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Lax-Oleinik semi-group and weak KAM solutions

The goal of this talk is to prove the existence of weak KAM solutions. Indeed, we will
show:

Theorem. (Existence of negative weak KAM solutions). Let L be a Tonelli Lagrangian
on a compact connected manifold M. Then there exists a continuous weak KAM solution
of negative type with the Mané critical value as the constant.

The key to the proof of this theorem will be provided by the Lax-Oleinik semi-group.

0 Recap

Let us at first recall some assumptions, notions and definitions. In the following we as-
sume that M is a compact connected manifold. Let C}.,([a,b], M) denote the set of
piecewise continuous curves from an interval [a,b] to M and Ay () the action of a curve
v € Cpplla,b], M) with respect to a Tonelli Lagrangian L on M; the set of arbitrary,
respectively bounded, functions from M to X C (RU{=£oo}) is denoted by F (M, X), re-
spectively B(M, X). We also need the notions of the minimal action, dominated functions

and calibrated curves.
Definition 0.1. (Minimal action, dominated functions and calibrated curves).

(i) (Minimal action). Let L be a Tonelli Lagrangian on M. For ¢ > 0 we define the
minimal action h; : M x M — R as

t

hi(x,y) == inf L(v(s),5(s))ds = inf Ap(v) (1)
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with the infimum taken over all curves v € CL_ ([0, ], M) with v(0) = x and v(¢) = y.

pcw

(ii) (Dominated functions). Let u : M — R and ¢ € R. We say that u is dominated by
L + c and write u < L + c if

b

u(y(9)) = u(r(@)) < [ L(3(5), 3(3))ds + b = a) = Avi(5)

a

for all curves v € CL. ([a,b], M).

pcw

(iii) (Calibrated curves). We say that a curve v € C},, (I, M) is (u, L, c)-calibrated in
regard to u : M — R and ¢ € R if

u (1) —ux(0) = [ L), A(5))s + elt' — 1) = Aprelalen) Vo<t T

Remark. (i) We recall that h; is well defined since M is connected; it is finite valued
by the superlinearity of L and the compactness of M. Furthermore, the infimum on
the right side of (1) is indeed a minimum by Tonelli’s theorem. We also note that h;
is continuous on M x M by the following lemma of Fleming.

(ii) Let u : M — R. Then it suffices for u to be Lipschitz that u < L+ ¢ for a ¢ € R (see
[Fat08, proposition 4.2.1]).
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(iii) We know that for every extremal curve v : I — M of the Tonelli Lagrangian all
restrictions 7y|p for any subinterval I’ C I are still extremal. Thus, under the
assumption that v < L + ¢, with theorem 0.3 it suffices to show that a curve

v e Cl ([to,tﬂ,M) fulfils

pcw

t1

u(y(t) = uy(to)) = [ " L(y(s),5(s))ds +eltr — t) 2)
0

to verify that it is (u, L, ¢)- calibrated. Therefore it is important to observe from the

proof of theorem 0.3 that the statement given there only requires the calibration of

the curve with respect to its endpoints as in (2).

It is also worth mentioning Fleming’s Lemma which states the following very important
property of the minimal action (for the proof see [Fat08, theorem 4.4.3]):

Theorem 0.2. (Fleming’s Lemma). For each to > 0 there exists a constant ky, € [0,00)
such that, for each t > tg the minimal action is Lipschitzian with a Lipschitz constant
S Rig - O

The concept of dominated functions and calibrated curves is important because to-
gether they provide extremal curves of the Tonelli Lagrangian (compare [Fat08, theorem
4.1.9]).

Theorem 0.3. (Calibrated curves are minimizers). Let uw : M — R be a function and
¢ € R such that u < L+c. If vy € C} (I, M) is (u, L, ¢)-calibrated, then it is a minimizer
of the Tonelli Lagrangian L. O

At last we state again what a (negative) weak KAM solution is since our goal is to
prove their existence:

Definition 0.4. (Negative weak KAM solutions). A weak KAM solution of negative type
for a constant ¢ € R is a function u : M — R with the following properties:

(i) u < L+ec,

(ii) For every x € M there exists a (u, L, ¢)-calibrated C'-curve v : (—o0,0] — M with
7(0) = .

Remark. A weak KAM solution can only have the Mané critical value, which we denote
by Cp, as a constant (see [Fat08, corollary 4.3.7]). Therefore it will suffice to show the
existence of a weak KAM solution for an arbitrary constant.

1 Main

Our first step will be defining semi-groups. We will then introduce the Lax-Oleinik semi-
group and state some important properties of it. Furthermore we will find an equivalent
formulation of weak KAM solutions in terms of the Lax-Oleinik semi-group and fixed
points. Using this reformulation, we will give two proofs of the existence of negative weak
KAM solutions.
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1.1 Semi-groups

Definition 1.1. (Semi-group). A (continuous) semi-group (5,7 is a set S with an
operation *x : S x § — S and a neutral element Id, together with an associative map
T :]0,00) — S that is compatible with % in the following sense:

T0)=1I1d and T(s+t)=T(s)xT(t) Vs, t € [0,00).

In the most general definition a semi-group is just a set with a binary associative
operation; but definition 1.1 is more what we need here since it stresses the continuous
structure of the Lax-Oleinik semi-group. We will now set S := O(X) which is the set of
operators on a Banach space X.

Definition 1.2. (Strong continuity). We call a semi-group (O(X), T') strongly continuous
if

IimT(t)z =z VreX.

t—0
Proposition 1.3. (Continuity). Let (O(X),T) be a strongly continuous semi-group.
Then the map t — T(t)x is continuous for all z € X and all t > 0. O
1.2 The Lax-Oleinik semi-group

Definition and proposition 1.4. (Lax-Oleinik semi-group). The Lax-Oleinik semi-
group (LOS) is the semi-group (O(F (M, [—o0, +o¢])), T~ ) with the operator T, = T~ ()
defined as
t
Tru(@) =T (@) =, b () + [ Lo().4()ds] (8)
inf
yeCE ([0,],M) y(t)=2

YEChen (0.8, (¢
[u(~(0)) + AL(7)]

Jnf [u(y) + he(y, 2)]
for t > 0. For t =0 we set T, u := u. U
Remark. The LOS indeed fulfils the semigroup properties since T,,;, =T, o T} .

The first property of the LOS we want to show is its strong continuity.

Proposition 1.5. (Strong continuity of the LOS). The LOS is strongly continuous for
u € CO°(M,R) with respect to the supremum-norm.

Proof. Since C'(M,R) D C®(M,R) is dense in (C°(M,R),]| - ||) and the LOS is non-
expansive by proposition 1.8, it is enough to show the statement for Lipschitz u. Let K
be the Lipschitz constant of uw. Since M is compact and L is superlinear there exists a
constant C'k such that

L(z,v) > K|jv||+ Cx ¥Y(x,v) € TM.

It follows that for every curve v : [0,t] — M we have

[ B AGD)ds > Kd(3(0), (1) + Oxt
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Since the Lipschitz constant of v is K, we conclude that

[ L6 AN + u3(0)) 2 ur(8) + Cit

which yields
T, u(x) > u(x) + Ckt. (4)

On the other hand, by choosing the constant curve =, : [0,t] = M, s — x, we obtain
Ty u(z) < u(x) + L(z,0)t. (5)
From (4) and (5) it follows with Ay := max,ecp L(x, 0)
17w — ul|oo < tmax(Ck, Ag) =3 0.
[

Remark. For the LOS in respect to C°(M,R) the map t — T, u is even uniformly
continuous for all u € C°(M,R) and ¢t > 0 by the non-expansiveness in proposition 1.8.

It follows directly by Fleming’s lemma 0.2, taking into account the non-expansiveness
of the LOS by proposition 1.8, that the operators 7T, are equi-Lipschitzian on the space
of continuous functions (see [Fat08, proposition 4.6.6 (3)] for an even stronger result):

Corollary 1.6. (Equi-Lipschitzianity for fized time). The family of functions
(Ty w)uecomr) 5 equi-Lipschitzian for any t > 0. O

Let us collect the following important properties of the LOS which we will not fully
prove here but are fairly simple to show (compare [Fat08, proposition 4.6.2]):

Proposition 1.7. (General properties of the LOS). The LOS has the following properties:
(i) (Estimates)
infu+tinf L < T, u(z) < infu + max hy.
M TM M MxM
(ii) (Finiteness) If infyr u is finite, then it already follows that the function T, u is finite
for allt > 0.

(iii) (Some linearity)
T, (c+u)=c+T;u VeeR

(v) (Inf commutativity) Let (u;);cr C F(M,[—00,+00]) be a family of functions. Then
we have
T Gefvo) = e Twe

(v) (Monotony) For all u,v € F(M,[—o00,+00]) it holds

u<v = Tyu<T v Vt>N0.

(vi) (Dominance I) For every ¢ € R and u € F(M, [—o0, +00]) with u # oo it holds

u<T,u+ct V>0 <+ u<L+ec



1 MAIN Leon Happ Convex hamiltonian systems SS20

(vii) (Dominance II)
u<L+c = T,u<L+c Vt>0.

Proof. Because the properties (vi) and (vii) take central positions in the proof of the
existence of weak KAM solutions I want to give their proof here, illustrating the schema
of the other ones.
(vi). We assume that u is not identically —oo or +o0.
= . We first show that from our assumption follows: inf,; u € R. If inf); u = —o0, then
we obtain from (i) and v < Ty u + ¢t that © = —oo. On the other hand, infy; u = +o00
immediately yields u = +o00. Consequently, we can indeed assume that inf); v € R. In
this case it follows again from (i) that 7, u is finite everywhere and therefore u, which
satisfies u < T, u + ¢t and u > infy; u > —o0, is also finite valued on the whole of M.
The condition v < Ty u+ ¢t in particular implicates that u(z) < u(y)+ h(y, z)+ct for all
xz,y € M and t > 0. Since u is finite valued, this is equivalent to u(x) —u(y) < hi(y, z)+ct
which itself is equivalent to u < L + ¢ by definition and Tonelli’'s theorem.
<. As above we can again assume that inf,; u € R and reversing all steps yields the
desired statement.
(vii). We know from remark (ii) after definition 0.1 that u < L + ¢ implies that u
is Lipschitz and hence continuous. Accordingly it takes its minimum on the compact
manifold M and by (ii) the function 7; u is finite everywhere for each t > 0. It follows
from (vi) that

u<Tiu+ct" Vt'>0

and applying assertions (iii) and (v) as well as the semi-group property yields
Tru< T[Ty +ct'] =T, [T, u]+ct’ V' > 0.

Therewith, in addition to the finiteness of the T, u, we can use (vi) again which completes
the proof. O

The next feature of the LOS will be focal in the proof of the existence of weak KAM
solutions in section 1.4.

Proposition 1.8. (Non-expansiveness of the LOS). The operators T, are non-expansive
on the space of functions B(M,R) with respect to the supremum-norm for all t > 0.

Proof. If u,v € B(M,R), we have
—lu=vllo +v <u < flu = vl + 0.

By the monotony of the LOS (proposition 1.7 (v)) and the linearity under addition of a
constant (proposition 1.7 (iii)) we obtain

—llu=vlloo + T v < T u < flu = v]loo + T 0.

This implies ||T; u — T} v||os < ||u — vl Which is exactly what we wanted to show. [

1.3 Connection between the LOS and negative weak KAM solutions

We will show that the existence of negative weak KAM solutions is equivalent to finding a
fixed point of the LOS up to a linear function in time. The main ingredient is the Tonelli
theorem which enters via the following Lemma.
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Lemma 1.9. (T, is realised). For each u € C°(M,R), each x € M, and each t > 0 we
can find a curve v, € CL.([0,t], M) with v,+(t) = x that realises T; u(x), i.e.

pcw

Ty () = w0 0)) + [ La(5), ae(5))ds.

Proof. Since u € C°(M,R), the function y — u(y) + h(y, ) is also continuous on the
compact space M and consequently takes its minimum on M ; we denote this minimum by
Ys, 1.e. Ty u(z) = infyep(u(y) + hi(y, ©)) = w(yy) + he(ys, ). Now we can apply Tonelli’s
theorem to find a curve v,, € C},([0,t], M) with v,,(0) = y, and ~,(t) = 2 such that

hi(Ye, ) = f(f L(74.4(8), ¥2.t(s))ds. This directly yields the assertion. O

Theorem 1.10. (The LOS and negative weak KAM solutions). For a functionu : M — R
the following two statements are equivalent:

(i) T, w+ ct = u for each t > 0,
(7i) u is a negative weak KAM solution for the constant ¢ € R.

Proof. = . From proposition 1.7 (vi) it directly follows that u < L + ¢. This also
guarantees the continuity of w by remark (ii) after definition 0.1.

Now it remains to find, for each x € M, a suiting C'-curve that is (u, L, ¢)-calibrated.
We already know by lemma 1.9 that for each ¢ > 0 there exists v, € C},([0,t], M) with
Yet(t) = x and

() = et = Ty () = ulrea(O) + [ Laals) 3aels))ds.

By shifting the interval, i.e. defining 7, +(s) := v.+(s+1), we get a curve ending in x that
is calibrated for its endpoints:

0 .
U3t (0) = uliea (1)) = [ LAna(s).Fua(s))ds + .
We know from remark (iii) after definition 0.1 that this already yields that 7, is (u, L, ¢)-
calibrated. Since in particular the 7, are extremal curves, by the a priori compactness
(see [Fat08, corollary 4.4.5]) there exists a compact subset K1 C T'M such that

Vt > 1,Vs € [—1,0] 1 (Fau(5),Yai(8)) € K.

Accordingly, the sequence ((74.¢(0),7x.(0)));>1 has a convergent subsequence
((Fat (0), ¥zt (0)))s,, tending to (x,v) € TM, where t,, — +oo for n — +o00. The negative
orbit

YE(s) := ¢s(x,v) Vs <0,

with ¢ being the Euler-Lagrange flow, is our candidate for the desired (u, L, ¢)-calibrated
curve. Therefore, let us fix ¢’ € [0, +00). Then, because the 7,;, are al extremal curves,
for n big enough such that ¢, > ¢’ the equality (Fu.,(5), Ve, () = ¢s(Fai,, (0), Yaz, (0))
holds for all s € [—#/,0]. By the continuity of the Euler-Lagrange flow, the right hand
side converges uniformly to the map s — ¢s(x,v) = 7% (s) on the compact set [—,0].
Since all the 7,4, are (u, L, ¢)-calibrated curves on the interval [—t', 0], we arrive at the
equation

u(e) — (1)) = [ LO2(s) A2 (5))ds + et

—t/
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which as above yields that the curve 4*|_y g is (u, L, ¢)-calibrated for all ' > 0 by remark
(iii) after definition 0.1. This shows the desired property of 7”.

<. Conversely, let us suppose that © < L 4 ¢ and that, for each x € M, there exists a
Cl-curve 4% : (—o00,0] = M with 4*(0) = x such that

(@) — u(y (1)) :/0 Ly (s), 4% (s))ds + et ¥t € [0, 00).

—t

If x € M and ¢t > 0 we define the curve 7 : [0,¢] — M by v(s) := 7" (s—t). It immediately
follows ~(t) = x and

u(e) = ur(0)) + [ Llx(s),v(s))ds + et

Hence, we have T, u(z) 4+ ¢t < u(x) and thus Ty u + ¢t < u. The converse inequality
u < Ty u + ct results from u < L + c. O]

1.4 Existence of negative weak KAM solutions

According to theorem 1.10 we need to find a fixed point of the operator u — T, u + ct.
Therefore we need the following lemma.

Lemma 1.11. (Equi-boundedness). Let u : M — R with u < L + Cp. Then the family
(Ty u~+tCL)e>0 is equi-bounded with respect to the supremum-norm, i.e.

sup |1, u + tCL|| 0o < +00.
£>0

O

I do not give the proof of this lemma here, since, in my opinion, it does not really
allow new important insight into the theory of the LOS (see [Fat08, lemma 4.7.5]).
Nevertheless, it provides the existence of the negative weak KAM solution. We are giving
a first proof:

Theorem 1.12. (Existence of negative weak KAM solutions I). Let u : M — R with
u=<L+Cp. Then, ast — +oo, T, u+tCyp converges uniformly to a continuous function
u_ € CO(M,R) which is a negative weak KAM solution.

Proof. At first we show that the family (7 u + tCL)t>0 is increasing in ¢ > 0: It follows
from v < L+ C}, that u < T; u + tCy, by dominance I of the LOS (proposition 1.7 (vi)).
Together with the monotony of the LOS (proposition 1.7 (v)) and the linearity under
addition of a constant (proposition 1.7 (iii)) we obtain

Ty u < T, [T u+ sCy

=T, u+sCy Vt,s>0.

Comnsequently, Ty u+tCr, < T+ (t+s)Cy forall t, s > 0 and thus T, u+tCp < T, +t'Cy
for all ¢,/ > 0 with t <.
Now we know from lemma 1.11 that the family (7, u + tCL)¢>o is also equi-bounded.
Altogether it follows that the point-wise limit

u_(z) = lim T, u(z)+tCy

t——+o0
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exists everywhere on M and is finite. We also know from remark (ii) after definition 0.1
and dominance II of the LOS (proposition 1.7 (vii)) that the family (7; u + tCp);>0 is
equi-Lipschitzian, in particular equi-continuous. This implies that the limit u_ : M — R
is also continuous because the convergence T, u 4 tC, — u_ is uniform for t — 4o0.

All that remains is to prove that u_ is a negative weak KAM solution, i.e. that T u_ +
sCr, = u_ for each s > 0 by theorem 1.10. Thanks to the non-expansiveness of the LOS
(proposition 1.8) we can swap the application of T, with taking the limit ¢ — 400 and
get by the definition of u_:

T u_+sCp = tlgrnoo T[T, u+tCL) +sCp = tggrnoo(ﬂjrsu +(t+5)Cp)
=u_.
O]

For the second proof, rather than directly constructing a fixed point, we want to make
an approach involving some general theory of fixed points. Therefore, additionally, we
need the following lemma.

Lemma 1.13. (Fizpoint lemma). Let X be a Banach space and (¢ : X — X)i>o0 be a
family of maps with the following properties:

(i) i 0wy = v for all t,t' >0,
(it) i is non-expansive for each t > 0,
(77i) (X)) is relatively compact in X for each t >0,
(iv) the map t — () is continuous on [0, +00) for all x € X.
Then the family ()0 has a common fized point.

Proof. 1 will give the proof in two steps.
1. Let us first show that every ¢, has a fixed point. We denote by E; := ¢;(X) C X the
image of ¢; which is relatively compact in X by condition (iii). We can assume that F; is
convex; otherwise take the convex envelope of F; which is still relatively compact in X.
We also note that E; is in particular complete. Now we want to argue as in the proof of
Banach’s fixed point theorem; but the map ¢; is just non-expansive and not contractive.
We fix this by looking at the family of functions (¢} := Ap;)ocr<c1. Let us also assume
that 0 € Ey; elsewise we translate the set Fy, respectively the functions Ay;, and look at
the family of maps (Ap; — ¢i(20))o<r<1 for a xy € Ey. Now these functions are contractive
and since F; is convex, they only take values in F;. Thus we can argue as follows:
We claim that the sequence (2 := (¢©})"(20))nen, for arbitrary zq € Ey, converges to a
fixed point of the map ¢}. This can be shown as in the proof of Banach’s fixed point
theorem by observing that (z7),cn is a Cauchy sequence and hence it converges to a a7,
in B; C X. It is easy to validate that x) is a fixed point of ;. Now, since F; is compact,
there exists a subsequence \,, — 1 as n — oo such that xég — Zo for a xo € E;. It holds
@ (xdn) =z and passing to the limit n — oo yields

0t(To) = lim <<pg\" <lim mﬁg)) = lim (gpi‘"(zég)) = lim 22"

n—oo n—oo n— o0 n—oo

= Toos
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where we used that the ;™ are continuous as they are contractive.

2. It remains to show that there exists a common fixed point of the ¢;, t > 0. It follows
from property (i) that a fixed point of ¢, is a fixed point of @y, for any integer k£ > 0.
Accordingly it is enough to show that for ¢ € [0, 1) all ¢; admit the same fixed point. Since
the set ((1/2)")nen is dense in [0, 1) under addition and the map ¢ — ¢;(x) is continuous
by condition (vi), it suffices to show that all ¢(; /2= have a common fixed point. Therefore
we define the sets F; := {x € X|¢i(x) = 2}. Those sets are non empty by part one of the
proof and they are compact because F; C Ep. It follows by ¢(1/2n = @(1/2)m+1 © @1 /2)n+1
that F(j/om+1 C Fl1/2)n. Therewith we can complete the proof by taking the decreasing
intersection I’ := Nyenf(1/2)» of compact non empty sets which is non empty. Every
x € F'is a desired fixed point for all ¢y, ¢ > 0. O

Now we are ready to give a second proof of the existence of negative weak KAM
solutions.

Theorem 1.14. (Ezistence of negative weak KAM solutions II). There exists a negative
weak KAM solution u_ € C°(M,R).

Proof. We define the quotient X := C°(M,R)/R where two functions are equivalent if
they only differ by a constant ¢ € R. We endow this space with the topology that is
induced by the supremum-norm on C°(M,R), i.e.

[l = inf s+ o

We also know that Ty (C°(M,R)) C C°(M,R), i.e. T, € O(C°(M,R)), for each t > 0
(this follows either from corollary 1.6 or alternatively by Fleming’s lemma 0.2). By the lin-
earity under addition of a constant (proposition 1.7 (iii)), the projection 7 : C°(M,R) —
X induces a well defined semi-group of operators (O(X),T~) such that the diagram

i
(CUM,R), | 1) (CUM,R), - ll0)
(X 01D — (X 011D

t

commutes. We know from theorem 1.10 that a negative weak KAM solution will in
particular be a fixed point of T,  in X for each t > 0. We will see that this is also
a sufficient condition. We know from corollary 1.6 that the families (7} u)yecomr) are
equi-Lipschitzian. We also want to show that they are equi-bounded. For that reason we
normalise the functions 7, u by fixing an arbitrary o € M and introducing the operator

T w =T, u— T, u(xo).

Then, by the estimates of proposition 1.7 (i), we observe that the family (7} u),cco(ar) is
equi-bounded by the constant max ;s hy — tinfry, L for every ¢ > 0 - and it inherits the
equi-Lipschitzianity from (7} )ueco(mr)- Consequently, the conditions of the theorem of
Arzela-Ascoli are fulfilled (see for example [Alt12, theorem 2.12, page 110]) and applying
it yields that T, (C°(M,R)) is relatively compact in C°(M,R). The same is true for
7(T7 (CO(M,R)) = n(T; (C°(M,R)) = T, (X) C X by construction. This enables us
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to apply lemma 1.13 on the family of operators (T} );>o which give us a common fixed
point [u_] € X. It follows that T, u_ = u_ + f(t) where f : [0,00) — R. The semi-
group property of the LOS and the continuity of the map ¢ — T, u_ (proposition 1.3 and
proposition 1.5) together with Tj u_ = wu_ yield that f(t) = tf(1). It follows T} u_ +
(—f(1))t = u_ which had to be shown. O

2 Conclusion

We have seen that a key ingredient to the existence of weak KAM solutions is the com-
pactness of M. Among others, one important implication of this premise is that the values
Ty u(x) are realised by curves (lemma 1.9). With this property we were able to deduce a
reformulation of weak KAM solutions in terms of the LOS (theorem 1.10). It turned out
that weak KAM solutions are special fixed points of the LOS up to a linear function in
time. This fixed points can be either directly constructed (theorem 1.12) or their existence
can be proven by applying more general methods of the theory of fixed points (theorem
1.14). In either case not only the semi-group properties of the LOS have been crucial but
also its very well behaviour, i.e. its equi-boundedness, equi-Lipschitzianity - for a fixed
time as well as for a fixed function and varying time - and non-expansiveness.

It is also worth mentioning that the same techniques implemented above can be used -
mutatis mutandis - to show the existence of positive weak KAM solutions.
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