
The Setting

M is a smooth compact n-dimensional manifold without boundary with a
Riemannian metric g

tangent bundle TM, cotangent bundle T ∗M

We denote points by: x ∈ M, v ∈ TxM, p ∈ T ∗xM
⇒ (x , v) ∈ TM, (x , p) ∈ T ∗M

the by g induced vector norms on TxM and T ∗xM are both denoted by || · ||x
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Langragian and the action functional

Definition
A C 2 function L : TM → R is called a Lagrangian on M.

Definition
For x0, x1 ∈ M, a ≤ b we set

C 2
x0,x1([a, b],M) := {γ ∈ C 2([a, b],M)| γ(a) = x0, γ(b) = x1}.

Additionally given a homotopy class of paths between x0 and x1 α we define

C 2
x0,x1([a, b],M;α) := C 2

x0,x1([a, b],M) ∩ α.

Then the action A : C 2
x0,x1([a, b],M;α)→ R is given by:

A (γ) :=

∫ b

a
L(γ(t), γ̇(t)) dt
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Variation and extremizing curves

Definition
A C 2 variation Γ : (−ε, ε)× [a, b]→ M (also denoted by γs) of a C 2 curve
γ : [a, b]→ M is a C 2 mapping with ε > 0, s.t.

Γ(0, t) = γ(t), ∀t ∈ [a, b] and
Γ(s, a) = γ(a) and Γ(s, b) = γ(b), ∀s ∈ (−ε, ε).

Definition
A C 2 curve is called an extremizer or motion or just extremizing curve of the C 2

Lagrangian L, if
d

ds

∣∣∣∣
s=0

A (Γ(s, ·)) = 0

for each C 2 variation Γ : (−ε, ε)× [a, b]→ M
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Action extremizers and the Euler-Lagrange equation

Is there a different way to characterize those extremizing curves γ? Extremizing
curves are exactly the curves, that satisfy the Euler-Lagrange equation in local
coordinates:

d

dt

∂L

∂v
(γ(t), γ̇(t))− ∂L

∂x
(γ(t), γ̇(t)) = 0 (1)

Consider some variation Γ : (−ε, ε)× [a, b]→ M of an extremal curve
γ : [a, b]→ M. Consider the subdivision a = r0 < · · · < rm = b, such that each
γ([rk , rk+1]) is contained in some coordinate chart denoted by (Uk , ϕk).
We’ll set:

σ(t) :=
∂Γ

∂s
(0, t) and σk(t) := dγ(t)ϕk · σ(t) (2)
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Action minimizers and the Euler-Lagrange equation

0 !
=

d

ds

∣∣∣∣∣
s=0

A (Γ(s, ·)) =

∫ b

a

d

ds

∣∣∣∣∣
s=0

L(γ(t), γ̇(t)) dt

=
m−1∑
k=0

∫ rk+1

rk

(
∂L

∂x
(γ(t), γ̇(t))σk(t) +

∂L

∂v
(γ(t), γ̇(t))σ̇k(t)︸ ︷︷ ︸

= − d
dt
∂L
∂v

(γ,γ̇)σk+
d
dt (

∂L
∂v

(γ,γ̇)σk)

)
dt

=
m−1∑
k=0

∫ rk+1

rk

(
∂L

∂x
(γ(t), γ̇(t))− d

dt

∂L

∂v
(γ(t), γ̇(t))

)
︸ ︷︷ ︸

(∗)

σk(t) dt

+
m−1∑
k=0

(
∂L

∂v
(γ(rk+1), γ̇(rk+1))σk+1(rk+1)− ∂L

∂v
(γ(rk), γ̇(rk))σk(rk)

)
︸ ︷︷ ︸

telescope sum
= ∂L

∂v
(γ(b),γ̇(b))σm(b)− ∂L∂v (γ(a),γ̇(a))σ0(a) = 0
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Action extremizers and the Euler-Lagrange equation

Theorem
Let L be a C 2 Lagrangian on M and let γ : [a, b]→ M be a C 2 curve. Then:
(i) γ is extremal ⇒ ∀ [a′, b′] ⊆ [a, b], s.t. γ([a′, b′]) is contained in a chart

(U, φ), then γ|[a′,b′] solves the Euler-Lagrange equation.

(ii) If for every t ∈ [a, b] there exists an [a′, b′] ⊆ [a, b] containing t, s.t.
γ([a′, b′]) lies in an coordinate chart (U, ϕ) and γ|[a′,b′] solves the
Euler-Lagrange equation, then γ is an extremal curve.
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The Action functional and the Euler-Lagrange equation

For now we want to consider what happens to the Euler-Lagrange equation and
the action functional, when we add a function f : TM → R to our Lagrangian L.
How does this change look like?

Euler-Lagrange:

∂(L + f )

∂x
(γ, γ̇)− d

dt

∂(L + f )

∂v
(γ, γ̇) =

∂L

∂x
(γ, γ̇)− d

dt

∂L

∂v
(γ, γ̇)

+
∂f

∂x
(γ, γ̇)− d

dt

∂f

∂v
(γ, γ̇)︸ ︷︷ ︸

(1)

The action A :

Ã (γ) =

∫ b

a
(L + f )(γ, γ̇) dt = A (γ) +

∫ b

a
f (γ, γ̇) dt︸ ︷︷ ︸

(2)
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The Action functional and the Euler-Lagrange equation

First case: f : TM → R is a constant function with f = C for some C ∈ R.
⇒ (1) equal to 0 and (2) is equal to C (b − a)

Second case: consider the function θ̃ : TM → R, θ̃(x , v) := θx(v), where
θ ∈ Ω1(M) is a 1-form.
⇒ (1) is equal to the exterior derivative −dθx(ẋ , ·) = 0. If θ closed. (2) is a

constant and only depends on homotopy class α.
Let Γ be variation of γ:

d

ds

∫ b

a
θ̃(Γ(t)), Γ̇(t)) dt =

n−1∑
k=0

∫ rk+1

rk

(
∂θ̃

∂x
(γ(t), γ̇(t))− d

dt

∂θ̃

∂v
(γ(t), γ̇(t))

)
︸ ︷︷ ︸

= −dθγ(t)(γ̇(t),·) = 0

σk(t) dt = 0

If θ is exact, meaning θ = du, for some function u ∈ C∞(M)

⇒ (2) = u(x1)− u(x0) is independent of α
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The Legendre condition and the Euler-Lagrange vector field XL

We now want to study the Euler-Lagrange equation itself a little further.
Using chain rule, we can expand the EL to:

d

dt

∂L

∂v
(γ(t), γ̇(t)) =

∂2L

∂v∂x
(γ(t), γ̇(t))γ̇(t) +

∂2L

∂v2 (γ(t), γ̇(t))γ̈(t)

⇒ ∂2L

∂v2 (γ(t), γ̇(t))γ̈(t) =
∂L

∂x
(γ(t), γ̇(t))− ∂2L

∂v∂x
(γ(t), γ̇(t))γ̇(t)

Legendre condition:

∂2L

∂v2 (x , v) is non-degenerate ∀(x , v) ∈ TM ⇔ det
∂2L

∂v2 (x , v) 6= 0

Legendre-condition is met ⇒ we can solve for γ̈(t) and we can define a vector
field XL, Euler-Lagrange vector field, on TM

XL(x , v) = (x , v , v , X̃L(x , v)) ∈ T(x ,v)TM,

where X̃L satisfies the equation above (corresponding to γ̈), and (if it exists)
φLt denotes the Euler-Lagrange flow
Since L is C 2 , XL is just C 0 ⇒ we cannot apply the theorem on existence
and uniqueness of solutions of ordinary differential equations (this would
require XL to be locally Lipschitz)
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The Legendre transform and Tonelli-Lagrangians

Definition
Let L be a Lagrangian on M. We define the (global) Legendre transform as:

Leg : TM → T ∗M, (x , v) 7→ ∂L

∂v
(x , v) ∈ T ∗xM (3)

Definition
We will call L : TM → R a Tonelli-Lagrangian if:
(1) L is C 2

(2) ∀(x , v) ∈ TM: ∂
2L
∂v2 (x , v) is positive definite

(3) L is superlinear in each fiber:

∀x ∈ M : lim
||v ||x→∞

L(x , v)

||v ||x
= +∞

⇔ ∀x ∈ M,A ∈ R,∃B ∈ R : L(x , v) ≥ A||v ||x − B .

Since M is compact, the superlinearity is uniform over M and independent of
the metric g .
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Theorem
The (global) Legendre-transform Leg : TM → T ∗M is a diffeomorphism if L is a
Tonelli-Lagrangian.

Proof : Leg is fiber-preserving ⇒ we must only consider the restriction
Leg
∣∣
TxM

: TxM → T ∗xM. Proof with the following Lemma.

Lemma
Let V be (finite dimensional) vector space. For F : V → R, C 2 and strictly convex
(HessF > 0) we have: F superlinear⇔ dF : V → V ∗ is a diffeomorphism

„⇒“: I HessF is pos. def. ⇒ dF is a local diffeomorphism by the inverse function
theorem

I dF is bijective:
F surjectivity: For some p0 ∈ V ∗ define F p0 : V → R by F p0(v) = F (v)− p0(v).

This function is superlinear, thus it reaches its minimum for some v0 ∈ V ⇒
dF p0(v0) = 0 ⇒ dF (v0) = p0.

F injectivity: HessF p0 pos. def. ⇒ F p0 can at most have one critical point
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„⇐“: For some k > 0, we define the compact set

Sk := {v ∈ V \ {0}| |dF (v)| = k}.

Since dF is a diffeomorphism, there exists a unique v0 ∈ V , such that

dF (v0) =
k

|v |
〈v , ·〉,

where 〈·, ·〉 is some inner product on V . We have dF (v0) ∈ Sk and
dF (v0)v = k |v |. Thus by convexity of F we have:

F (v)− F (v0) ≥ dF (v0)[v − v0]

F (v) ≥ dF (v0)v + F (v0)− dF (v0)v0

≥ k |v |+ inf
w∈Sk
{F (w)− dF (w)w}

which shows, that F is superlinear.
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Regularity of extremizers

Theorem
Let L be Tonelli. Then every extremizing curve γ : [a, b]→ M is ’just as smooth as
its Lagrangian L’. That means if L is C r , r ≥ 2, then γ will be C r as well.
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Example
The electromagnetic Lagrangian

L(x , v) =
1
2
gx(v , v) + θx(v)− U(x)

where g is the Riemannian metric, U : M → R and θ is a 1-form.
In physics the first term would correspond to the kinetic energy of particle
the U-term corresponds to electromagnetic potential of the electric field ~E

the 1-form θ corresponds to the ’vector potential’ of the magnetic field ~B

It’s solutions satisfy Newton’s equation:

x∇∂t ẋ = −∇U(x)− Yx · ẋ

where x∇∂t is the Levi-Civita connection. ∇U is the gradient of U with respect to
g and the vector field Y is the Lorentz force defined by:

gx(Yx · u, v) = dθx(u, v), ∀x ∈ M, u, v ∈ TxM
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The Hamiltonian

Definition
Let L be Tonelli Leg : TM → T ∗M the Legendre transform. We define the
Hamiltonian H by

H : T ∗M → R, H(x , p) := 〈p, Leg−1(x , p)〉x − L(Leg−1(x , p)) (4)

where 〈·, ·〉x is the canonical pairing between the tangent and cotangent bundles.
We say that H is the Legendre dual of L.

Definition
We say that a Hamiltonian H : T ∗M → R is a Tonelli-Hamiltonian if:
(1) H is C 2

(2) ∂2H
∂p2 (·, ·) > 0

(3) H is superlinear in each fiber:

∀x ∈ M : lim
||p||x→∞

H(x , p)

||p||x
= +∞

⇔ ∀x ∈ M,A ∈ R, ∃B ∈ R : H(x , p) ≥ A||p||x − B .
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The Hamiltonian
Properties

Lemma

Let L be Tonelli and H its Legendre dual. Let x ∈ M, v ∈ TxM, p ∈ T ∗xM,
s.t. p = Leg(x , v). Then:
(i) ∂H

∂p (x , p) = v

(ii) ∂H
∂x (x , p) = −∂L

∂x (x , v)

(iii) H is Tonelli
(iv) (Fenchel inequality): ∀p′ ∈ T ∗xM, v ′ ∈ TxM:

〈p′, v ′〉x ≤ L(x , v ′) + H(x , p′)

with equality if and only if p′ = Leg(x , v ′)

(v) H(x , p) = supv ′∈TxM [〈p, v ′〉x − L(x , v ′)]
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The Hamiltonian vector field XH

First we define the tautological 1-form or Liouville form λ of T ∗M, which is given
by

λ =
n∑

i=1

pidx
i

in local coordinates.(This definition is independent from the used coordinates.)
The canonical symplectic structure is then defined by ω = −dλ, given in local
coordinates by

ω =
n∑

i=1

dx i ∧ dpi .

This 2-form is closed and non-degenerate.
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The Hamiltonian vector field XH

Definition
The Hamiltonian vector field XH is the vector field that satisfies the following
equation:

ω(XH(x , p), ·) = d(x ,p)H

This means that the Hamiltonian vector field XH is given in local coordinates by:

XH =
n∑

i=1

∂H

∂pi

∂

∂x i
− ∂H

∂x i
∂

∂pi

where ∂
∂x1 , . . . ,

∂
∂xn ,

∂
∂p1

, . . . , ∂
∂pn

is a basis for T(x ,p)T
∗M
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The Hamiltonian equations and the Hamiltonian flow

H is C 2 ⇒ XH is C 1 and can be locally integrated and its integral curves
satisfy the Hamiltonian equations:

∂H

∂p
(x , px) = ẋ

∂H

∂x
(x , px) = −ṗx

We can then define the Hamiltonian flow φHt .
It turns out that H is an integral of motion, meaning it is constant along its
integral curves, because

d

dt
H(φHt ) = dH(φ̇Ht ) = dH(XH(φHt )) = ω(XH(φHt ),XH(φHt ))

ω antisymm.
= 0.

The sets {(x , p) ∈ T ∗M| H(x , p) = K} for all K ∈ R are compact (by
superlinearity of H) and invariant by φHt ⇒ φHt is complete.

20. April 2020 19 / 27



Lagrangians and Hamiltonians

The projection onto M of the solutions (γ, pγ) solve the Euler-Lagrange
equation. And using (i) and (ii) from the Lemma above, we obtain:

d(x ,v)Leg · XL(x , v) = XH ◦ Leg(x , v), ∀(x , v) ∈ TM

In other words: The Lagrangian and Hamiltonian flows are conjugated by the
Legendre transform:

Leg ◦ φLt = φHt ◦ Leg
φLt = Leg−1 ◦ φHt ◦ Leg

φHt is well defined ⇒ φLt is well defined ⇒ solutions to EL are unique
φHt is complete ⇒ φLt is complete.

Theorem
γ : [a, b]→ M is a solution to the Euler-Lagrange equation if and only if
γ̃ := Leg(γ, γ̇) : [a, b]→ T ∗M is a solution to the Hamiltonian equations
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Minimizers of Tonelli-Lagrangians

Lastly, if L is Tonelli ⇒ there exist special extremizers (minimizers), that
minimize the action in C 2

x0,x1([a, b],M;α)

Proof of existence in the next talk
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Lagrangian & and Hamiltonian vector fields

The Euler-Lagrange vector field:

∂2L

∂v2 (x , v)(X̃L(x , v), · ) =
∂L

∂x
(x , v)− ∂2L

∂v∂x
(x , v)(v , · )

⇒ XL(x , v) = (x , v , v , X̃L(x , v)) ∈ T(x ,v)TM

derivation of the identity above:

d(x ,v)Leg · XL(x , v) = (x , p, v ,
∂ Leg
∂x

(x , v)(v) +
∂ Leg
∂v

(x , v)(X̃L(x , v)))

= (x , p, v ,
∂2L

∂v∂x
(x , v)(v , · ) +

∂2L

∂v2 (x , v)(X̃L(x , v), · ))

= (x , p, v ,
∂L

∂x
(x , v)) = (x , p,

∂H

∂p
(x , p),−∂H

∂x
(x , p))

= (x , p,
∂H

∂p
◦ Leg(x , v),−∂H

∂x
◦ Leg(x , v)) = XH ◦ Leg(x , v)
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Proof of compactness of {(x , p) ∈ T ∗M | H(x , p) = K} ∀K ∈ R

By uniform superlinearity we have

K = H(x , p) ≥ ||p||x − B

for some B ∈ R. Thus we have:

{(x , p) ∈ T ∗M| H(x , p) = K}︸ ︷︷ ︸
closed

⊆ {(x , p) ∈ T ∗M| ||p||x ≤ K + B}︸ ︷︷ ︸
compact

.
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Fenchel-inequality
Fix some x ∈ M and let v ∈ TxM and p ∈ T ∗xM be arbitrary. We have
p = ∂L

∂v (x ,w) for some w ∈ TxM:

L(x , v) + H(x , p)− px(v) = L(x , v)− H(
∂L

∂v
(x ,w))− ∂L

∂v
(x ,w)(v)

= L(x , v)− L(x ,w)− ∂L

∂v
(x ,w)[v − w ]

≥ 0,

if L is convex. Since L is strictly convex, equality holds if and only if v = w .

Superlinearity is uniform over compact subsets of M, because for some
A ∈ (0,+∞):

L(x , v) ≥ max
||p||x≤A

{px(v)− H(x , p)}

≥ max
||p||x≤A

{px(v)} − max
||p||x≤A

{H(x , p)}

≥ A||v ||x −max{H(x ′, p′)| (x ′, p′) ∈ T ∗M, ||p′||x ′ ≤ k}
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d

dt

∂θ̃

∂v i
(x , ẋ)− ∂θ̃

∂x i
(x , ẋ) =

d

dt
(θix)− ∂x i θx · ẋ

=
∑
j

[
∂x j θ

i
x · ẋ j − ∂x i θjx · ẋ j

]
=
∑
j

[
∂x j θ

i
x − ∂x i θjx

]
· ẋ j

= dθx(ẋ , ·)
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