- *M* is a smooth compact n-dimensional manifold without boundary with a Riemannian metric *g*
- tangent bundle TM, cotangent bundle T^*M
- We denote points by: $x \in M$, $v \in T_xM$, $p \in T_x^*M$ $\Rightarrow (x, v) \in TM$, $(x, p) \in T^*M$
- the by g induced vector norms on T_xM and T_x^*M are both denoted by $||\cdot||_x$

Langragian and the action functional

Definition

A C^2 function $L: TM \to \mathbb{R}$ is called a Lagrangian on M.

Definition

For $x_0, x_1 \in M$, $a \leq b$ we set

$$C^2_{x_0,x_1}([a,b],M) := \{ \gamma \in C^2([a,b],M) | \ \gamma(a) = x_0, \gamma(b) = x_1 \}.$$

Additionally given a homotopy class of paths between x_0 and $x_1 \alpha$ we define

$$C^2_{x_0,x_1}([a,b],M;\alpha):=C^2_{x_0,x_1}([a,b],M)\cap\alpha.$$

Then the action $\mathscr{A} : C^2_{x_0,x_1}([a,b],M;\alpha) \to \mathbb{R}$ is given by:

$$\mathscr{A}(\gamma) := \int_a^b L(\gamma(t), \dot{\gamma}(t)) dt$$

- 31

イロン 不留 とうほう 不良 と

Variation and extremizing curves

Definition

A C^2 variation $\Gamma : (-\varepsilon, \varepsilon) \times [a, b] \to M$ (also denoted by γ_s) of a C^2 curve $\gamma : [a, b] \to M$ is a C^2 mapping with $\varepsilon > 0$, s.t. • $\Gamma(0, t) = \gamma(t), \forall t \in [a, b]$ and • $\Gamma(s, a) = \gamma(a)$ and $\Gamma(s, b) = \gamma(b), \forall s \in (-\varepsilon, \varepsilon)$.

Definition

A C^2 curve is called an extremizer or motion or just extremizing curve of the C^2 Lagrangian L, if

$$\left.\frac{d}{ds}\right|_{s=0}\mathscr{A}(\Gamma(s,\cdot))=0$$

for each C^2 variation $\Gamma: (-\varepsilon, \varepsilon) \times [a, b] \to M$

(日) (四) (日) (日) (日)

Action extremizers and the Euler-Lagrange equation

Is there a different way to characterize those extremizing curves γ ? Extremizing curves are exactly the curves, that satisfy the Euler-Lagrange equation in local coordinates:

$$\frac{d}{dt}\frac{\partial L}{\partial v}(\gamma(t),\dot{\gamma}(t)) - \frac{\partial L}{\partial x}(\gamma(t),\dot{\gamma}(t)) = 0$$
(1)

Consider some variation $\Gamma : (-\varepsilon, \varepsilon) \times [a, b] \to M$ of an extremal curve $\gamma : [a, b] \to M$. Consider the subdivision $a = r_0 < \cdots < r_m = b$, such that each $\gamma([r_k, r_{k+1}])$ is contained in some coordinate chart denoted by (U_k, φ_k) . We'll set:

$$\sigma(t) := \frac{\partial \Gamma}{\partial s}(0, t) \text{ and } \sigma_k(t) := d_{\gamma(t)}\varphi_k \cdot \sigma(t)$$
(2)

(日) (四) (日) (日) (日)

Action minimizers and the Euler-Lagrange equation

$$D \stackrel{!}{=} \frac{d}{ds} \bigg|_{s=0} \mathscr{A}(\Gamma(s,\cdot)) = \int_{a}^{b} \frac{d}{ds} \bigg|_{s=0} L(\gamma(t),\dot{\gamma}(t)) dt$$

$$= \sum_{k=0}^{m-1} \int_{r_{k}}^{r_{k+1}} \left(\frac{\partial L}{\partial x}(\gamma(t),\dot{\gamma}(t))\sigma_{k}(t) + \frac{\partial L}{\partial v}(\gamma(t),\dot{\gamma}(t))\dot{\sigma}_{k}(t) \right) dt$$

$$= -\frac{d}{dt} \frac{\partial L}{\partial v}(\gamma(t),\dot{\gamma}(t)) - \frac{d}{dt} \frac{\partial L}{\partial v}(\gamma(t),\dot{\gamma}(t)) \right) \sigma_{k}(t) dt$$

$$= \sum_{k=0}^{m-1} \int_{r_{k}}^{r_{k+1}} \underbrace{\left(\frac{\partial L}{\partial x}(\gamma(t),\dot{\gamma}(t)) - \frac{d}{dt} \frac{\partial L}{\partial v}(\gamma(t),\dot{\gamma}(t)) \right)}_{(*)} \sigma_{k}(t) dt$$

$$+ \underbrace{\sum_{k=0}^{m-1} \left(\frac{\partial L}{\partial v}(\gamma(r_{k+1}),\dot{\gamma}(r_{k+1}))\sigma_{k+1}(r_{k+1}) - \frac{\partial L}{\partial v}(\gamma(r_{k}),\dot{\gamma}(r_{k}))\sigma_{k}(r_{k}) \right)}_{\text{telescope sum } \frac{\partial L}{\partial v}(\gamma(b),\dot{\gamma}(b))\sigma_{m}(b) - \frac{\partial L}{\partial v}(\gamma(a),\dot{\gamma}(a))\sigma_{0}(a) = 0}$$

Image: A match a ma

Action extremizers and the Euler-Lagrange equation

Theorem

Let L be a C² Lagrangian on M and let γ : [a, b] → M be a C² curve. Then:
(i) γ is extremal ⇒ ∀ [a', b'] ⊆ [a, b], s.t. γ([a', b']) is contained in a chart (U, φ), then γ|_[a',b'] solves the Euler-Lagrange equation.
(ii) If for every t ∈ [a, b] there exists an [a', b'] ⊆ [a, b] containing t, s.t. γ([a', b']) lies in an coordinate chart (U, φ) and γ|_[a',b'] solves the Euler-Lagrange equation, then γ is an extremal curve.

(日)

The Action functional and the Euler-Lagrange equation

For now we want to consider what happens to the Euler-Lagrange equation and the action functional, when we add a function $f : TM \to \mathbb{R}$ to our Lagrangian L. How does this change look like?

Euler-Lagrange:

$$\frac{\partial(L+f)}{\partial x}(\gamma,\dot{\gamma}) - \frac{d}{dt}\frac{\partial(L+f)}{\partial v}(\gamma,\dot{\gamma}) = \frac{\partial L}{\partial x}(\gamma,\dot{\gamma}) - \frac{d}{dt}\frac{\partial L}{\partial v}(\gamma,\dot{\gamma}) + \underbrace{\frac{\partial f}{\partial x}(\gamma,\dot{\gamma}) - \frac{d}{dt}\frac{\partial f}{\partial v}(\gamma,\dot{\gamma})}_{(1)}$$

The action \mathscr{A} :

$$\tilde{\mathscr{A}}(\gamma) = \int_{a}^{b} (L+f)(\gamma,\dot{\gamma}) \, dt = \mathscr{A}(\gamma) + \underbrace{\int_{a}^{b} f(\gamma,\dot{\gamma}) \, dt}_{(2)}$$

< □ > < 同 > < 回 > < 回 > < 回

The Action functional and the Euler-Lagrange equation

First case: $f : TM \to \mathbb{R}$ is a constant function with f = C for some $C \in \mathbb{R}$. \Rightarrow (1) equal to 0 and (2) is equal to C(b - a)

Second case: consider the function $\tilde{\theta}$: $TM \to \mathbb{R}$, $\tilde{\theta}(x, v) := \theta_x(v)$, where $\theta \in \Omega^1(M)$ is a 1-form.

⇒ (1) is equal to the exterior derivative $-d\theta_x(\dot{x}, \cdot) = 0$. If θ closed. (2) is a constant and only depends on homotopy class α . Let Γ be variation of γ :

$$\frac{d}{ds} \int_{a}^{b} \tilde{\theta}(\Gamma(t)), \dot{\Gamma}(t)) dt = \sum_{k=0}^{n-1} \int_{r_{k}}^{r_{k+1}} \underbrace{\left(\frac{\partial \tilde{\theta}}{\partial x}(\gamma(t), \dot{\gamma}(t)) - \frac{d}{dt}\frac{\partial \tilde{\theta}}{\partial v}(\gamma(t), \dot{\gamma}(t))\right)}_{= -d\theta_{\gamma(t)}(\dot{\gamma}(t), \cdot) = 0} \sigma_{k}(t) dt = 0$$

If θ is exact, meaning $\theta = du$, for some function $u \in C^{\infty}(M)$ $\Rightarrow (2) = u(x_1) - u(x_0)$ is independent of α

イロト イポト イヨト イヨト

The Legendre condition and the Euler-Lagrange vector field X_L

• We now want to study the Euler-Lagrange equation itself a little further. Using chain rule, we can expand the EL to:

$$\frac{d}{dt}\frac{\partial L}{\partial v}(\gamma(t),\dot{\gamma}(t)) = \frac{\partial^2 L}{\partial v \partial x}(\gamma(t),\dot{\gamma}(t))\dot{\gamma}(t) + \frac{\partial^2 L}{\partial v^2}(\gamma(t),\dot{\gamma}(t))\ddot{\gamma}(t)$$
$$\Rightarrow \frac{\partial^2 L}{\partial v^2}(\gamma(t),\dot{\gamma}(t))\ddot{\gamma}(t) = \frac{\partial L}{\partial x}(\gamma(t),\dot{\gamma}(t)) - \frac{\partial^2 L}{\partial v \partial x}(\gamma(t),\dot{\gamma}(t))\dot{\gamma}(t)$$

• Legendre condition:

$$\frac{\partial^2 L}{\partial v^2}(x,v) \text{ is non-degenerate } \forall (x,v) \in \mathit{TM} \Leftrightarrow \det \frac{\partial^2 L}{\partial v^2}(x,v) \neq 0$$

 Legendre-condition is met ⇒ we can solve for γ(t) and we can define a vector field X_L, Euler-Lagrange vector field, on TM

$$X_L(x,v) = (x,v,v, ilde{X}_L(x,v)) \in T_{(x,v)}TM$$
,

where \tilde{X}_L satisfies the equation above (corresponding to $\ddot{\gamma}$), and (if it exists) ϕ_t^L denotes the *Euler-Lagrange flow*

• Since L is C^2 , X_L is just $C^0 \Rightarrow$ we cannot apply the theorem on existence and uniqueness of solutions of ordinary differential equations (this would require X_L to be locally Lipschitz)

The Legendre transform and Tonelli-Lagrangians

Definition

Let L be a Lagrangian on M. We define the (global) Legendre transform as:

Leg:
$$TM \to T^*M, \ (x, v) \mapsto \frac{\partial L}{\partial v}(x, v) \in T^*_xM$$
 (3)

Definition

We will call $L: TM \rightarrow \mathbb{R}$ a Tonelli-Lagrangian if:

(1) *L* is C^2

- (2) $\forall (x, v) \in TM: \frac{\partial^2 L}{\partial v^2}(x, v)$ is positive definite
- (3) L is superlinear in each fiber:

$$\forall x \in M : \lim_{||v||_x \to \infty} \frac{L(x, v)}{||v||_x} = +\infty$$

$$\Leftrightarrow \forall x \in M, A \in \mathbb{R}, \exists B \in \mathbb{R} : L(x, v) \ge A ||v||_x - B$$

• Since *M* is compact, the superlinearity is uniform over *M* and independent of the metric *g*.

Theorem

The (global) Legendre-transform Leg : $TM \rightarrow T^*M$ is a diffeomorphism if L is a Tonelli-Lagrangian.

Proof: Leg is fiber-preserving \Rightarrow we must only consider the restriction $\text{Leg}|_{T \times M} : T_X M \to T_X^* M$. Proof with the following Lemma.

Lemma

Let V be (finite dimensional) vector space. For $F : V \to \mathbb{R}$, C^2 and strictly convex (HessF > 0) we have: F superlinear $\Leftrightarrow dF : V \to V^*$ is a diffeomorphism

- $,,\Rightarrow$ ": Hess*F* is pos. def. \Rightarrow *dF* is a local diffeomorphism by the inverse function theorem
 - *dF* is bijective:
 - ★ surjectivity: For some $p_0 \in V^*$ define $F^{p_0} : V \to \mathbb{R}$ by $F^{p_0}(v) = F(v) p_0(v)$. This function is superlinear, thus it reaches its minimum for some $v_0 \in V \Rightarrow dF^{p_0}(v_0) = 0 \Rightarrow dF(v_0) = p_0$.
 - ★ injectivity: $HessF^{p_0}$ pos. def. \Rightarrow F^{p_0} can at most have one critical point

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の々で

" \Leftarrow ": For some k > 0, we define the compact set

$$S_k := \{v \in V \setminus \{0\} | |dF(v)| = k\}.$$

Since *dF* is a diffeomorphism, there exists a unique $v_0 \in V$, such that

$$dF(v_0) = \frac{k}{|v|} \langle v, \cdot \rangle$$

where $\langle \cdot, \cdot \rangle$ is some inner product on V. We have $dF(v_0) \in S_k$ and $dF(v_0)v = k|v|$. Thus by convexity of F we have:

$$F(v) - F(v_0) \ge dF(v_0)[v - v_0]$$

$$F(v) \ge dF(v_0)v + F(v_0) - dF(v_0)v_0$$

$$\ge k|v| + \inf_{w \in S_k} \{F(w) - dF(w)w\}$$

which shows, that F is superlinear.

Image: A math a math

Regularity of extremizers

Theorem

Let L be Tonelli. Then every extremizing curve $\gamma : [a, b] \to M$ is 'just as smooth as its Lagrangian L'. That means if L is C^r , $r \ge 2$, then γ will be C^r as well.

Example

The electromagnetic Lagrangian

$$L(x,v) = \frac{1}{2}g_x(v,v) + \theta_x(v) - U(x)$$

where g is the Riemannian metric, $U: M \to \mathbb{R}$ and θ is a 1-form.

- In physics the first term would correspond to the kinetic energy of particle
- the U-term corresponds to electromagnetic potential of the electric field \vec{E}

• the 1-form θ corresponds to the 'vector potential' of the magnetic field \vec{B} It's solutions satisfy Newton's equation:

$$^{x}
abla_{\partial_{t}}\dot{x} = -
abla U(x) - Y_{x}\cdot\dot{x}$$

where ${}^{\times}\nabla_{\partial_t}$ is the Levi-Civita connection. ∇U is the gradient of U with respect to g and the vector field Y is the Lorentz force defined by:

$$g_x(Y_x \cdot u, v) = d\theta_x(u, v), \ \forall x \in M, \ u, v \in T_x M$$

• • • • • • • • • • •

The Hamiltonian

Definition

Let *L* be Tonelli Leg : $TM \rightarrow T^*M$ the Legendre transform. We define the *Hamiltonian H* by

$$H: T^*M \to \mathbb{R}, \ H(x,p) := \langle p, \operatorname{Leg}^{-1}(x,p) \rangle_x - L(\operatorname{Leg}^{-1}(x,p))$$
(4)

where $\langle \cdot, \cdot \rangle_{\times}$ is the canonical pairing between the tangent and cotangent bundles. We say that *H* is the Legendre dual of *L*.

Definition

We say that a Hamiltonian $H: T^*M \to \mathbb{R}$ is a Tonelli-Hamiltonian if:

(1) H is C^2

(2)
$$\frac{\partial^2 H}{\partial \rho^2}(\cdot, \cdot) > 0$$

(3) H is superlinear in each fiber:

$$\forall x \in M : \lim_{||p||_x \to \infty} \frac{H(x, p)}{||p||_x} = +\infty$$

$$\Leftrightarrow \forall x \in M, A \in \mathbb{R}, \exists B \in \mathbb{R} : H(x, p) \ge A ||p||_x - B.$$

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Hamiltonian

Properties

Lemma

Let L be Tonelli and H its Legendre dual. Let $x \in M$, $v \in T_xM$, $p \in T_x^*M$, s.t. p = Leg(x, v). Then: (i) $\frac{\partial H}{\partial p}(x,p) = v$ (ii) $\frac{\partial H}{\partial x}(x,p) = -\frac{\partial L}{\partial x}(x,v)$ (iii) H is Tonelli (iv) (Fenchel inequality): $\forall p' \in T^*_{*}M, v' \in T_{*}M$: $\langle p', v' \rangle_x < L(x, v') + H(x, p')$ with equality if and only if p' = Leg(x, v')(v) $H(x,p) = \sup_{v' \in T,M} [\langle p, v' \rangle_x - L(x,v')]$

• • • • • • • • • • • •

The Hamiltonian vector field X_H

First we define the tautological 1-form or Liouville form λ of T^*M , which is given by

$$\lambda = \sum_{i=1}^{n} p_i dx^i$$

in local coordinates.(This definition is independent from the used coordinates.) The canonical symplectic structure is then defined by $\omega = -d\lambda$, given in local coordinates by

$$\omega = \sum_{i=1}^n dx^i \wedge dp_i.$$

This 2-form is closed and non-degenerate.

The Hamiltonian vector field X_H

Definition

The Hamiltonian vector field X_H is the vector field that satisfies the following equation:

$$\omega(X_H(x,p),\cdot)=d_{(x,p)}H$$

This means that the Hamiltonian vector field X_H is given in local coordinates by:

$$X_{H} = \sum_{i=1}^{n} \frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial x^{i}} - \frac{\partial H}{\partial x^{i}} \frac{\partial}{\partial p_{i}}$$

where $\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n}, \frac{\partial}{\partial p_1}, \ldots, \frac{\partial}{\partial p_n}$ is a basis for $T_{(x,p)}T^*M$

The Hamiltonian equations and the Hamiltonian flow

H is C² ⇒ X_H is C¹ and can be locally integrated and its integral curves satisfy the *Hamiltonian equations*:

$$\frac{\partial H}{\partial p}(x, p_x) = \dot{x}$$
$$\frac{\partial H}{\partial x}(x, p_x) = -\dot{p}_x$$

- We can then define the Hamiltonian flow ϕ_t^H .
- It turns out that H is an integral of motion, meaning it is constant along its integral curves, because

$$\frac{d}{dt}H(\phi_t^H) = dH(\dot{\phi}_t^H) = dH(X_H(\phi_t^H)) = \omega(X_H(\phi_t^H), X_H(\phi_t^H)) \stackrel{\omega \text{ antisymm.}}{=} 0.$$

The sets {(x, p) ∈ T*M| H(x, p) = K} for all K ∈ ℝ are compact (by superlinearity of H) and invariant by φ^H_t ⇒ φ^H_t is complete.

(日) (四) (日) (日) (日)

Lagrangians and Hamiltonians

The projection onto *M* of the solutions (γ, *p*_γ) solve the Euler-Lagrange equation. And using (i) and (ii) from the Lemma above, we obtain:

$$d_{(x,v)} \text{Leg} \cdot X_L(x,v) = X_H \circ \text{Leg}(x,v), \ \forall (x,v) \in TM$$

In other words: The Lagrangian and Hamiltonian flows are conjugated by the Legendre transform:

$$\begin{split} \mathsf{Leg} \circ \phi_t^L &= \phi_t^H \circ \mathsf{Leg} \\ \phi_t^L &= \mathsf{Leg}^{-1} \circ \phi_t^H \circ \mathsf{Leg} \end{split}$$

• ϕ_t^H is well defined $\Rightarrow \phi_t^L$ is well defined \Rightarrow solutions to EL are unique • ϕ_t^H is complete $\Rightarrow \phi_t^L$ is complete.

Theorem

 $\gamma : [a, b] \to M$ is a solution to the Euler-Lagrange equation if and only if $\tilde{\gamma} := Leg(\gamma, \dot{\gamma}) : [a, b] \to T^*M$ is a solution to the Hamiltonian equations

(日) (四) (日) (日) (日)

Minimizers of Tonelli-Lagrangians

- Lastly, if L is Tonelli ⇒ there exist special extremizers (minimizers), that minimize the action in C²_{x0,x1}([a, b], M; α)
- Proof of existence in the next talk

Lagrangian & and Hamiltonian vector fields

• The Euler-Lagrange vector field:

$$\frac{\partial^2 L}{\partial v^2}(x,v)(\tilde{X}_L(x,v),\cdot) = \frac{\partial L}{\partial x}(x,v) - \frac{\partial^2 L}{\partial v \partial x}(x,v)(v,\cdot)$$
$$\Rightarrow X_L(x,v) = (x,v,v,\tilde{X}_L(x,v)) \in T_{(x,v)}TM$$

• derivation of the identity above:

$$d_{(x,v)} \operatorname{Leg} \cdot X_{L}(x,v) = (x, p, v, \frac{\partial \operatorname{Leg}}{\partial x}(x, v)(v) + \frac{\partial \operatorname{Leg}}{\partial v}(x, v)(\tilde{X}_{L}(x, v)))$$

= $(x, p, v, \frac{\partial^{2}L}{\partial v \partial x}(x, v)(v, \cdot) + \frac{\partial^{2}L}{\partial v^{2}}(x, v)(\tilde{X}_{L}(x, v), \cdot))$
= $(x, p, v, \frac{\partial L}{\partial x}(x, v)) = (x, p, \frac{\partial H}{\partial p}(x, p), -\frac{\partial H}{\partial x}(x, p))$
= $(x, p, \frac{\partial H}{\partial p} \circ \operatorname{Leg}(x, v), -\frac{\partial H}{\partial x} \circ \operatorname{Leg}(x, v)) = X_{H} \circ \operatorname{Leg}(x, v)$

Image: A matrix and a matrix

Proof of compactness of $\{(x, p) \in T^*M | H(x, p) = K\} \forall K \in \mathbb{R}$

By uniform superlinearity we have

$$K = H(x, p) \ge ||p||_x - B$$

for some $B \in \mathbb{R}$. Thus we have:

$$\underbrace{\{(x,p)\in T^*M| \ H(x,p)=K\}}_{\text{closed}}\subseteq \underbrace{\{(x,p)\in T^*M| \ ||p||_x\leq K+B\}}_{\text{compact}}.$$

Image: A matrix and a matrix

Fenchel-inequality

Fix some $x \in M$ and let $v \in T_x M$ and $p \in T_x^* M$ be arbitrary. We have $p = \frac{\partial L}{\partial v}(x, w)$ for some $w \in T_x M$:

$$L(x,v) + H(x,p) - p_{x}(v) = L(x,v) - H(\frac{\partial L}{\partial v}(x,w)) - \frac{\partial L}{\partial v}(x,w)(v)$$
$$= L(x,v) - L(x,w) - \frac{\partial L}{\partial v}(x,w)[v-w]$$
$$\geq 0,$$

if L is convex. Since L is strictly convex, equality holds if and only if v = w. Superlinearity is uniform over compact subsets of M, because for some $A \in (0, +\infty)$:

$$L(x, v) \ge \max_{||p||_x \le A} \{p_x(v) - H(x, p)\}$$

$$\ge \max_{||p||_x \le A} \{p_x(v)\} - \max_{||p||_x \le A} \{H(x, p)\}$$

$$\ge A||v||_x - \max\{H(x', p')| \ (x', p') \in T^*M, ||p'||_{x'} \le k\}$$

• • • • • • • • • • •

$$\begin{aligned} \frac{d}{dt} \frac{\partial \tilde{\theta}}{\partial v^{i}}(x, \dot{x}) &- \frac{\partial \tilde{\theta}}{\partial x^{i}}(x, \dot{x}) = \frac{d}{dt}(\theta^{i}_{x}) - \partial_{x^{i}}\theta_{x} \cdot \dot{x} \\ &= \sum_{j} \left[\partial_{x^{j}}\theta^{j}_{x} \cdot \dot{x}^{j} - \partial_{x^{i}}\theta^{j}_{x} \cdot \dot{x}^{j} \right] \\ &= \sum_{j} \left[\partial_{x^{j}}\theta^{i}_{x} - \partial_{x^{j}}\theta^{j}_{x} \right] \cdot \dot{x}^{j} \\ &= d\theta_{x}(\dot{x}, \cdot) \end{aligned}$$

20. April 2020 25 / 27

・ロト・西ト・モート・モー シックシ