac{d}{d t} \frac{\partial L}{\partial v}(\gamma, \dot{\gamma}) \sigma_{k}+\frac{d}{d t}\left(\frac{\partial L}{\partial v}(\gamma, \dot{\gamma}) \sigma_{k}\right) \\
& =\sum_{k=0}^{m-1} \int_{r_{k}}^{r_{k+1}} \underbrace{\left(\frac{\partial L}{\partial x}(\gamma(t), \dot{\gamma}(t))-\frac{d}{d t} \frac{\partial L}{\partial v}(\gamma(t), \dot{\gamma}(t))\right)}_{(*)} \sigma_{k}(t) d t \\
& +\underbrace{\sum_{k=0}^{m-1}\left(\frac{\partial L}{\partial v}\left(\gamma\left(r_{k+1}\right), \dot{\gamma}\left(r_{k+1}\right)\right) \sigma_{k+1}\left(r_{k+1}\right)-\frac{\partial L}{\partial v}\left(\gamma\left(r_{k}\right), \dot{\gamma}\left(r_{k}\right)\right) \sigma_{k}\left(r_{k}\right)\right)}_{\text {telescope sum } \frac{\partial L}{=}(\gamma(b), \dot{\gamma}(b)) \sigma_{m}(b)-\frac{\partial L}{\partial v}(\gamma(a), \dot{\gamma}(a)) \sigma_{0}(a)=0}
\end{aligned}
$$

Action extremizers and the Euler-Lagrange equation

Theorem

Let L be a C^{2} Lagrangian on M and let $\gamma:[a, b] \rightarrow M$ be a C^{2} curve. Then:
(i) γ is extremal $\Rightarrow \forall\left[a^{\prime}, b^{\prime}\right] \subseteq[a, b]$, s.t. $\gamma\left(\left[a^{\prime}, b^{\prime}\right]\right)$ is contained in a chart (U, ϕ), then $\left.\gamma\right|_{\left[a^{\prime}, b^{\prime}\right]}$ solves the Euler-Lagrange equation.
(ii) If for every $t \in[a, b]$ there exists an $\left[a^{\prime}, b^{\prime}\right] \subseteq[a, b]$ containing t, s.t. $\gamma\left(\left[a^{\prime}, b^{\prime}\right]\right)$ lies in an coordinate chart (U, φ) and $\left.\gamma\right|_{\left[a^{\prime}, b^{\prime}\right]}$ solves the Euler-Lagrange equation, then γ is an extremal curve.

The Action functional and the Euler-Lagrange equation

For now we want to consider what happens to the Euler-Lagrange equation and the action functional, when we add a function $f: T M \rightarrow \mathbb{R}$ to our Lagrangian L. How does this change look like?

Euler-Lagrange:

$$
\begin{align*}
\frac{\partial(L+f)}{\partial x}(\gamma, \dot{\gamma})-\frac{d}{d t} \frac{\partial(L+f)}{\partial v}(\gamma, \dot{\gamma})= & \frac{\partial L}{\partial x}(\gamma, \dot{\gamma})-\frac{d}{d t} \frac{\partial L}{\partial v}(\gamma, \dot{\gamma}) \\
& +\underbrace{\frac{\partial f}{\partial x}(\gamma, \dot{\gamma})-\frac{d}{d t} \frac{\partial f}{\partial v}(\gamma, \dot{\gamma})} \tag{1}
\end{align*}
$$

The action \mathscr{A} :

$$
\tilde{\mathscr{A}}(\gamma)=\int_{a}^{b}(L+f)(\gamma, \dot{\gamma}) d t=\mathscr{A}(\gamma)+\underbrace{\int_{a}^{b} f(\gamma, \dot{\gamma}) d t}_{(2)}
$$

The Action functional and the Euler-Lagrange equation

First case: $f: T M \rightarrow \mathbb{R}$ is a constant function with $f=C$ for some $C \in \mathbb{R}$.
\Rightarrow (1) equal to 0 and (2) is equal to $C(b-a)$
Second case: consider the function $\tilde{\theta}: T M \rightarrow \mathbb{R}, \tilde{\theta}(x, v):=\theta_{x}(v)$, where $\theta \in \Omega^{1}(M)$ is a 1 -form.
$\Rightarrow(1)$ is equal to the exterior derivative $-d \theta_{x}(\dot{x}, \cdot)=0$. If θ closed. (2) is a constant and only depends on homotopy class α.
Let Γ be variation of γ :

$$
\begin{aligned}
& \left.\frac{d}{d s} \int_{a}^{b} \tilde{\theta}(\Gamma(t)), \dot{\Gamma}(t)\right) d t= \\
& \sum_{k=0}^{n-1} \int_{r_{k}}^{r_{k+1}} \underbrace{\left(\frac{\partial \tilde{\theta}}{\partial x}(\gamma(t), \dot{\gamma}(t))-\frac{d}{d t} \frac{\partial \tilde{\theta}}{\partial v}(\gamma(t), \dot{\gamma}(t))\right)}_{=-d \theta_{\gamma(t)}(\dot{\gamma}(t), \cdot)=0} \sigma_{k}(t) d t=0
\end{aligned}
$$

If θ is exact, meaning $\theta=d u$, for some function $u \in C^{\infty}(M)$
$\Rightarrow(2)=u\left(x_{1}\right)-u\left(x_{0}\right)$ is independent of α

The Legendre condition and the Euler-Lagrange vector field X_{L}

- We now want to study the Euler-Lagrange equation itself a little further. Using chain rule, we can expand the EL to:

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial L}{\partial v}(\gamma(t), \dot{\gamma}(t))=\frac{\partial^{2} L}{\partial v \partial x}(\gamma(t), \dot{\gamma}(t)) \dot{\gamma}(t)+\frac{\partial^{2} L}{\partial v^{2}}(\gamma(t), \dot{\gamma}(t)) \ddot{\gamma}(t) \\
\Rightarrow & \frac{\partial^{2} L}{\partial v^{2}}(\gamma(t), \dot{\gamma}(t)) \ddot{\gamma}(t)=\frac{\partial L}{\partial x}(\gamma(t), \dot{\gamma}(t))-\frac{\partial^{2} L}{\partial v \partial x}(\gamma(t), \dot{\gamma}(t)) \dot{\gamma}(t)
\end{aligned}
$$

- Legendre condition:

$$
\frac{\partial^{2} L}{\partial v^{2}}(x, v) \text { is non-degenerate } \forall(x, v) \in T M \Leftrightarrow \operatorname{det} \frac{\partial^{2} L}{\partial v^{2}}(x, v) \neq 0
$$

- Legendre-condition is met \Rightarrow we can solve for $\ddot{\gamma}(t)$ and we can define a vector field X_{L}, Euler-Lagrange vector field, on TM

$$
X_{L}(x, v)=\left(x, v, v, \tilde{X}_{L}(x, v)\right) \in T_{(x, v)} T M
$$

where \tilde{X}_{L} satisfies the equation above (corresponding to $\ddot{\gamma}$), and (if it exists) ϕ_{t}^{L} denotes the Euler-Lagrange flow

- Since L is C^{2}, X_{L} is just $C^{0} \Rightarrow$ we cannot apply the theorem on existence and uniqueness of solutions of ordinary differential equations (this would require X_{L} to be locally Lipschitz)

The Legendre transform and Tonelli-Lagrangians

Definition

Let L be a Lagrangian on M . We define the (global) Legendre transform as:

$$
\begin{equation*}
\text { Leg : } T M \rightarrow T^{*} M,(x, v) \mapsto \frac{\partial L}{\partial v}(x, v) \in T_{x}^{*} M \tag{3}
\end{equation*}
$$

Definition

We will call $L: T M \rightarrow \mathbb{R}$ a Tonelli-Lagrangian if:
(1) L is C^{2}
(2) $\forall(x, v) \in T M: \frac{\partial^{2} L}{\partial v^{2}}(x, v)$ is positive definite
(3) L is superlinear in each fiber:

$$
\begin{aligned}
& \forall x \in M: \lim _{\|v\|_{x} \rightarrow \infty} \frac{L(x, v)}{\|v\|_{x}}=+\infty \\
\Leftrightarrow & \forall x \in M, A \in \mathbb{R}, \exists B \in \mathbb{R}: L(x, v) \geq A\|v\|_{x}-B .
\end{aligned}
$$

- Since M is compact, the superlinearity is uniform over M and independent of the metric g.

Theorem

The (global) Legendre-transform Leg : TM $\rightarrow T^{*} M$ is a diffeomorphism if L is a Tonelli-Lagrangian.

Proof: Leg is fiber-preserving \Rightarrow we must only consider the restriction Leg $\left.\right|_{T_{x} M}: T_{x} M \rightarrow T_{x}^{*} M$. Proof with the following Lemma.

Lemma

Let V be (finite dimensional) vector space. For $F: V \rightarrow \mathbb{R}, C^{2}$ and strictly convex (Hess $F>0$) we have: F superlinear $\Leftrightarrow d F: V \rightarrow V^{*}$ is a diffeomorphism
,$\Rightarrow "$: Hess F is pos. def. $\Rightarrow d F$ is a local diffeomorphism by the inverse function theorem

- $d F$ is bijective:
\star surjectivity: For some $p_{0} \in V^{*}$ define $F^{p_{0}}: V \rightarrow \mathbb{R}$ by $F^{p_{0}}(v)=F(v)-p_{0}(v)$. This function is superlinear, thus it reaches its minimum for some $v_{0} \in V \Rightarrow$ $d F^{p_{0}}\left(v_{0}\right)=0 \Rightarrow d F\left(v_{0}\right)=p_{0}$.
\star injectivity: $\operatorname{Hess}^{F^{p_{0}}}$ pos. def. $\Rightarrow F^{p_{0}}$ can at most have one critical point
, $\Leftarrow^{\prime \prime}$: For some $k>0$, we define the compact set

$$
S_{k}:=\{v \in V \backslash\{0\}| | d F(v) \mid=k\} .
$$

Since $d F$ is a diffeomorphism, there exists a unique $v_{0} \in V$, such that

$$
d F\left(v_{0}\right)=\frac{k}{|v|}\langle v, \cdot\rangle,
$$

where $\langle\cdot, \cdot\rangle$ is some inner product on V. We have $d F\left(v_{0}\right) \in S_{k}$ and $d F\left(v_{0}\right) v=k|v|$. Thus by convexity of F we have:

$$
\begin{aligned}
F(v) & -F\left(v_{0}\right) \geq d F\left(v_{0}\right)\left[v-v_{0}\right] \\
F(v) & \geq d F\left(v_{0}\right) v+F\left(v_{0}\right)-d F\left(v_{0}\right) v_{0} \\
& \geq k|v|+\inf _{w \in S_{k}}\{F(w)-d F(w) w\}
\end{aligned}
$$

which shows, that F is superlinear.

Regularity of extremizers

Theorem

Let L be Tonelli. Then every extremizing curve $\gamma:[a, b] \rightarrow M$ is 'just as smooth as its Lagrangian L^{\prime}. That means if L is $C^{r}, r \geq 2$, then γ will be C^{r} as well.

Example

The electromagnetic Lagrangian

$$
L(x, v)=\frac{1}{2} g_{x}(v, v)+\theta_{x}(v)-U(x)
$$

where g is the Riemannian metric, $U: M \rightarrow \mathbb{R}$ and θ is a 1 -form.

- In physics the first term would correspond to the kinetic energy of particle
- the U-term corresponds to electromagnetic potential of the electric field \vec{E}
- the 1 -form θ corresponds to the 'vector potential' of the magnetic field \vec{B} It's solutions satisfy Newton's equation:

$$
{ }^{x} \nabla_{\partial_{t}} \dot{x}=-\nabla U(x)-Y_{x} \cdot \dot{x}
$$

where ${ }^{x} \nabla_{\partial_{t}}$ is the Levi-Civita connection. ∇U is the gradient of U with respect to g and the vector field Y is the Lorentz force defined by:

$$
g_{x}\left(Y_{x} \cdot u, v\right)=d \theta_{x}(u, v), \forall x \in M, u, v \in T_{x} M
$$

The Hamiltonian

Definition

Let L be Tonelli Leg: TM $\rightarrow T^{*} M$ the Legendre transform. We define the Hamiltonian H by

$$
\begin{equation*}
H: T^{*} M \rightarrow \mathbb{R}, H(x, p):=\left\langle p, \operatorname{Leg}^{-1}(x, p)\right\rangle_{x}-L\left(\operatorname{Leg}^{-1}(x, p)\right) \tag{4}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle_{x}$ is the canonical pairing between the tangent and cotangent bundles. We say that H is the Legendre dual of L.

Definition

We say that a Hamiltonian $H: T^{*} M \rightarrow \mathbb{R}$ is a Tonelli-Hamiltonian if:
(1) H is C^{2}
(2) $\frac{\partial^{2} H}{\partial p^{2}}(\cdot, \cdot)>0$
(3) H is superlinear in each fiber:

$$
\begin{aligned}
& \forall x \in M: \lim _{\|p\|_{x} \rightarrow \infty} \frac{H(x, p)}{\|p\|_{x}}=+\infty \\
\Leftrightarrow & \forall x \in M, A \in \mathbb{R}, \exists B \in \mathbb{R}: H(x, p) \geq A\|p\|_{x}-B .
\end{aligned}
$$

The Hamiltonian

Properties

Lemma

Let L be Tonelli and H its Legendre dual. Let $x \in M, v \in T_{x} M, p \in T_{x}^{*} M$, s.t. $p=\operatorname{Leg}(x, v)$. Then:
(i) $\frac{\partial H}{\partial p}(x, p)=v$
(ii) $\frac{\partial H}{\partial x}(x, p)=-\frac{\partial L}{\partial x}(x, v)$
(iii) H is Tonelli
(iv) (Fenchel inequality): $\forall p^{\prime} \in T_{x}^{*} M, v^{\prime} \in T_{x} M$:

$$
\left\langle p^{\prime}, v^{\prime}\right\rangle_{x} \leq L\left(x, v^{\prime}\right)+H\left(x, p^{\prime}\right)
$$

with equality if and only if $p^{\prime}=\operatorname{Leg}\left(x, v^{\prime}\right)$
(v) $H(x, p)=\sup _{v^{\prime} \in T_{x} M}\left[\left\langle p, v^{\prime}\right\rangle_{x}-L\left(x, v^{\prime}\right)\right]$

The Hamiltonian vector field X_{H}

First we define the tautological 1-form or Liouville form λ of $T^{*} M$, which is given by

$$
\lambda=\sum_{i=1}^{n} p_{i} d x^{i}
$$

in local coordinates.(This definition is independent from the used coordinates.) The canonical symplectic structure is then defined by $\omega=-d \lambda$, given in local coordinates by

$$
\omega=\sum_{i=1}^{n} d x^{i} \wedge d p_{i}
$$

This 2-form is closed and non-degenerate.

The Hamiltonian vector field X_{H}

Definition

The Hamiltonian vector field X_{H} is the vector field that satisfies the following equation:

$$
\omega\left(X_{H}(x, p), \cdot\right)=d_{(x, p)} H
$$

This means that the Hamiltonian vector field X_{H} is given in local coordinates by:

$$
X_{H}=\sum_{i=1}^{n} \frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial x^{i}}-\frac{\partial H}{\partial x^{i}} \frac{\partial}{\partial p_{i}}
$$

where $\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}, \frac{\partial}{\partial p_{1}}, \ldots, \frac{\partial}{\partial p_{n}}$ is a basis for $T_{(x, p)} T^{*} M$

The Hamiltonian equations and the Hamiltonian flow

- H is $C^{2} \Rightarrow X_{H}$ is C^{1} and can be locally integrated and its integral curves satisfy the Hamiltonian equations:

$$
\begin{aligned}
& \frac{\partial H}{\partial p}\left(x, p_{x}\right)=\dot{x} \\
& \frac{\partial H}{\partial x}\left(x, p_{x}\right)=-\dot{p}_{x}
\end{aligned}
$$

- We can then define the Hamiltonian flow ϕ_{t}^{H}.
- It turns out that H is an integral of motion, meaning it is constant along its integral curves, because

$$
\frac{d}{d t} H\left(\phi_{t}^{H}\right)=d H\left(\dot{\phi}_{t}^{H}\right)=d H\left(X_{H}\left(\phi_{t}^{H}\right)\right)=\omega\left(X_{H}\left(\phi_{t}^{H}\right), X_{H}\left(\phi_{t}^{H}\right)\right) \stackrel{\omega \text { antisymm. }}{=} 0 .
$$

- The sets $\left\{(x, p) \in T^{*} M \mid H(x, p)=K\right\}$ for all $K \in \mathbb{R}$ are compact (by superlinearity of H) and invariant by $\phi_{t}^{H} \Rightarrow \phi_{t}^{H}$ is complete.

Lagrangians and Hamiltonians

- The projection onto M of the solutions $\left(\gamma, p_{\gamma}\right)$ solve the Euler-Lagrange equation. And using (i) and (ii) from the Lemma above, we obtain:

$$
d_{(x, v)} \operatorname{Leg} \cdot X_{L}(x, v)=X_{H} \circ \operatorname{Leg}(x, v), \forall(x, v) \in T M
$$

In other words: The Lagrangian and Hamiltonian flows are conjugated by the Legendre transform:

$$
\begin{aligned}
\operatorname{Leg} \circ \phi_{t}^{L} & =\phi_{t}^{H} \circ \operatorname{Leg} \\
\phi_{t}^{L} & =\operatorname{Leg}^{-1} \circ \phi_{t}^{H} \circ \operatorname{Leg}
\end{aligned}
$$

- ϕ_{t}^{H} is well defined $\Rightarrow \phi_{t}^{L}$ is well defined \Rightarrow solutions to EL are unique
- ϕ_{t}^{H} is complete $\Rightarrow \phi_{t}^{L}$ is complete.

Theorem

$\gamma:[a, b] \rightarrow M$ is a solution to the Euler-Lagrange equation if and only if $\tilde{\gamma}:=\operatorname{Leg}(\gamma, \dot{\gamma}):[a, b] \rightarrow T^{*} M$ is a solution to the Hamiltonian equations

Minimizers of Tonelli-Lagrangians

- Lastly, if L is Tonelli \Rightarrow there exist special extremizers (minimizers), that minimize the action in $C_{x_{0}, x_{1}}^{2}([a, b], M ; \alpha)$
- Proof of existence in the next talk

Lagrangian \& and Hamiltonian vector fields

- The Euler-Lagrange vector field:

$$
\begin{aligned}
& \frac{\partial^{2} L}{\partial v^{2}}(x, v)\left(\tilde{X}_{L}(x, v), \cdot\right)=\frac{\partial L}{\partial x}(x, v)-\frac{\partial^{2} L}{\partial v \partial x}(x, v)(v, \cdot) \\
\Rightarrow & X_{L}(x, v)=\left(x, v, v, \tilde{X}_{L}(x, v)\right) \in T_{(x, v)} T M
\end{aligned}
$$

- derivation of the identity above:

$$
\begin{aligned}
& d_{(x, v)} \operatorname{Leg} \cdot X_{L}(x, v)=\left(x, p, v, \frac{\partial \operatorname{Leg}}{\partial x}(x, v)(v)+\frac{\partial \operatorname{Leg}}{\partial v}(x, v)\left(\tilde{X}_{L}(x, v)\right)\right) \\
& =\left(x, p, v, \frac{\partial^{2} L}{\partial v \partial x}(x, v)(v, \cdot)+\frac{\partial^{2} L}{\partial v^{2}}(x, v)\left(\tilde{X}_{L}(x, v), \cdot\right)\right) \\
& =\left(x, p, v, \frac{\partial L}{\partial x}(x, v)\right)=\left(x, p, \frac{\partial H}{\partial p}(x, p),-\frac{\partial H}{\partial x}(x, p)\right) \\
& =\left(x, p, \frac{\partial H}{\partial p} \circ \operatorname{Leg}(x, v),-\frac{\partial H}{\partial x} \circ \operatorname{Leg}(x, v)\right)=X_{H} \circ \operatorname{Leg}(x, v)
\end{aligned}
$$

Proof of compactness of $\left\{(x, p) \in T^{*} M \mid H(x, p)=K\right\} \forall K \in \mathbb{R}$

By uniform superlinearity we have

$$
K=H(x, p) \geq\|p\|_{x}-B
$$

for some $B \in \mathbb{R}$. Thus we have:

$$
\underbrace{\left\{(x, p) \in T^{*} M \mid H(x, p)=K\right\}}_{\text {closed }} \subseteq \underbrace{\left\{(x, p) \in T^{*} M \mid\|p\|_{x} \leq K+B\right\}}_{\text {compact }} .
$$

Fenchel-inequality

Fix some $x \in M$ and let $v \in T_{x} M$ and $p \in T_{x}^{*} M$ be arbitrary. We have $p=\frac{\partial L}{\partial v}(x, w)$ for some $w \in T_{x} M$:

$$
\begin{aligned}
L(x, v)+H(x, p)-p_{x}(v) & =L(x, v)-H\left(\frac{\partial L}{\partial v}(x, w)\right)-\frac{\partial L}{\partial v}(x, w)(v) \\
& =L(x, v)-L(x, w)-\frac{\partial L}{\partial v}(x, w)[v-w] \\
& \geq 0
\end{aligned}
$$

if L is convex. Since L is strictly convex, equality holds if and only if $v=w$.
Superlinearity is uniform over compact subsets of M, because for some $A \in(0,+\infty)$:

$$
\begin{aligned}
L(x, v) & \geq \max _{\|p\|_{x} \leq A}\left\{p_{x}(v)-H(x, p)\right\} \\
& \geq \max _{\|p\|_{x} \leq A}\left\{p_{x}(v)\right\}-\max _{\|p\|_{x} \leq A}\{H(x, p)\} \\
& \geq A\|v\|_{x}-\max \left\{H\left(x^{\prime}, p^{\prime}\right) \mid\left(x^{\prime}, p^{\prime}\right) \in T^{*} M,\left\|p^{\prime}\right\|_{x^{\prime}} \leq k\right\}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d t} \frac{\partial \tilde{\theta}}{\partial v^{i}}(x, \dot{x})-\frac{\partial \tilde{\theta}}{\partial x^{i}}(x, \dot{x}) & =\frac{d}{d t}\left(\theta_{x}^{i}\right)-\partial_{x^{i}} \theta_{x} \cdot \dot{x} \\
& =\sum_{j}\left[\partial_{x^{j}} \theta_{x}^{i} \cdot \dot{x}^{j}-\partial_{x^{i}} \theta_{x}^{j} \cdot \dot{x}^{j}\right] \\
& =\sum_{j}\left[\partial_{x^{j}} \theta_{x}^{i}-\partial_{x^{i}} \theta_{x}^{j}\right] \cdot \dot{x}^{j} \\
& =d \theta_{x}(\dot{x}, \cdot)
\end{aligned}
$$

