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In this thesis we study smooth families of stratified bundles in positive
characteristic and the variation of their monodromy group. Our aim is, in
particular, to strengthen the weak form of the positive equicharacteristic p-
curvature conjecture stated and proved by Esnault and Langer in [EL13].
The main result is that if the ground field is uncountable then the strong
form holds, in parallel to what happens in characteristic zero. In the case
where the ground field is countable we provide a counterexample that shows
that the strong form cannot hold in general and prove the weak form of
the theorem for non-proper morphism assuming the stratified bundle to be
regular singular.

In dieser Doktorarbeit studieren wir glatte Familien stratifizierter Bün-
del in positiver Charakteristik und das Verhalten der Monodromiegruppen
in einer solchen Familie. Insbesondere ist es unser Ziel die schwache Form der
p-Krümmungsvermutung in positiver Äquicharakteristik zu verallgemeinern,
die von Esnault und Langer in [EL13] formuliert und bewiesen wurde. Unser
Hauptresultat ist, dass über überabzählbaren Grundkörpern eine stärkere
Version der Vermutung richtig ist, ähnlich der Situation in Charakteristik
0. Über abzählbaren Grundkörpern ist die stärkere Version der Vermutung
nicht wahr; wir konstruieren ein Gegenbeispiel. Wir beweisen die schwache
Version der Vermutung für nicht-eigentliche Morphismen und regulär sin-
guläre stratifizierte Bündel.
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Introduction

Let (E,∇) be a vector bundle endowed with a flat connection on a smooth
complex variety X. Then there exists a smooth scheme S over SpecZ such
that (E,∇) = (ES ,∇S)⊗S C and X =XS ⊗S C with XS smooth over S and
(ES ,∇S) flat connection on XS relative to S. The p-curvature conjecture
of Grothendieck and Katz (see [And04, Conj. 3.3.3]) predicts that if for all
closed points s of a dense open sub-scheme S̃ ⊂ S we have that ES ×S s is
spanned by its horizontal sections, then (E,∇) must be trivialized by an
étale finite cover of X.

An analogue problem can be studied in equicharacteristic zero, and in fact
it reduces the p-curvature conjecture to the number field case. Y. André in
[And04, Prop. 7.1.1] and E. Hrushovsky in [Hru02, p. 116] stated and proved
the following equicharacteristic zero version of the p-curvature conjecture:
let X → S be a smooth morphism of varieties over a field F of characteristic
zero; let (E,∇) be a flat connection on X relative to S such that, for every
closed point s in a dense open S̃ ⊂ S, the flat connection (E,∇) ×S s is
trivialized by a finite étale cover. Then, there exists a finite étale cover of
the generic geometric fiber over η̄ that trivializes (E,∇) ×S η̄, where η̄ is a
geometric generic point of S.

The theorem of André and Hrushovsky translates naturally in posi-
tive characteristic, providing a positive equicharacteristic analogue to the
p-curvature conjecture. Here, the role of relative flat connections is played
by relative stratified bundles. A stratified bundle on X relative to S is a vec-
tor bundle of finite rank with an action of the ring of differential operators
DX/S on X relative to S.

In [EL13, Cor. 4.3, Rmk. 5.4.1] H. Esnault and A. Langer proved, using
an example of Y. Laszlo (see [Las01]), that there exists a projective smooth
morphism of F̄2-varieties X → S and a stratified bundle over X relative to
S which is trivialized by a finite étale cover on each closed fiber but not on
the geometric generic one. In particular, this provides a counterexample to
the positive equicharacteristic version of André and Hrushovsky’s theorem.
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Nevertheless, they were able to prove what they call a weak form of the
theorem (see [EL13, Thm. 7.2]): let X → S be a projective smooth morphism
and let E = (E,∇) be a stratified bundle on X relative to S such that, for
all closed points of a dense subset S̃ ⊂ S, the stratified bundle E ×S s is
trivialized by a finite étale cover of order prime to p. Then, if F ≠ F̄p, there
exists a finite étale cover of order prime to p of the generic geometric fiber
that trivializes E×S η̄. In case F = F̄p, there exists a finite étale cover of order
prime to p such that the pullback of E ×S η̄ is a direct sum of stratified line
bundles.

In characteristic zero, though, the theorem holds in greater generality and
hence two questions naturally arise: the first one is whether we can relax the
assumption of coprimality to p of the order of the trivializing covers of the
E×S s, while keeping the assumption that X is proper over S. The second one
is if we can drop this last assumption as well. The main result of this thesis,
in particular, is that if F is uncountable then the positive equicharacteristic
version of André and Hrushovsky’s theorem holds in its full generality.

Leitfaden

In Chapter 1 we describe the main objects of study of this thesis, that is
stratified bundles. We prefer to give a very hands-on approach to these ob-
jects, choosing the point of view of coherent modules endowed with an action
of the sheaf of differential operators instead of the one of Frobenius divided
sheaves. In the the same spirit, we describe in the last section of this chapter
how to construct explicit examples of stratified bundles.

In Chapter 2 we recall the formalism of Tannakian categories and the def-
inition of monodromy group of an object in such categories. We also list the
main properties of the monodromy group of a stratified bundle and establish
a fundamental technical result (see Corollary 2.3.11): if F is algebraically
closed, L is a field extension and E is a stratified bundle over X a smooth
F -variety, then the monodromy group of E based changed over L is the base
change to L of the monodromy group of E. In other words, the monodromy
group of a stratified bundle behaves well under extension of the ground field.

Let assume from now on that F is algebraically closed. Chapter 3 is de-
voted to study to the core of the problem, providing a complete generalization
of the result in [EL13, Thm. 7.2]. Bearing in mind the counterexample of Es-
nault and Langer ([EL13, Cor. 4.3]) we cannot hope in general to completely
eliminate the assumption of coprimality to p of the order of the trivializing
covers of the E×S s. Still, we prove that it suffices to impose to the power of
p dividing the order of such trivializing covers to be bounded:
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Theorem 1 (See Theorem 3.1.3). Let F be an algebraically closed field,
X → S a smooth proper morphism of F -varieties and E = (E,∇) a stratified
bundle on X relative to S. Assume that for every closed point s in a dense
open S̃ ⊂ S the stratified bundle Es = E ×S s is trivialized by a finite étale
cover whose order is not divisible by pN for some fixed N ≥ 0. Then, if F ≠ F̄p,
there exists a finite étale cover of the generic geometric fiber that trivializes
Eη̄ = E ×S η̄. In case F = F̄p, there exists a finite étale cover such that the
pullback of Eη̄ is the direct sum of stratified line bundles.

The assumption on X being proper over S is more delicate to eliminate;
the order of the trivializing covers does not play any role while the cardinality
of F becomes the main obstruction:

Counterexample (See Proposition 3.2.1). If F is a countable field, then
there exists a stratified bundle on A2

F relative to A1
F which is trivial on every

closed fiber but is not trivialized by any finite étale cover on the generic
geometric fiber.

On the other hand the main result of this thesis is that in case F is un-
countable the strong version of the theorem holds. Namely, using completely
different techniques and the results from Chapter 2 we obtain:

Theorem 2 (See Theorem 3.3.1). Let F be an uncountable algebraically
closed field, X → S a smooth morphism of F -varieties and E = (E,∇) a
stratified bundle on X relative to S such that, for every closed point s in a
dense open S̃ ⊂ S, the stratified bundle Es = E ×S s is trivialized by a finite
étale cover. Then, there exists a finite étale cover of the generic geometric
fiber that trivializes Eη̄ = E ×S η̄.

In Chapter 4 we prove that in the case where F is countable and X is
not proper over S there is still room for improvement, using the theory of
regular singular stratified bundles (introduced in [Gie75]). Roughly speaking,
a stratified bundle is regular singular if it has only mild (that is logarithmic)
singularities along the divisor at infinity. In characteristic zero there is a
parallel notion of regular singular flat connections, and one of the first steps
in the proof of André’s theorem is to show that if a relative flat connection
(E,∇) on X over S is regular singular on the fiber over all closed points
of a dense subset of S then it is regular singular on the generic fiber (see
[And04, Lemma 8.1.1]). In positive characteristic this is no longer true, as
our counterexample shows. The converse still holds (see the proof of Lemma
4.0.10): if X admits a good compactification over S and E = (E,∇) is a
stratified bundle on X relative to S such that Eη̄ is regular singular then
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for every closed point s of some dense open S̃ ⊂ S the stratified bundle Es
is regular singular as well. Moreover, assuming Eη̄ to be regular singular we
obtain the same results than in the proper case:

Theorem 3 (See Theorem 4.0.13). Let F be an algebraically closed field of
any cardinality andX → S a smooth morphism of F -varieties. Let E = (E,∇)

be a stratified bundle on X relative to S such that, for every closed point
s in a dense open S̃ ⊂ S, the stratified bundle Es = E ×S s is trivialized by
a finite étale cover whose order is not divisible by pN for some fixed N ≥ 0.
Assume moreover that Eη̄ = E×S η̄ is regular singular. Then, if F ≠ F̄p, there
exists a finite étale cover of the generic geometric fiber that trivializes Eη̄. In
case F = F̄p, there exists a finite étale cover such that the pullback of Eη̄ is
the direct sum of stratified line bundles.

In their way to the proof of [EL13, Thm. 7.2] Esnault and Langer ob-
tained similar results for families of isotrivial vector bundles. For the sake
of completeness, in Chapter 5 we apply techniques parallel to the ones of
Chapter 3 to broaden these results.
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Notations

i) The letter F will always denote a field of positive characteristic p. Even
if some results hold for a general F , all main theorems will require F
to be algebraically closed.

ii) A variety over F will be a reduced scheme of finite type over SpecF .

iii) Group schemes are always assumed to be affine, a group scheme G over
F is algebraic if it is locally of finite type.

iv) For a F -group scheme G we denote by RepfF G the category of finite
dimensional representations of G over F .

v) The notation VecF and VecfF is used to indicate the categories of
vector spaces and finite dimensional vector spaces over F .

vi) For a scheme X, we denote by QCoh(X) the category of quasi co-
herent OX -modules and by Coh(X) the full subcategory of coherent
OX -modules

vii) In order to keep the notation as simple as possible, we will sometimes
write F for SpecF , when no confusion can arise.

viii) In general, if A is an object (for example a scheme, a morphism, a
stratified bundle and so on) defined over F and L is a field extension,
we will denote by AL its base change to L.
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Chapter 1

The category of stratified
bundles

Let X be a complex variety and let E be a vector bundle of finite rank
over X. A connection on E is a C-linear action of the derivations on E. A
connection is said to be flat if its curvature is zero, and this is equivalent
to the action of the derivations extends to an action of the whole ring of
differential operators ([BO78, Thm. 2.15]). Note that this is true because in
characteristic zero the derivations span the ring of differential operators. In
positive characteristic, however, this no longer holds and flat connections are
not equivalent to vector bundles endowed with an action of the differential
operators. This thesis is focusing on object of the latter kind, as it turns
out they have a richer and better behaved structure. In this chapter we
will recall what is the sheaf of differential operators both in its classic and
logarithmic form, and introduce the main object of interest of this thesis,
that is, stratified bundles.

1.1 The sheaf of differential operators

Throughout this chapter F will denote a field of positive characteristic p
and u ∶X → S a smooth morphism of varieties over F , of relative dimension
d. We will denote by DX/S be the quasi-coherent OX -module of relative
differential operators as defined in [EGA4, §16]; we will not go through its
general construction as in our relatively smooth situation it has a fairly
simple description. In order to give such characterization, let us recall that
if U is an open sub-scheme of X admitting global coordinates x1, . . . , xd
relative to S, then for every k ∈ N there are OS-linear maps ∂(k)xl ∶ OU → OU

8



Chapter 1. The category of stratified bundles

given by

∂(k)xl
(xhj ) = δlj(

h

k
)(xh−kj )

where δlj is the Kronecker delta. Heuristically, one can think about these
maps as 1/k!∂kxl , even though of course this cannot be given as a formal
definition as in principle p may divide k!.

The sheaf of differential operators on X relative to S is the sub-algebra
DX/S of EndOS(OX) which is locally generated by the ∂(k)xl , that is, if U is
an open of X as before, we have that

DX/S∣U = OU[∂
(k)
xl

∣ l ∈ {1, . . . , d}, k ∈ N>0].

Notice that for k = 1 the maps ∂xl = ∂
(1)
xl are derivations, for which the

Leibniz rule applies. Similarly, for higher differential operators we have an
extension of the Leibniz rule, namely if f, g ∈ OU then

∂(k)xl
(fg) = ∑

a+b=k
a,b≥0

∂(a)xl (f)∂(b)xl (g). (1.1)

When S = SpecF we will use the notation DX/F instead of DX/SpecF and
we will call such a case the absolute case in contrast to the situation when
S is a generic variety to which we will refer to as the relative case.

Remark 1.1.1. If p is the characteristic of the ground field F , then it is
easy to see that (∂xl)

p ≡ 0, and hence that the derivatives cannot span
the whole ring of differential operators. Notice that in characteristic zero
the algebra of differential operators is finitely generated as a OX -algebra.
Instead, in positive characteristic, a countable set of generators is needed, in
order to span DX/S and this will translate in a crucial distinction, in our main
theorem, between the situation where F is countable (Proposition 3.2.1) and
the one where F is uncountable (Corollary 3.3.5).

The absolute sheaf of differential operators has its logarithmic counter-
part. Let X be a smooth variety over F and D a strict normal crossing
divisor over X, with ideal sheaf I. Then the sheaf of differential operators
on X relative to S is the sub-algebra DX/F (logD) of DX/F consisting of the
differential operators sending In to itself for every n ∈ N. As before, it has a
local explicit description: if U is an open of X admitting global coordinates
x1, . . . , xd and D ∩ U is cut out by x1 = . . . = xe = 0. Then

DX/S(logD)∣U = OU[x
k
l ∂
(k)
xl
, ∂(k)xj ∣ l ∈ {1, . . . , e}, j ∈ {e + 1, . . . , d}, k ∈ N>0].
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The variation of the monodromy group of stratified bundles

We do not wish to give here an exhaustive account of the theory of
logarithmic geometry and of logarithmic differential operators. The reader
interested in a more complete reference is advised to consult [Kin12b, Chap-
ter 2].

1.2 Stratified bundles

The main object of study of this work are stratified bundle, that are, as
suggested in the beginning of this chapter, vector bundles of finite rank with
an action of the sheaf of differential operators. Before entering the discussion
over such objects, we would like to give to the reader a little caveat: such
definition should be in principle used only when X → S is smooth, as only
in this case there is an equivalence with the category of Frobenius divided
sheaves, also called flat bundles (see [Gie75, Thm. 1.4]). The latter can be
seen as the category to refer to, as it possess the good properties we will need
further on, also in the situation when X → S is not smooth. Nevertheless, we
find that the following equivalent definition is more indicated in our situation:

Definition 1.2.1. A stratified bundle on X relative to S is a locally free OX -
module of finite rank endowed with a OS-linear DX/S-action extending the
OX -module structure via the inclusion OX ⊂ DX/S . A morphism of stratified
bundles is a morphism of DX/S-modules. The category of stratified bundles
onX relative to S is denoted by Strat(X/S). If E ∈ Strat(X/S) is a stratified
bundle we will denote by E the underlying vector bundle. If S = SpecF we
will use the subscript X/F instead of X/SpecF .

The simpler example of a stratified bundle is OX itself with the natural
DX/S-action coming from the inclusion of DX/S as a sub-ring of EndOS(OX).
We will denote this stratified bundle with IX/S or simply with I when no
confusion is possible and will say that a stratified bundle E ∈ Strat(X/S) is
trivial if E = ⊕ri=1IX/S for some r ∈ N.

Let E,F ∈ Strat(X/S) be two stratified bundles and E,F the underlying
vector bundles. Then E ⊗ F carries a natural DX/S-action locally given on
sections by

∂(k)xl
(e⊗ f) =

k

∑
a=0

∂(a)xl (e)⊗ ∂(k−a)xl
(f).

We will denote this stratified bundle by E ⊗ F. In a similar way E ⊕ F and
HomOX (E,E′) admit a canonical DX/S-module structure. In particular E⊕F
and E∨ are well defined objects of Strat(X/S). If f ∶ Y → X is a morphism
of S varieties then f∗E is in a natural way an object in Strat(Y /S), if f is
finite and étale and E ∈ Strat(Y /S) then f∗E is in a natural way an object in
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Chapter 1. The category of stratified bundles

Strat(X/S) (note that f is proper, flat and its fibers are zero-dimensional,
in particular the push-forward of a locally free sheaves is again locally free
by [MFK94, Sec. 0.5]).

As in the previous paragraph, if S = SpecF we will call an object in
Strat(X/F ) an absolute stratified bundle in order to distinguish this case
from the generic relative situation.

Remark 1.2.2. If S = SpecF then any OX -coherent module endowed with a
DX/F -action is locally free (see [BO78, p. 2.17]). Note that this is no longer
true for a generic variety S.

We are interested in a specific class of stratified bundles, namely the one
that are trivial up to a finite étale cover: a stratified bundle E ∈ Strat(X/S)
is called isotrivial if there exists a finite étale cover f ∶ Y →X such that the
pullback f∗E is trivial.

1.3 Explicit constructions

In this last section we want to present some notations that will be used later
on in order to construct some explicit examples of stratified bundles. For
the rest of this chapter let us assume that X admits global étale coordinates
x1, . . . , xd relative to S. If E is a vector bundle on X, then a DX/S-module
structure on E is by definition a OS-linear morphism

φ ∶ DX/S → EndOS(E)

extending the OX -module structure on E; in particular, the image of OX ⊂

DX/S under φ is always fixed. Therefore, to determine the action of the whole
DX/S it is enough to consider the image of the algebra generators ∂(k)xl under
the morphism φ.

Assume moreover from now on that E admits a global basis e1, . . . , er,
and let Ak,l = (ak,lij ) be given by ∂(k)xl (ei) = ∑a

k,l
ij ej . Then the Ak,l, for k ∈ N>0

and l = 1, . . . , d, determine the DX/S-action: If s = ∑ri=1 fi ⋅ ei is a section of
E, with fi ∈ OX , then using (1.1) we have that

∂(k)xl
(s) =

r

∑
i=1

∑
a+b=k
a,b≥0

∂(a)xl (fi)Ab,l ⋅ ei. (1.2)

Note that if e′1, . . . , e
′
r is an other basis of E and U = (uij) ∈ H0(X,GLr)

is the base change matrix given by e′i = ∑uijej , then, by (1.1), it follows that

11



The variation of the monodromy group of stratified bundles

in this new basis the matrices A′
k,l = (a′k,lij ) describing the action of ∂(k)x are

given by
A′
k,l = [ ∑

a+b=k
a,b≥0

∂(a)xl (U)Ab,l]U
−1. (1.3)

Summarizing, with the assumptions of this section, a DX/S-module struc-
ture on a globally free stratified bundle of rank r is uniquely described by
the data of r × r matrices Ak,l with values in H0(X,OX), for l = 1, . . . , d and
k ∈ N>0.

On the other hand, given a collection of such matrices Ak,l, in order
for them to define a DX/S-action on a globally free stratified bundle, it is
necessary and sufficient that they satisfy the relations that hold between the
∂
(k)
xl in the OX -algebra DX/S .

12



Chapter 2

The Tannakian monodromy
group

In this chapter we will briefly recall the notion of Tannakian categories and
the main theorem relating such categories and their so called Tannakian
fundamental group. The second section is devoted to define the monodromy
group associated to an absolute stratified bundle via the Tannakian duality,
and to describe its main properties. All these constructions are somehow
classic and the majority of the results can be found in [DM82]. Finally,
in the last section we show that the monodromy group behaves well with
respect to base change to a field extension: that is, extending scalars and
taking the monodromy group can be done one after the other in any order
giving canonically isomorphic results.

2.1 Tannakian categories

Tannakian categories are abelian categories equipped with all the features
that are proper to the categories of finite dimensional representations of an
affine group. Let us give first a rather dry:

Definition 2.1.1. A (neutral) Tannakian category over F is a pair (T , ω)
where T is tensor category and ω ∶ T → VecF is a fiber functor, that is a
F -linear, exact tensor functor to the category of F -vector spaces.

We will now give a rough explanation of what the terminology we use in
the previous definition means, redirecting the reader to [DM82] for a more
detailed account. We also warn the reader that what we will often omit the
word neutral, that is that what we call Tannakian category is usually called
neutral Tannakian category.

13



The variation of the monodromy group of stratified bundles

A category T is called

F -linear if for every objects A,B the set HomT (A,B) is a F -vector space
and the composition law is F -bilinear;

symmetric monoidal if it has an inner tensor product, that is a functor

⊗ ∶ T × T → T

which is associative and commutative, and there exists an identity ob-
ject I which is the neutral element for the tensor product;

rigid if every object A admits a dual object A∨ and there are evaluation
and coevaluation maps ev ∶ A⊗A∨ → I and coev ∶ I→ A⊗A∨.

tensor if it is abelian, F -linear, symmetric monoidal, rigid and End(I) = F .

It is clear, for example, that the category VecF of F -vector spaces is
a F -linear, abelian, symmetric monoidal category, with identity object the
one dimensional vector space F . However, it is not rigid, as it does not have
coevaluation maps. On the other hand the full subcategory VecfF of finite
dimensional vector spaces does has a coevaluation map and is hence a tensor
category.

In order to unravel completely the terminology, we need a last definition.
A functor ω between symmetric monoidal categories is called a tensor functor
(sometimes abbreviated in ⊗-functor) if it respects the tensor structure, that
is if ω(A⊗B) ≃ ω(A)⊗ ω(B) in a functorial way.

The most important example of a Tannakian category is given by the pair
(RepfF G, forG), that is the category of finite dimensional representations
of an affine F -group scheme G endowed with the forgetful functor forG ∶

RepfG F → VecfF . Its importance is due to the main theorem on Tannakian
categories, also called Tannakian duality:

Theorem 2.1.2. [DM82, Thm. 2.11] Let (T , ω) be a (neutral) Tannakian
category over F with fiber functor ω ∶ T → VecfF . Then there exists an affine
F -group scheme π(T , ω) and an equivalence of Tannakian categories

(T , ω) ≃ (RepfF π(T , ω), forG).

Remark 2.1.3. Notice that the previous theorem implies that ω is more that
only additive and faithful: it actually inherits all the properties of the for-
getful functor, for example a morphism A → B in T is injective, surjective
or an isomorphism if and only if ω(A→ B) is.

14



Chapter 2. The Tannakian monodromy group

The F -group scheme π(T , ω) is called the Tanakian fundamental group of
(T , ω). For later use, let us recall the description of π(T , ω) via its functor of
points. Let ω,ω′ ∶ T → T ′ be two tensor functors, then a morphism of tensor
functors is a natural transformation α respecting the tensor structure, that
is such that the diagram

ω(A⊗B)
≃ //

αω(A⊗B)
��

ω(A)⊗ ω(B)

αω(A)⊗ω(B)
��

ω′(A⊗B)
≃ // ω′(A)⊗ ω′(B)

commutes. Note that as VecF = QCoh(SpecF ) then for every u ∶ T → SpecF
scheme over F we have that the composition u∗ ○ ω ∶ T → QCoh(T ) makes
sense and is a tensor functor. Then the functor from schemes over F to
groups defined by

Aut⊗F (u ∶ T → SpecF ) = {α ∶ u∗ ○ ω ≃ u∗ ○ ω isomorphism of ⊗ -functors}

is representable by the affine F -group scheme π(T , ω).
Theorem 2.1.2 implies that every affine F -group scheme can be uniquely

reconstructed by the category of its finite dimensional representations over
F (together with the forgetful functor). More is actually true: there is a
correspondence between homomorphisms between groups and functors be-
tween the respective categories of finite dimensional representations. More-
over, some properties of a morphism can be inferred from the ones of the
corresponding functor, and vice versa, as shown by the next proposition. Let
µ ∶ G → G′ be a homomorphism of affine F -group schemes, then we denote
by Mµ ∶ RepfF G

′ → RepfF G the induced functor on the categories of finite
dimensional representations.

Proposition 2.1.4. [DM82, Cor. 2.9,Prop. 2.21] Let G,G′ be two affine F -
group schemes and let M ∶ RepfF G

′ → RepfF G be a tensor functor such
that forG′ = forG ○M . Then there exists a unique homomorphism µ ∶ G → G′

such that M =Mµ. Moreover

i) µ is faithfully flat if and only if Mµ is fully faithful and for every
ρ ∈ RepfF G

′ every sub-object of M(ρ) is isomorphic to the image of a
sub-object of ρ.

ii) µ is a closed immersion if and only if every object of RepfF G is iso-
morphic to a sub-quotient of M(ρ) for some ρ object of RepfF G

′.
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To close this section let us introduce two fundamental notions: a full
subcategory T ′ ⊂ T of a tensor category is called a tensor subcategory if
T ′ is an abelian subcategory, which is closed under isomorphisms, finite
tensor products (in particular it contains I) and duals. If A is an object in
T we denote by ⟨A⟩⊗ the tensor subcategory of T spanned by A, that is
the smallest tensor subcategory of T containing A. It can be described as
the full subcategory of T consisting of all objects that are isomorphic to a
sub-quotient of p(A,A∨) where p ∈ N[x, y]. A tensor category T has a tensor
generator if it spanned by one of its objects.

Lemma 2.1.5. [DM82, Prop. 2.20]Let G be an affine F -group scheme. Then

i) G is finite if and only if there exists an object A of RepfF G such that
every other object is isomorphic to a sub-quotient of An;

ii) G is algebraic if and only if RepfF G has a tensor generator.

2.2 The monodromy group and its properties

If X is a smooth connected F -variety, Strat(X/F ) is a tensor category over
F and the choice of a rational point x ∈ X(F ) defines a fiber functor ωx to
the category of finite dimensional F -vector spaces,

ωx ∶ Strat(X/F )→ VecF

E↦ Ex

where E is the vector bundle underlying E ([Riv72, §VI.1]). Hence the pair
(Strat(X/F ), ωx) is a neutral Tannakian category and by Tannakian du-
ality (Theorem 2.1.2) there exists an affine group scheme πStrat

1 (X,x) ≐

π(Strat(X/S), ωx) over F such that Strat(X/F ) is equivalent via ωx to
the category of finite dimensional representations of πStrat

1 (X,x) over F . For
every E ∈ Strat(X/F ) we denote by ⟨E⟩⊗ ⊂ Strat(X/F ) the full Tannakian
subcategory spanned by E with fiber functor ωx defined as above. The affine
group scheme π(E, x) ≐ π(⟨E⟩⊗, ωx) is called the monodromy group of E. If
U ⊂ X is an open dense sub-scheme of X then by [Kin12a, Lemma 2.5(a)]
the restriction functor ρU ∶ ⟨E⟩⊗ → ⟨E∣U ⟩⊗ is an equivalence. Hence, in partic-
ular, the monodromy group of E is invariant under restriction to any dense
open sub-schemes. Moreover, when F is algebraically closed, the monodromy
group does not depend on the choice of x, up to non unique isomorphism
(this can be deduced from [DM82, Thm. 3.2]). In this situation we will hence
sometimes use the notation π(E) instead of π(E, x).

16



Chapter 2. The Tannakian monodromy group

Definition 2.2.1. We say that E ∈ Strat(X/F ) is finite if its monodromy
group is finite. By what we have just remarked, when F is algebraically
closed, this property is independent of the choice of x.

Recall that by definition E is isotrivial if it is étale trivializable. If F is
algebraically closed these two properties are equivalent:

Lemma 2.2.2. Let assume F is algebraically closed. For a stratified bundle
E ∈ Strat(X/F ) the following are equivalent:

i) E is isotrivial;

ii) E is finite.

Moreover, if E is finite, then there exists an étale π(E, x)-torsor hE,x ∶ YE,x →
X, called the Picard–Vessiot torsor of E such that, for any E′ ∈ Strat(X/F ),
the pullback h∗E,xE

′ is trivial if and only if E′ ∈ ⟨E⟩⊗.
Finally, for a finite étale cover h ∶ Y → X such that h∗E is trivial, the

following conditions are equivalent:

i) h ∶ Y →X is the Picard–Vessiot torsor for E;

ii) every finite étale cover trivializing E factors (non uniquely) through the
cover h ∶ Y →X;

iii) h ∶ Y →X is Galois and ⟨E⟩⊗ = ⟨h∗IY /F ⟩⊗;

iv) h ∶ Y →X is Galois of Galois group π(E, x)(F ).

Proof. The first part of the lemma is [EL13, Lemma 1.1]. As for the second
part, first notice that point (b) and (f) of [Kin12a, Prop. 2.15], together
with [Kin12a, Cor. 2.16] imply that if h ∶ Y → X is a finite étale cover
trivializing E then ⟨E⟩⊗ ⊂ ⟨h∗IY /F ⟩⊗ and that ⟨E⟩⊗ = ⟨hE,x∗IYE,x⟩⊗. Moreover,
if h ∶ Y → X is Galois of Galois group G, then π(h∗IY /F , x) is the finite
constant group G and if h̃ ∶ Ỹ →X is an étale cover factoring through h then
⟨h∗IY /F ⟩⊗ ⊂ ⟨h̃∗IỸ /F ⟩⊗. We are now ready to prove the rest of the lemma.

(i)⇒(ii) Because ⟨E⟩⊗ = ⟨hE,x∗OYE,x/F ⟩⊗, a cover h̃ ∶ Ỹ → X trivializes E if
and only if it trivializes hE,x∗IYE,x/F . Let Z = Ỹ ×X YE,x, and let
p1 and p2 be the projections on the first and second factor. Then
by flat base change (notice that the flat base change morphism is
compatible with the DỸ /F -action) there is an isomorphism of DỸ /F -
modules h̃∗hE,x∗IYE,x/F ≃ p1∗IZ/F ; hence, the latter is also a trivial
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stratified bundle. This, together with [Kin12a, Cor. 2.17], implies that
p1 ∶ Z → Ỹ is a trivial covering. In particular, it admits a section s;
hence, h̃ = s ○ p2 ○ hE,x and h̃ factors through h.

(ii)⇒(iii) Because h trivializes E, we have the inclusion ⟨E⟩⊗ ⊂ ⟨h∗IY /F ⟩⊗. On the
other side, by assumption, hE,x ∶ YE,x → X factors through h ∶ Y → X;
hence, ⟨h∗IY /F ⟩⊗ ⊂ ⟨hE,x∗IYE,x/F ⟩⊗ = ⟨E⟩⊗.

(iii)⇒(iv) As ⟨E⟩⊗ = ⟨h∗IY /F ⟩⊗, then we have the equality π(E, x) = π(h∗IY /F , x)
and as h ∶ Y → X is Galois, then its Galois group is π(h∗IY /F )(F ) =

π(E, x)(F ).

(iv)⇒ (i) By what we already proved there must be a factorization f ∶ Y → YE,x
such that h = hE,x ○ f . Hence, if G is the Galois group of h ∶ Y → X
then hE ∶ YE → X corresponds to a normal subgroup H of G. But by
assumption G = π(E, x)(F ) =H; hence, h = hE.

Corollary 2.2.3. Let F be algebraically closed. If E ∈ Strat(X/F ) is finite
then the set of finite étale covers of X trivializing E has a minimal element
which is Galois of Galois group π(E, x)(F ).

By [San07, Cor. 12] for every E ∈ Strat(X/F ) the group scheme π(E, x)
is smooth (which is equivalent to being reduced). Given a finite stratified
bundle E ∈ Strat(X/F ) it is straightforward to see that for every L ⊃ K
algebraically closed field extension EL = E ⊗F L ∈ Strat(XL/L) is finite as
well. We will prove in next section that more is true, namely that π(EL) ≃
π(E)⊗F L. Still, it is interesting to see how, using only the properties of the
Picard-Vessiot torsor, it is possible to show the following weaker result:

Lemma 2.2.4. Let E ∈ Strat(X/F ) and let L ⊃ F be an algebraically closed
field extension such that EL is finite. Then for every L′ ⊃ F algebraically
closed field extension such that there exists an immersion L ↪ L′ which is
the identity on F , we have that EL′ is finite. Moreover for any x ∈X(F )

π(EL, x)(L) ≃ π(EL′ , x)(L′),

where we consider x ∈XL(L) via F ⊂ L and similarly for L′.

Proof. Let L and L′ as in the hypothesis, then we can construct an immersion
L ↪ L′ which is the identity on F , just by sending any transcendence basis
of L to a algebraically independent set in L′ over F and using the fact that
L′ is algebraically closed to see that this extends to an immersion L ↪ L′.
Hence, we have reduced the problem to proving that if E is finite and L ⊃ F

18
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is an algebraically closed field extension then EL is finite and has the same
monodromy group of E as abstract groups. In order to do so we need first to
establish a result on Galois covers:
Claim. Let h ∶ Y →X be a Galois cover of Galois group G and let hL ∶ YL →
XL the extension of scalars of h ∶ Y → X to L, then hL is a Galois cover of
Galois group G.

Proof. Certainly hL ∶ YL →XL is a finite étale morphism as these properties
are stable under base change. We are left to check that (i) YL is connected,
(ii) Aut(YL/XL) acts transitively on the fiber over some geometric point of
XL and finally (iii) Aut(YL/XL) ≃ Aut(Y /X).

i) As F is algebraically closed (hence, in particular, separably closed) Y
is connected if and only if YL is connected for any field extension L ⊃ F .
In particular, YL is connected.

ii) Let x ∈ XL(L) be any closed (in particular, geometric) point of XL,
then the composition x̄ ∶ Spec(L) → XL → X is a geometric point for
X. As h ∶ Y →X is Galois, Aut(Y /X) acts transitively on Yx̄ = Y ×X x̄ =
YL×XL x = YL,x. Now, the action of Aut(Y /X) on YL,x factors through
Aut(YL/XL) via the inclusion Aut(Y /X) ⊂ Aut(YL/XL) defined by
φ↦ φL. Hence, the action of Aut(YL/XL) on YL,x is transitive as well;
therefore, hL ∶ YL →XL is Galois.

iii) As Yx̄ = YL,x and both h and hL are Galois, it follows that the order of
their Galois group is the same, as it is the cardinality of the respective
geometric fibers over x̄ and over x. Moreover we have a natural inclu-
sion Aut(Y /X) ⊂ Aut(YL/XL) so as they have the same cardinality
they must be equal; hence, Aut(YL/XL) = G.

Until the end of the proof let us denote by hE,x ∶ Y → X the Picard–
Vessiot torsor of E (see Lemma 2.2.2), then hE,x ⊗F L ∶ YL → XL is a Ga-
lois cover trivializing EL which is then finite, by Lemma 2.2.2. Recall that
⟨(hE,x)∗IY /F ⟩⊗ = ⟨E⟩⊗. But then in particular, ⟨(hE,x)∗IY /F ⊗F L⟩⊗ = ⟨EL⟩⊗
and as (hE,x)∗IY /F ⊗F L = (hE,x ⊗F L)∗IYL/L, it follows that ⟨(hE,x ⊗F
L)∗IYL/L⟩⊗ = ⟨EL⟩⊗. Hence, by Lemma 2.2.2, we have that hE,x ⊗F L ∶ YL →
XL is the minimal trivializing cover for EL. Now, the Galois group of hE,x is
the same as that of hE,x⊗F L by the previous claim; hence, again by Lemma
2.2.2, we have that π(EL, x)(L) = π(E, x)(F ).

We will close this section with two lemmas about descend of stratified
bundles.
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Lemma 2.2.5. Let E be defined over F , let L ⊃ F a field extension and
let F be a sub-object of EL = E ⊗F L. Then F is defined a finitely generated
F -algebra. The same holds for sub-quotients.

Proof. It is enough to prove the claim on a finite cover of opens of X, hence
we can assume that X = SpecR, that there are global étale coordinates and
that E is globally free. In particular, once fixed a basis of E the action of
DX/F is given by r × r matrices Ai,k describing the action of the operators
∂
(k)
xi . The same matrices define the action of DXL/L on EL. If we change the

basis with base change matrix U we get that in the new basis , by (1.3)

A′
i,k = [ ∑

a+b=k
a,b≥0

∂(a)xi (U)Ai,b]U
−1.

Let now choose a basis of F and complete it to a basis of EL, let U be the
base change matrix. Let L′ be a finite type extension of F such that U and
U−1 are defined over L′. Then F is defined over L′ also as a DXL/L-module.
To see this, it is enough to prove that the A′

i,k are defined over L′, this
because the action of DXL/L over F is defined by the first r′ × r′ minors of
the A′

i,k. By the base change formula, it is enough to prove that ∂(a)xi (U) are
defined over L′ for every i and a. The entries of U are in R ⊗F L

′ and the
operators ∂(a)xi are linear on the ground field. So if u ∈ R⊗F L

′ we have that
∂
(a)
xi (u) ∈ R⊗F L

′ as well and this completes the proof.

Finite stratified bundle have an additional propriety that will turn out
to be very useful to prove that some stratified bundle cannot be isotrivial:

Lemma 2.2.6. Let F be algebraically closed and let E ∈ Strat(X/F ) be a
finite stratified bundle. Then there exists a subfield F ′ ⊂ F of finite type
over Fp over which X and E are defined; that is, there exists X ′ smooth
variety over F ′ and E′ ∈ Strat(X ′/F ′) such that X = X ′ ×SpecF ′ SpecF and
E = E′ ⊗F ′ F .

Proof. Let hE,x ∶ YE,x → X be the Picard–Vessiot torsor of E (see Lemma
2.2.2), and let H = (hE,x)∗OYE,x , then (see Lemma 2.2.2) E ∈ ⟨H⟩⊗. Certainly
there exists F ′′ of finite type over Fp on which hE,x ∶ YE,x → X is defined;
hence, H is also defined over F ′′. Notice that E is a sub-quotient of P where
P ∈ Z[H,H∨] (see e.g. [Kin12a, def. 2.4]); that is, E ≃ P̃/P̄ with P̄ ⊂ P̃ ⊂ P.
By Lemma 2.2.5 P̃ and P̄ are defined over some extension F ′ of finite type
of F ′′ (thus over Fp). Therefore, so does E ≃ P̃/P̄.
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2.3 Geometric Tannakian pairs and the invariance
of the monodromy group

Let F be any field of positive characteristic and let X a smooth geometrically
connected F -variety having a rational point. Let L be a field extension of
F , and let i ∶ SpecL → SpecF denote the morphism corresponding to the
inclusion F ⊂ L. Let XL =X ⊗F L its base change to L. Let E ∈ Strat(X/F )

be the base change of X to L and let EL = E⊗F L ∈ Strat(XL/L). In general,
we will use the subscript L to indicate the base change of some object from
F to L.

Let us fix a rational point x in X: as explained in the previous section,
this induces a fiber functor, that we will denote by ω ∶ ⟨E⟩⊗ → VecF . Let
ωL ∶ ⟨E⟩⊗ → VecL be the fiber functor associated to the closed point of XL

given by the base change of x to L. Let π(E, ω), respectively π(EL, ωL), the
algebraic groups associated to the Tannakian categories (⟨E⟩⊗, ω), respec-
tively to (⟨EL⟩⊗, ωL).

The goal of this section is to prove the following

Theorem 2.3.1. There is a functorial morphism

π(EL, ωL)→ π(E, ω)⊗L,

which is a closed immersion.
Moreover, if F is algebraically closed, it is an isomorphism. In particu-

lar, we can explicitly describe the category Repf(π(EL, ωL)) in terms of the
category Repf(π(E), ω).

We will prove this theorem in a more general setting, which applies to
certain classes of Tannakian categories:

Definition 2.3.2. Let F be any field and i ∶ F ⊂ L a field extension. A pair
consisting of a (neutral) Tannakian category (T , ω) over F and a (neutral)
Tannakian category (TL, ωL) over L is a geometric (F,L)-pair if there exists
an additive, exact tensor functor −L ∶ T → TL, A↦ AL called the base change
functor such that

(A1) there is a natural equivalence ωL ○ −L = i∗ ○ ω(A).

A geometric (F,L)-pair is said to be filtered if there exists a (possibly non
exhaustive) filtration of subcategories indexed by the F -algebras of finite
type R ⊂ L, denoted T RL such that:

(F0) for every A ∈ T , AL ∈ T FL and for R ⊂ R′ the category T RL is a faithful
subcategory of T R

′

L ;
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(F1) for every A ∈ T and every B′ ⊂ AL, if B′ ∈ T RL then the immersion
B′ ⊂ AL is in T RL and the restriction of the evaluation functor ωL
factors through − ⊗R L ∶ BunR → VecfL, where BunR is the category
of vector bundles over SpecR;

(F2) for every A ∈ T , the subcategory ⟨AL⟩⊗ is exhaustively filtered by T RL ,
that is every object and morphism in ⟨AL⟩⊗ is contained in T RL for
some R.

As an example, the geometric (F,L)-pair (VecfF , for) and (VecfL, for)
admits a natural filtration

VecfRL = {B ∣ B ⊂ A⊗F L,A ∈ VecfF and (B ⊂ AL) is defined over R}

HomT RL
(A,B) = {φ ∈ HomVecfL(A,B) ∣ φ is defined over R}

where B ⊂ AL is defined over R if there exists B′ ⊂ A⊗F R as vector bundles
such that (B′ ⊂ AR)L = (B ⊂ AL) and similarly for homomorphisms. For
every F -rational point z ∈ SpecR(F ) the restriction gives a natural evalua-
tion map evz ∶ Coh(SpecR) → Coh(SpecF ) = VecfF . We want a map with
similar properties to exist on our filtered (F,L)-pair, hence the following:

Definition 2.3.3. A geometric (F,L)-pair is endowed with an evaluation
structure if it is filtered and for every F -algebra of finite type R ⊂ L, for
every z ∈ SpecR(F ) there exists an functor evz ∶ T RL → T preserving direct
sums and tensor product such that

(A2) there are natural equivalences evz ○ ωL = ω ○ evz ∶ T
R
L → VecfF and

evz ○ −L = id.

A geometric (F,L)-pair is comparable if it is endowed with an evaluation
structure and if

(A3) for every A ∈ T the monodromy group π(⟨A⟩⊗, ω) is reduced or, equiv-
alently, smooth.

Remark 2.3.4. Notice that if F is not algebraically closed, it may happen
that SpecR(F ) = ∅ and hence that (A2) is a void condition. In order for
the evaluation structure to be of some use we will need F to be algebraically
closed, in parallel to what one should expect also on the vector spaces side.

Lemma 2.3.5. Let F ⊂ L be any field extension. Let X a smooth geometri-
cally connected variety over F , x ∈X(F ) a rational point and xL ∈X(L) the
induced rational point on XL =X⊗F L. Then Strat(X/F ) and Strat(XL/L)
are a geometric (F,L)-pair. If moreover F is algebraically closed, then they
are comparable.
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Proof. Of course the functor Strat(X/F ) → Strat(XL/L) sending E to EL
is additive, exact and respects the tensor structure. We define the strat-
ification Strat(XL/L)

R as the sub-objects F ⊂ EL, for E ∈ Strat(X/F ),
coming by base change from some F′ ⊂ ER ∈ Strat(XR/R) and similarly
for homomorphisms. The axioms (F0) and (F1) are clearly satisfied and
(F2) comes from Lemma 2.2.5. In particular, we obtain evz ∶ Strat(X/L)R ⊂

Strat(X ⊗F R/SpecR) → Strat(X/F ) which clearly satisfies (A2). The ax-
iom (A1) follows by the definition of ω and ωL and the axiom (A3) is [San07,
Cor. 12].

Remark 2.3.6. The very same construction holds for any Tannakian category
T (X) associated to a F -scheme X, with a base change functor T (X) →

T (XL), A ↦ AL, such that (A3) holds and that for every A ∈ T (X), every
sub-object B ⊂ AL is defined over a finitely generated F -algebra (as a sub-
object). The following examples give rise to (comparable) geometric pairs:

i) the category of flat connections over a F -variety X with F (alge-
braically closed) of characteristic zero and X(F ) ≠ ∅;

ii) the category of essentially finite sheaves over a pseudo-proper F -variety
X (see [NB13] for the definition of pseudo-proper) for F (algebraically
closed) of characteristic zero and X(F ) ≠ ∅. Notice that in positive
characteristic (A3) may fail;

iii) variations of (i) and (ii) such as the subcategories of unipotent objects,
finite tame objects (see [NB13, Def. 12.1]) and so on.

iv) variations of Strat(X/F ), for example its largest semi-simple sub-
category, its largest unipotent sub-category and so on.

In this more general setting, Theorem 2.3.1 can be restated as follows

Theorem 2.3.7. Let (T,ω) and (TL, ωL) a geometric (F,L)-pair and let
A ∈ T . Then there is a functorial morphism

µ ∶ π(AL, ωL)→ π(A,ω)⊗F L

which is a closed immersion. If moreover the pair is comparable and both F
and L are algebraically closed, then µ is an isomorphism.

We will spend the rest of this section to prove this theorem. Let (T , ω)
and (TL, ωL) be a geometric (F,L)-pair, and let A ∈ T . As ω and ωL are fixed,
we will often write π(A) for π(A,ω) and π(AL) for π(AL, ωL). In order to
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compare π(AL) and π(A)⊗L as algebraic groups over L we need to exhibit
a morphism between them. By construction of the associated Tannakian
group, if we consider π(AL) as its functor of points from the category of
schemes over L to Groups then

π(AL)(s ∶ T → SpecL) = {α ∶ s∗ωL ≃ s∗ωL iso. of ⊗ -functors}.

Similarly as functor of points from the category of schemes over F to
Groups

π(A)(s ∶ T → SpecF ) = {α ∶ s∗ω ≃ s∗ω iso. of ⊗ -functors}.

In our situation we are interested in considering the functor of points π(A)⊗L
on schemes over L, that is we want to describe π(A)L(s ∶ T → SpecL). Notice
that if s ∶ T → SpecL is a scheme over L then, considering T as a scheme
over F via i ○ s, we have that

HomL(T,π(A)L) =HomF (T,π(A)) = π(A)(i ○ s ∶ T → SpecF ) =

= {α ∶ s∗i∗ω ≃ s∗i∗ω iso. of ⊗ -functors}.

By definition, α ∶ s∗ωL ≃ s∗ωL is a compatible collection of automorphisms
αB ∈ Aut(s∗(ωL(B)) for every object B ∈ ⟨AL⟩⊗, where by compatible we
mean that if f ∶ B → B′ is a morphism then the diagram

s∗ωL(B)
αB //

s∗ωL(f)
��

s∗ωL(B)

s∗ωL(f)
��

s∗ωL(B
′)

αB′ // s∗ωL(B
′)

commutes. In particular we can give another description of the functor of
points, namely

π(AL)(s ∶ T → SpecL) = {(αB)B∈⟨AL⟩⊗ ∣ αB ∈ Aut(s∗ωL(B)) comp. coll.}.

On the other hand, for every object B ∈ ⟨A⟩⊗, by the axiom (A1) we have
that i∗ω(A) = ωL(AL). Let us denote by S ⊂ ⟨AL⟩⊗ the subset of all objects
coming from ⟨A⟩⊗ by the base change functor, that is

S = {B ∈ ⟨AL⟩⊗ ∣ B ≃ B′
L,B

′ ∈ ⟨A⟩⊗}.

Then, we have that

π(A)L(s ∶ T → SpecL) = {(αB)B∈S ∣ αB ∈ Aut(s∗ωL(B)) comp. collection}.
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Hence, there is a natural map π(AL)(T ) → π(A)L(T ) that restricts the
collection of automorphisms from the objects of ⟨AL⟩⊗ to S. It is clearly a
map of group functors and hence by Yoneda it induces a morphism of group
schemes µ ∶ π(AL)→ π(A)L.

Lemma 2.3.8. For every s ∶ T → SpecL the homomorphism of groups

µ(T ) ∶ π(AL)(T )→ π(A)L(T )

is injective. In particular, µ ∶ π(AL)→ π(A)L is a closed immersion.

Proof. Let us consider α ∈ π(AL)(T ), that is, a compatible collection (αB)

for B ∈ ⟨AL⟩⊗ and αB ∈ Aut(s∗ωL(B)). Then µ(T )(α) is by definition
the restriction of the collection (αB) to the objects of the form B′

L with
B′ ∈ ⟨A⟩⊗. Assume that µ(T )(α) = id, that is (µ(T )(α))B′

L
= idB′

L
for every

B′ ∈ ⟨A⟩⊗. Then, in particular we have that αAL = idAL and αp(AL,A∨L) =
idp(AL,A∨L) for every p ∈ N[x, y] (notice that as A↦ AL is an additive tensor
functor p(AL,A∨

L) = p(A,A
∨)L).

Now, the collection of automorphisms must be compatible with mor-
phisms between stratified bundles, in particular if B ⊂ B′ is a sub-object
(and hence s∗ωL(B) ⊂ s∗ωL(B

′)), then αB ∶ s∗ωL(B) → s∗ωL(B
′) must be

the restriction of αB′ ∶ s∗ωL(B
′) → s∗ωL(B

′). Similarly, if B is a quotient
of B′ then αB must be the quotient of αB′ . In particular, as every object is
isomorphic to a sub-quotient of p(AL,A∨

L) for some p ∈ N[x, y], we obtain
αB = idB for every B ∈ ⟨AL⟩⊗, that is α = id hence µ(T ) is injective for every
T . In particular, µ is a monomorphism hence, by [SGA3, V IB Cor. 1.4.2], a
closed immersion.

Remark 2.3.9. Another way of proving the previous lemma would be to
establish explicitly what is the associated functor Mµ ∶ RepfL π(A)L →

RepfL π(AL) and use Proposition 2.1.4 to conclude. We prefer to propose
this direct approach instead of the more indirect, though more elegant, one.

By definition of geometric Tannakian category, π(A) and hence π(A)L
are reduced. In particular, when L is algebraically closed, in order to prove
that µ is an isomorphism it suffices to show the following:

Lemma 2.3.10. If F is algebraically closed the morphism of groups µ(L) ∶
π(AL)(L)→ π(A)L(L) is surjective.

Proof. As before, let S ⊂ ⟨AL⟩⊗ denote the objects isomorphic to BL for
some B ∈ ⟨A⟩⊗.
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In order for µ(L) to be surjective, we need to find, for every β ∈ π(A)L(L)
an element α ∈ π(AL)(L) in the preimage. Unraveling the definition, for
every compatible collection βB ∈ Aut(ωL(B)) for B ∈ S we want to find a
compatible collection αB ∈ Aut(ωL(B)) for B ∈ ⟨AL⟩⊗ such that αB = βB
for every B ∈ S.

We will first construct the collection αB satisfying αB = βB for every
B ∈ S and then show it is compatible. In order to construct the collection,
as every B ∈ ⟨AL⟩⊗ is a sub-quotient of p(AL,A∨

L) for some p ∈ N[x, y], we
will show that for every B ⊂ p(AL,A

∨
L) we have that ωL(B) is βp(AL,A∨L)-

invariant. In particular, βp(AL,A∨L) restrict to every ωL(B) (and hence also to
all sub-quotients) defining a collection αB which, by construction, satisfies
αB = βB for every B ∈ S.

Without loss of generality, as all functors preserve direct sum and tensor
product, we can assume p(AL,A∨

L) = AL and reduce ourselves to prove the
invariance only for βAL . By way of contradiction, assume that there exists
B′ ⊂ AL a sub-object of AL such that ωL(B′) is not invariant under βAL .

By (F2), there is some algebra R of finite type over F , on which βAL is
defined (that is, βAL comes from an endomorphism of ω(A)⊗F R in BunR)
and such that (B′ ⊂ A) ∈ T RL . In particular by (F1) we have that ωL(B′),
as a sub-object of ωL(AL) = ω(A)L, comes by base change from a sub-
object of ω(A) ⊗F R in BunR. Notice that for every z ∈ SpecR(F ) the
evz(βAL) is an automorphism of ω(A) = evz(ωL(AL)). Moreover for every
C ⊂ A the subspace ω(C) is invariant for it: as the βB form a compatible
collection, we have that ωL(BL) is βAL-invariant and hence evz(ωL(CL)) =
evz(ω(C) ⊗F L) = ω(C) is evz(βAL)-invariant. Notice that this holds if R
is any F -algebra on which βAL is defined and such that (B′ ⊂ A) ∈ T RL , in
particular by (F0) we can without loss of generality enlarge R along the
proof. To get a contradiction, we will show that there exists R such that
(B′ ⊂ A) ∈ T RL and on which βAL is defined and there exists z ∈ SpecR(F )

such that evz(B′) is a sub-object of A but ω(evz(B′)) is not evz(βAL)-
invariant.

Let v1, . . . , vr be a basis of ω(A) over F , and let us denote again by
v1, . . . , vr the one induced on ωL(AL) = ω(A)⊗F L. Let w1, . . . ,ws be a basis
for ωL(B′), wi = ∑aijvj , with aij ∈ H0(SpecR,OSpecR) (recall that ωL(B′)

comes from a sub-object of ω(A)R in BunR). We can complete it to a basis of
ωL(AL), and up to reordering assume it is of the form w1, . . . ,ws, vs+1, . . . , vr.
Notice that as being a basis depends on a determinant to be invertible,
evz(w1), . . . , evz(ws), vs+1, . . . , vr are a basis for every choice of a closed point
z ∈ SpecR, where evz(wi) = ∑ evz(aij)vj . As ωL(B′) is not invariant under
βAL , then there exists a vector w = ∑ biwi such that βAL(w) ∉ ωL(B

′), that
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is βAL(w) = ∑ ciwi+∑djvj , with dj ≠ 0 for some j, say j = r. Up to enlarging
R we can assume that bi, ci and dj are in H0(SpecR,OSpecR) as well.

As dr ≠ 0 up to shrinking SpecR we have that for every closed point
z ∈ SpecR the evaluation of dr at z is not zero. If z ∈ SpecR(F ), then
evz(ωL(B

′)) = ⟨evz(w1)⟩⊕⋯⊕⟨evz(ws)⟩ and we have that evz(βAL)(evz(w)) =

evz(βAL(w)) = ∑ evz(ci)evz(wi) + ∑ evz(dj)vj , and hence evz(ωL(B′)) is
not evz(βAL)-invariant. By (A2) we have that evz(ωL(B′)) = ω(evz(B

′)).
Moreover, up to localizing R, we can assume that for every z ∈ SpecR(F )

evz(ωL(B
′) = ω(evz(B

′)) ⊂ ω(A). In particular, by Remark 2.1.3, it follows
that evz(B′) ⊂ A.

So after possibly substituting R with a localization of R′ ⊃ R we have
that, for every z ∈ SpecR(F ), evz(B′) ⊂ A but ω(evz(B′)) is not evz(βAL)-
invariant. As F is algebraically closed, there always is such a z, yielding to
a contradiction.

Now that we have our collection αB for B ∈ ⟨AL⟩⊗ we need to check that
it is compatible, that is for every f ∶ B → B′ in ⟨AL⟩⊗ that the diagram

ωL(B)
αB //

ωL(f)
��

ωL(B)

ωL(f)
��

ωL(B
′)

αB′ // ωL(B
′)

commutes. Similarly as before, there exists some finite type F -algebra R such
that objects and morphisms are in T RL and everything is defined over R. With
a similar argument as before, one can chose such a R so that evaluating at
closed point (that is, F -rational points) yields to a contradiction if we assume
that the diagram is not commuting.

Corollary 2.3.11. Let assume that we are in the case where T = Strat(X/F )

(or in one of the examples in Remark 2.3.6). If the field L is not algebraically
closed then µ is still an isomorphism.

Proof. Let us consider F ⊂ L ⊂ F̄ , then by the theorem the composition
π(EL̄)→ π(EL)⊗L L̄→ π(E)⊗F L̄ is an isomorphism. In particular µL̄ is an
isomorphism and hence µ is as well.

2.4 The structure of Repf(π(EL))
Let F be algebraically closed and let L be a field extension. By Corol-
lary 2.3.11 we have that π(EL) ≃ π(E) ⊗ L we can now describe explicitly
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⟨EL⟩⊗ in terms of ⟨E⟩⊗ or, up to equivalence of categories, Repf(π(EL)) in
terms of Repf(π(E)).

Theorem 2.4.1 (Jordan-Hölder). [Ses67, Thm 2.1] Let C be an abelian cat-
egory and X ∈ C an object of finite length. Then X admits a filtration, called
composition series

0 = Ar ⊂ Ar−1 ⊂ ⋯ ⊂ A0 =X

such that Si = Ai/Ai+1 are simple for every i (and different from zero).
Moreover every such two filtration have the same length r and their associated
graded objects are isomorphic. The Si are called the composition factors of
X.

Lemma 2.4.2. An object F in ⟨E⟩⊗ is simple if and only if FL is simple in
⟨EL⟩⊗.

Proof. Assume that F is not simple, and let 0 ≠ F′ ⊂ F a sub-object. Then
0 ≠ F′L ⊂ FL is a sub-object as well. Conversely, assume that FL is not simple
and let 0 ≠ F′ ⊂ FL be a sub-object. Let R be a F -algebra of finite type over
F such that F′ is defined over R (see the proof of Lemma 2.3.5) then we can
evaluate at closed points z ∈ SpecR(F ) getting evz(F′ ⊂ FL) = evz(F′) → F.
All we need to show is then that evz(F′ → FL) is not the zero morphism for
some z ∈ SpecR(F ). But this must be the case as otherwise F′ → FL would
be the zero morphism on every closed point and hence would be zero.

If 0 = Fr ⊂ ⋯ ⊂ F is a composition series for F then by the previous lemma
0 = Fr ⊗ L ⊂ ⋯ ⊂ F ⊗ L is a composition series for FL. If F′ is a sub-object
or a quotient of F then its composition factors are isomorphic to a subset
of the composition factors of F. This implies in particular that the simple
objects in ⟨EL⟩⊗ are the composition factors of p(EL,E∨L) with p ∈ N[x, y].
As p(E,E∨)L = p(EL,E∨L) we have the following

Corollary 2.4.3. Simple objects in ⟨EL⟩⊗ are of the form FL for some F
simple object in ⟨E⟩⊗.

Note that the very same corollary is valid for describing the simple objects
in Repf(π(EL)) in terms of the ones in Repf(π(E)). We are now left to de-
scribe the Hom and Ext groups between them. Using the Tannakian duality
and [Jan87, Ch. 4] (note that we are dealing with affine algebraic groups by
Lemma 2.1.5) we have that Hom⟨E⟩⊗(F,F

′)⊗L = Hom⟨EL⟩⊗(FL,F
′
L) and more

in general Exti⟨E⟩⊗(F,F
′) ⊗ L = Exti⟨EL⟩⊗(FL,F

′
L) for every i. Note that this

means that we expect that the objects of ⟨EL⟩⊗ are not all coming from ⟨E⟩⊗
by base change as new extension will appear as soon as Ext⟨E⟩⊗(F,F

′) ≠ 0.
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2.5 The comparison morphism on πstrat
1 (X)

The very same construction via functor of points that we did for the mo-
nodromy group of some E ∈ Strat(X/F ) can be carried out for the whole
category Strat(X/F ), hence giving a morphism

µ ∶ πstrat
1 (XL)→ πstrat

1 (X)⊗L,

or, equivalently, a ⊗-functor

M ∶ RepfL(π
strat
1 (X)⊗L)→ RepfL(π

strat
1 (XL)).

Lemma 2.5.1. The morphism µ is faithfully flat. In particular, the functor
M is fully faithful.

Proof. Let G be any affine group scheme over a field F . Then, by [Mil12,
VIII,Thm. 8.1], G is the projective limit of its algebraic quotients or, equiv-
alently, if G = SpecA for A and Hopf algebra, A is the direct union of its
finitely generated Hopf sub-algebras. Moreover, by [Mil12, VI,Thm. 11.1] ev-
ery inclusion of Hopf algebras A ⊂ B over a field is faithfully flat, hence every
affine group scheme over a field F is the projective limit of its faithfully flat
algebraic quotients. If Ai and Aj are two Hopf sub-algebras of A that are
finitely generated over F then their generators taken together span a finitely
generated Hopf sub-algebra Ak of A containing both Ai and Aj .

Summarizing, every Hopf algebra A over a field F is the directed limit
(that is, union) of its finitely generated Hopf sub-algebras Ai such that A is
faithfully flat over Ai.

Let now G = πstrat
1 (X) and A its associated Hopf algebra over F . Then,

by what just remarked
A = lim

Ð→
Ai

where the union is taken over the finitely generated Hopf sub-algebras Ai
such that A is faithfully flat over Ai. As it is a directed limit, tensor product
commutes with it, hence if L is a field extension of F we have that

A⊗F L = (lim
Ð→

Ai)⊗F L = lim
Ð→

(Ai ⊗F L).

Now, by [DM82, Prop. 2.21], as G → SpecAi is faithfully flat, then the
induced ⊗-functor Mi ∶ RepfF (Ai) → RepfF (G) must be fully faithful and
if ρ is an object of RepfF (Ai) every sub-object of Mi(ρ) must come from
a sub-object of ρ. Hence, we can consider RepfF (Ai) as a full subcategory
of RepfF (G) which is closed under sub-quotient and tensor product. Up to
category equivalence we can also assume that RepfF (Ai) is closed under
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isomorphisms. Moreover, by [DM82, Prop. 2.20] RepfF (Ai) is ⊗-generated
by one object, hence it will be equivalent to ⟨E⟩⊗ for some E ∈ Strat(X/F ).
On the other hand for every E ∈ Strat(X/F ) we have that π(E) = SpecAE
for AE ⊂ A a Hopf sub-algebra on which A is faithfully flat. Using that
π(EL) = π(E)⊗F L, we get

πstrat
1 (X)⊗F L = lim

←Ð
π(E)⊗F L = lim

←Ð
π(EL).

In the language of Hopf algebras, if πstrat
1 (XL) = SpecB and Bj are its

Hopf sub-algebras that are finitely generated over L, then for every E ∈

Strat(X/F ) we have that AEL = Bj for some j, in particular

A⊗L = lim
Ð→

AE ⊗L = lim
Ð→

AEL ⊂ lim
Ð→

Bj = B.

Hence, using again [Mil12, VI,Thm. 11.1] we have that B is faithfully flat
over A and by [DM82, Prop. 2.21] we have that M is fully faithful.

Remark 2.5.2. The proof and the conclusion of the previous lemma apply to
every geometric comparable (F,L)-pair on which Theorem 2.3.7 applies. In
general, though, µ is not an isomorphism. For example [San07, Cor. 23] pro-
vides a counterexample for πstrat1 (X) even when X is projective, but already
in [Del89, Par. 10.35] Deligne showed that the construction of the Tannakian
fundamental group of the category of (regular singular) flat connections is
not compatible with a transcendental extension of the ground field.
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The positive
equicharacteristic
p-curvature conjecture

The chore of this work is devoted to the study of the behavior of the mono-
dromy group of stratified bundles in families. There are interesting results
and conjectures about this question, both in mixed and zero characteristic,
that we briefly summarize in what follows. Let (E,∇) be a vector bundle
endowed with a flat connection on a smooth complex variety X. Then there
exists a smooth scheme S over SpecZ such that (E,∇) = (ES ,∇S) ⊗S C
and X = XS ⊗S C with XS smooth over S and (ES ,∇S) flat connection on
XS , relative to S. The p-curvature conjecture of Grothendieck and Katz (see
[And04, Conj. 3.3.3]) predicts that if for all closed points s of a dense open
sub-scheme S̃ ⊂ S the vector bundle ES ×S s is spanned by its horizontal
sections, then (E,∇) must be trivialized by an étale finite cover of X.

An analogue problem can be studied in equicharacteristic zero, and in
fact reduces the p-curvature conjecture to the number field case. Y. André in
[And04, Prop. 7.1.1] and E. Hrushovsky in [Hru02, p. 116] stated and proved
the following equicharacteristic zero version of the p-curvature conjecture:
let X → S be a smooth morphism of varieties over a field F of characteristic
zero; let (E,∇) be a flat connection on X relative to S such that, for every
closed point s in a dense open S̃ ⊂ S, the flat connection (E,∇) ×S s is
trivialized by a finite étale cover. Then, there exists a finite étale cover of
the generic geometric fiber over η̄ that trivializes (E,∇) ×S η̄, where η̄ is a
geometric generic point of S.

The theorem of André and Hrushovsky translates naturally to the case
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where X → S is a morphism of Fp-schemes, providing a positive equichar-
acteristic analogue to the p-curvature conjecture, which will be the central
argument of this chapter.

In this and next chapter F will always be algebraically closed.

3.1 Families of finite stratified bundles

Let E ∈ Strat(X/S) be a relative stratified bundle. Then we can see E as a
family of stratified bundles parametrized by the points of S. In particular,
for every s ∈ S(F ), let Es ∈ Strat(Xs/k(s)) denote the restriction of E on
Xs and Eη̄ ∈ Strat(Xη̄/k(η̄)) its restriction on the geometric generic fiber
given by a choice of an algebraic closure k(S) of k(S). It is natural then
to ask how the property of being isotrivial behaves in families: the main
question we want to study is whether it is true that if Es is finite for every
s ∈ S(F ) then so is Eη. As already mentioned, this is true in characteristic by
[And04, Prop. 7.1.1]. In positive characteristic, following an idea of Laszlo,
in [EL13, Cor. 4.3, Rmk. 5.4.1] the authors proved that there exists X → S
a projective smooth morphism of varieties over F̄2 and a stratified bundle on
X relative to S which is finite on every closed fiber but not on the geometric
generic one (recall that by 2.2.2 as the ground field is algebraically closed
then finiteness and isotriviality are two equivalent notions for a stratified
bundle). Nevertheless, assuming X to be projective over S and imposing
a coprimality to p condition on the order of the monodromy group on the
closed fibers, they proved the following:

Theorem 3.1.1. [EL13, Thm. 7.2] Let X → S be a smooth projective mor-
phism of F -varieties with geometrically connected fibers, let E ∈ Strat(X/S).
Assume that there exists a dense subset S̃ ⊂ S(F ) such that, for every s ∈ S̃,
the stratified bundle Es has finite monodromy of order prime to p. Then

i) there exists fη̄ ∶ Yη̄ → Xη̄ a finite étale cover of order prime to p such
that f∗Eη̄ decomposes as direct sum of stratified line bundles;

ii) if F ≠ F̄p then Eη̄ is trivialized by a finite étale cover of order prime to
p.

Note that the cover of order prime to p in the second point of the theorem
factors through the Picard–Vessiot torsor of Eη̄ by its minimality (see Lemma
2.2.2). In particular, this implies that the order of the monodromy group of
Eη̄ is prime to p.

In this chapter we will determine how the assumptions of X being pro-
jective over S and of the order of the monodromy groups to be prime to p
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can or cannot be relaxed in order to get similar results, in order to get a
full parallelism with the results in characteristic zero. A first strengthening
of the theorem comes rather directly from the ideas in the proof of Theorem
3.1.1. In order to prove it we need first to establish the following

Lemma 3.1.2. Let h ∶ X → S be a proper flat separable morphism of
connected varieties with geometrically connected fibers over an algebraically
closed field F and suppose it has a section σ ∶ S → X. Let S̃ ⊂ S(F ) be any
subset of the closed points of S, let N ∈ N and let us fix for every s ∈ S̃ a
finite étale cover gs ∶ Zs → Xs of degree less than N . Then there exists an
open sub-scheme U ⊂ S and a finite étale cover f ∶W → X ×S U dominating
all the gs for s ∈ S̃ ∩ U ; that is, for every s ∈ S̃ ∩ U the finite étale cover
fs ∶Ws →Xs factors through gs ∶ Zs →Xs.

Proof. The proof of this lemma is a generalization of the construction that
one can find in the beginning of the proof of [EL13, Thm. 5.1].

First notice that if the order of the gs ∶ Zs → Xs is bounded by N then
the order of their Galois closures is bounded by N !, hence we can assume
all the gs ∶ Zs → Xs to be Galois. Moreover if S′ is connected and S′ → S
is étale and generically finite then there is a non-trivial open U over which
S′×S U → U is finite and étale. As X → S is smooth its image is open; hence,
by shrinking S, we can assume that X → S is surjective.

Let S′ → S be finite étale, then so is X ′ = X ×S S
′ → X. Let s ∈ S̃

and s′ ∈ S′(F ) lying over s. Assume that we have found f ′ ∶ W → X ′ such
that f ′s ∶ Ws → X ′

s factors through gs′ ∶ Zs′ = Zs ×k(s) k(s′) → X ′
s′ then the

composition f ∶ W → X ′ → X is a finite étale cover of X and fs ∶ Ws → Xs

factors through gs.
As h ∶ X → S has geometrically connected fibers so does h′ ∶ X ′ → S′ as

if s′ ∈ S lies over s ∈ S then X ′
s′ = Xs ⊗k(s) k(s

′). Therefore, h′ ∶ X ′ → S′ is
proper, flat, separable and has geometrically connected fibers. To summarize,
if S′ is connected the morphism h ∶ X ′ → S′ together with the section σ′ ∶
S′ → X ′ induced by σ ∶ S → X satisfy the assumptions of the theorem and
without loss of generality we only need to prove the theorem for h ∶X ′ → S′.
Moreover, taking for every s ∈ S(F ) − S̃ the cover gs to be the identity we
can assume S̃ to be the whole S.

For any s ∈ S let Gs ⊂ πét
1 (Xs, σ(s)) be the open normal subgroup corre-

sponding via Galois duality to the cover gs ∶ Zs →Xs. Let η̄ be a generic geo-
metric point of S given by the choice of an algebraic closure k(S) of k(S). The
fibers of X → S are geometrically connected and the morphism is proper, flat
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and separable; hence, the specialization map πét
1 (Xη̄, σ(η̄))↠ πét

1 (Xs, σ(s))
is surjective. Composing it with the quotient of πét

1 (Xs, σ(s)) by Gs we get

ρs ∶ π
ét
1 (Xη̄, σ(η̄))↠ πét

1 (Xs, σ(s))↠ πét
1 (Xs, σ(s))/Gs.

Notice that the index of ker(ρs) in πét
1 (Xη̄, σ(η̄)) is bounded by N . Let

τ ∶ S′ → S be any finite étale cover and let s′ ∈ S lying over s. As F is
algebraically closed, then k(s′) ≃ k(s) and hence X ′

s′ ≃Xs. In particular, the
natural morphism πét

1 (X ′
s′ , σ

′(s′)) → πét
1 (Xs, σ(s)) is an isomorphism. Let

Gs′ ⊂ π
ét
1 (X ′

s′ , σ
′(s′)) is the open subgroup corresponding to gs′ ∶ Zs′ → X ′

s′ ,
that is, the preimage of Gs under this isomorphism and let us denote by

ρs′ ∶ π
ét
1 (Xη̄, σ(η̄))↠ πét

1 (X ′
s′ , σ

′(s′))↠ πét
1 (X ′

s′ , σ
′(s′))/Gs′ ,

then ker(ρs′) = ker(ρs) ⊂ π
ét
1 (Xη̄, σ(η̄)).

As Xη̄ is a projective k(S)-variety, then πét
1 (Xη̄, σ(η̄)) is topologically

finitely generated and hence has finitely many subgroups of index less than
N , which are all opens by Nikolov–Segal theorem ([NS07, Thm 1.1]), the
intersection of which we denote by G: It is a normal open subgroup and it
has finite index. Moreover

G ⊂ ⋂
s∈S̃

ker(ρs) = ⋂
s′∈τ−1(S̃)

ker(ρs′).

At this point, we need an additional step before concluding similarly
than in the proof of [EL13, Thm. 5.1]. By Galois duality G corresponds to
a finite étale cover Zη̄ → Xη̄. Let k(S)sep be the separable closure of k(S)
in k(S). The base change functor from the category of finite étale covers
over X ⊗S k(S)

sep to the one of finite étale covers over Xη̄ is an equivalence.
Hence, Zη̄ is defined over some separable extension of k(S). In particular,
there exists an étale generically finite cover S′ → S such that Zη̄ descends to
a finite étale cover of X ′ =X ×S S

′.
Let η̄′ be the geometric generic point of S′ given by k(S) ⊂ k(S′) ⊂ k(S).

Then X ′
η̄′ =Xη̄ and σ(η̄) = σ′(η̄′). Hence, the following diagram commutes:

πét
1 (X ′

η̄, σ
′(η̄)) // πét

1 (X ′, σ′(η̄))

��
πét

1 (Xη̄, σ(η̄)) // πét
1 (X,σ(η̄)).
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Let K ′ be the kernel of πét
1 (Xη̄, σ(η̄))→ πét

1 (X ′, σ′(η̄)). As X → S is projec-
tive we have the following exact sequence:

πét
1 (Xη̄, σ(η̄))

q

��

α

))
{1} // πét

1 (Xη̄, σ(η̄))/K
′ i // πét

1 (X ′, σ′(η̄)) // πét
1 (S′, η̄) //

σ′
∗pp

{1}.

By [SGA1, V Cor 6.7] and the fact that Zη̄ = Z ′ ×S′ η̄ for Z ′ → X ′

an étale cover, we have the inclusion G ⊃ K ′. Moreover if we denote by
ΠK′ = πét

1 (Xη̄, σ(η̄))/K
′, then the section σ′∗ induces a split

πét
1 (X ′, σ(η̄)) ≃ ΠK′ ⋊ σ′∗(π

ét
1 (S′, η̄))

as abstract groups. It is also a split of topological groups (see for example
[Bou98, §2.10 Prop. 28] and following discussion). In particular, the topology
on πét

1 (X ′, σ(η̄)) is the product topology. Note that G = q(G) is invariant by
the action of σ′∗(πét

1 (S′, η̄)); hence, we can define

H = G ⋊ σ′∗(π
ét
1 (S′, η̄)).

By definition, and as G ⊃ K ′, we have that α−1(H) = G, and H has finite
index in πét

1 (X ′, σ(η̄)). It is also open: πét
1 (X ′, σ(η̄)) is endowed with the

product topology, and G is open because G = q−1(G) is open as well. Hence,
H corresponds to a finite étale cover W → X ′ and as the composition H ⊂

πét
1 (X ′, σ(η̄))↠ πét

1 (S′, η̄) is surjective, thenW has geometrically connected
fibers over S′. In particular, the specialization map is again surjective. Let
z ∈ W be a point lying over s′ and let ζ̄ be a geometric generic point lying
over σ(η̄), then we have the following commutative diagram

πét
1 (Wη̄, ζ̄)

0
--

//

����

πét
1 (Xη̄, σ(η̄)) //

����

πét
1 (Xη̄, σ(η̄))/G

��
πét

1 (Ws, z) // πét
1 (X ′

s′ , σ
′(s′)) // πét

1 (X ′
s′ , σ

′(s′))/Gs′ .

Using the surjectivity of the specialization map on W it follows that the
composition of the morphisms on the second line is zero as well; hence, if
G̃s′ ⊂ πét

1 (X ′
s′ , σ

′(s′)) is the open normal subgroup corresponding to fs′ ∶
Ws′ →X ′

s′ then G̃s ⊂ Gs′ . Therefore, fs′ factors through gs′ .
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We can summarize the previous lemma by saying that with the assump-
tions of the theorem, up to shrinking S every family of finite étale covers
of the closed fibers with bounded order can be dominated by a finite étale
cover of X (notice that the existence of the section σ ∶X → S is not essential
for the proof as we can always replace S by S′).

Theorem 3.1.3. Let X → S be a smooth proper morphism of F -varieties
with geometrically connected fibers and E ∈ Strat(X/S) of rank r. Assume
that there exists a dense subset S̃ ⊂ S(F ) such that, for every s ∈ S̃, the
stratified bundle Es has finite monodromy and that the highest power of p
dividing ∣π(Es)∣ is bounded over S̃. Then

i) there exists fη̄ ∶ Yη̄ →Xη̄ a finite étale cover such that f∗Eη̄ decomposes
as direct sum of stratified line bundles;

ii) if F ≠ F̄p then Eη̄ is finite.

Proof. We will reduce this theorem to Theorem 3.1.1. By the invariance of
the monodromy group it suffices to prove the theorem for the f∗E where
f ∶ Y → X is a morphism of smooth S-varieties which is generically finite
étale. By Chow’s lemma and using de Jong alterations ([dJ96]) there exists
f ∶ Y → X projective and generically finite étale, hence we can assume X
to be projective. Up to taking an étale open of S we can assume that there
exists a section σ ∶ S →X. For any s ∈ S̃ let Γs = π(E, σ(s)) and hs ∶ Ys →Xs

the Picard–Vessiot torsor of Es (see Lemma 2.2.2). Let Gs ⊂ πét
1 (Xs, σ(s))

be the normal open subgroup corresponding via Galois duality to the cover
hs. By Tannakian duality Es corresponds to the image of an r-dimensional
representation of πStrat

1 (Xs, σ(s)) ([DM82, Prop. 2.21]) and as Es is finite by
[San07, Prop. 13] this representation factors through the étale fundamental
group, considered as a constant group scheme

πStrat
1 (Xs, σ(s))↠ πét

1 (Xs, σ(s))↠ πét
1 (Xs, σ(s))/Gs = Γs ⊂ GLr(F )

where r is the rank of E. By Brauer–Feit generalization of Jordan’s theorem
[BF66, Theorem], as the orders of the Sylow-p-subgroups of every Gs are
bounded by pN , there exists an integer M = f(r,N) and, for every s ∈ S̃, a
normal abelian subgroup As such that ∣Γs ∶ As∣ <M . This gives for every s ∈
S(F ) a Galois cover gs ∶ Zs →Xs of order bounded byM and a factorization

Ys → Zs →Xs

where Ys → Zs is Galois of Galois group As. Therefore, by Lemma 3.1.2, up
to shrinking S there exists a cover g′ ∶ Z ′ →X such that g′s ∶ Z ′

s →Xs factors
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through gs ∶ Zs → Xs. In particular, if E′ is the pullback of E via g′ then
π(E′s) is abelian for every s. Up to taking an étale open of S the section
σ ∶ S → X extends to a section σ′ ∶ S → Z ′. Let Γ′s = π(E′, σ′(s)), as we just
noticed for every s ∈ S̃ we have that Γ′s is abelian; hence, we can write it as
the direct product of its p part with its prime to p part:

Γ′s = Γps × Γp
′

s

and Γp
′

s corresponds to a Galois cover over Z ′
s whose index is by assumption

bounded by pN for some N ∈ N. Applying Lemma 3.1.2 and up to shrinking
S we get a Galois cover g′′ ∶ Z ′′ → Z ′ dominating all such covers. Let E′′ be
the pullback of E′ along g′′, then π(E′′s ) is (abelian) of order prime to p for
every s ∈ S̃. Therefore, we have reduced the problem to Theorem 3.1.1.

3.2 A counterexample over countable fields

Our next aim is to drop the assumption of X being projective over S. How-
ever, before getting to the positive results, let us present a counterexample to
understand what we can reasonably expect to hold without this assumption.
Assume for the rest of this section F to be an algebraically closed countable
field. Let X = A2

F , S = A1
F and let X → S be given by F [y] → F [x, y]. The

main result of this section is the following:

Proposition 3.2.1. There exists E ∈ Strat(X/S) such that Es is trivial for
every point s ∈ S(F ) but Eη̄ is not isotrivial.

The rest of the section will be spent constructing such a stratified bundle
and proving it satisfies the proposition.

As x is a global coordinate of X relative to S, it follows that

DX/S = OX[∂(k)x ∣ k ∈ N>0].

Moreover any vector bundle is free over X. We are hence in the assumptions
of Section 1.3, hence as explained there a DX/S-structure on any E vector
bundle over X of rank r is given by r × r matrices Ak = (akij), k ∈ N>0, with

values in H0(X,OX), satisfying the relations between the ∂(k)x .

In order to construct our example, let us fix a bijection n ↦ an between
the natural numbers and F = S(F ). Let E ∈ Strat(X/S) be the rank-two
relative stratified bundle E = OX ⋅ e1 ⊕ Ox ⋅ e2 with DX/S-action given by
∂
(k)
x (e1) = 0 and
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∂(k)x (e2) =

⎧⎪⎪
⎨
⎪⎪⎩

∏h
i=0(y − ai) ⋅ e1 if k = ph,
0 else.

(3.1)

Equivalently, the matrices Ak = (akij) are 2 × 2 strictly upper triangular
matrices, and the only nonzero entry is ak12 which is ∏h

i=0(y − ai) if k = ph

and zero otherwise. In particular along the closed fiber over an the matrices
Ak are zero for k > pn−1.

In order to prove Proposition 3.2.1 we need to show that this actually
defines an action of DX/S over E and that E satisfies the two properties
of the proposition, namely that it is trivial on every closed fiber and not
isotrivial on the geometric generic fiber.

Lemma 3.2.2. The formulae in (3.1) define a DX/S-module structure on
E.

Proof. As we already noticed, as we fixed the action of the generators of
DX/S , for it to extend to a DX/S-action we only need to check that the
relations of the generators in the ring of differential operators are satisfied
by their images in EndOX (E). By [Bav10, Cor. 2.5] the only relations are

[∂(l)x , ∂(k)x ] = 0

∂(k)x ○ ∂(l)x = (
k + l

k
)∂(k+l)x

[∂(k)x , x] = ∂(k−1)
x .

Let us begin with the second relation: for k, l > 0

∂(k)x ○ ∂(l)x (e1) = 0

∂(k)x ○ ∂(l)x (e2) = {
∂
(k)
x (∏h

i=0(y − ai) ⋅ e1) = 0 if l = ph

0 else

Hence, we just need to verify that if k + l = ph then (k+l
k
) = 0 but this holds

by Lucas’s theorem and the first relation follows immediately. Moreover by
(1.1) we have

∂(k)x ⋅ x(ei) = ∂
(k)
x (x ⋅ ei) = ∑

a+b=k
a,b≥0

∂(a)x (x)∂(b)x (ei) = x∂
(k)
x (ei) + ∂

(k−1)
x (ei);

hence, the third relation trivially holds.
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In order to prove that Es is trivial for every closed fiber, let us fix n ∈ N
and let s = an ∈ S(F ), that is, Xs = {y = an} ⊂ X. Let us consider the basis
change on OXs ⋅ e1 ⊕OXs ⋅ e2 = Es given by e′1 = e1 and

e′2 = e2 − [(y − a0)x + (y − a0)(y − a1)x
p +⋯ + [

n−1

∏
i=0

(y − ai)]x
pn−1

] ⋅ e1

then by (1.3) in this new basis the action of DXs/k(s) is given by ∂(k)x (e′1) =

∂
(k)
x (e′2) = 0 hence is the trivial action.

We are now left to prove that Eη̄ is not isotrivial:

Lemma 3.2.3. Let E ∈ Strat(X/S) be the stratified bundle defined by (3.1),
then Eη̄ is not isotrivial.

Proof. In order to prove that Eη̄ is not isotrivial it suffices by Lemma 2.2.6 to
show that it cannot be defined over any F ′ of finite type over Fp. Remark that
Eη̄ is a stratified bundle over A1

η̄ and the latter is obviously coming by base
change from A1

F ′ for every F
′ ⊂ F . By the way of contradiction assume then

that there exists F ′ of finite type over Fp such that Eη̄ is defined over F ′ and
let E′ be its descent over A1

F ′ . This means that there is a basis e′1, e
′
2 of Eη̄ such

that the matrices A′
k in this new basis take values in F ′[x] =H0(A1

F ′ ,OX).
Let U ∈ H0(A1

η̄,GL2) be the basis change matrix between ei and e′i,
then U is defined over some F ′′ of finite type over F ′, hence over Fp. Hence,
by (1.3) we have that ∏h

i=0(y − ai) ∈ F ′′[x]. In particular, if we denote by
A = Fp[∏h

i=0(y − ai) ∣ h ∈ N], our assumption implies that A ⊂ F ′′[x].
To see that this leads to a contradiction it suffices to show that K ⊈ F ′′(x)

where K is the quotient field of A. Note that F ⊂ K; therefore, it is enough
to prove that for every F ′ of finite type over Fp we have that F ⊈ F ′(x). As
F is algebraically closed, then F̄p ⊂ F and it is sufficient to show F̄p ⊈ F ′(x),
which follows from the following:
Claim. Let Fq be a finite field with q = pn for some n ∈ N and let F ⊃ Fq an
algebraic extension such that [F ∶ Fq] = +∞. Then for every m ∈ N and every
ε1, . . . , εm non-algebraic over Fq we have that

F ⊈ Fq(ε1, . . . , εm).

Proof. By induction on m, the case m = 0 being evident. Let m = 1, and γ ∈
F −Fq and let µγ(t) its minimal polynomial over Fq. By way of contradiction
assume γ ∈ Fq(ε1); then γ = f(ε1)/g(ε1) and

g(ε1)
degµγ ⋅ µγ(

f(ε1)

g(ε1)
) = 0
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gives an algebraic dependence of ε1 over Fq which is a contradiction with our
assumption that ε1 is not algebraic over Fq. Let nowm ≥ 1, by induction step
we know that for every n ∈ N, q = pn, then no infinite algebraic extension
of Fq is contained in Fq(ε1, . . . , εm−1); hence, there exists an r such that
Fqr = Fq(ε1, . . . , εm−1) ∩ F . Then

Fq(ε1, . . . , εm−1)(εm) ∩ F ⊂ Fqr(εm) ≠ F

by the m = 1 step applied to q = prn. In particular, F ⊈ Fq(ε1, . . . , εm).

Note that if F ′ is of finite type over Fp then F ′ can be always be written
as Fq(ε1, . . . , εm) for some q = pn and εi non-algebraic over Fq; hence, F̄p ⊈
F ′(x). Therefore, E cannot be defined over any F ′ of finite type over Fp and
by Lemma 2.2.6 it cannot be finite.

Remark 3.2.4. Let us observe that if F is uncountable the same construction
provides an example of a relative stratified bundle E ∈ Strat(A2

F /A
1
F ) and a

dense subset S̃ ⊂ A1
F (F ) such that Es is trivial for every s ∈ S̃ but Eη̄ is not

isotrivial. Therefore, the density condition on S̃ of Theorem 3.1.1 will not
be sufficient for our purposes, in parallel with the similar problem that one
encounters in the equicharacteristic zero case (see [And04, Rmk. 7.2.3]).

3.3 The main theorem

From the example in previous section it appears that in the case where X is
not projective over S the situation is significantly different from the one in
Theorem 3.1.1. In the latter one big obstruction for the theorem to hold was
related to p dividing the order of the monodromy group on the closed fibers.
In the counterexample of Section 3.2 these are trivial and the obstruction
seems more related to the cardinality of F . As noticed in Chapter 2, as we
are assuming F to be algebraically closed, the monodromy group does not
depend (up to a non-unique isomorphism) on the choice of x ∈X. Therefore,
in this section we will denote the monodromy group of a stratified bundle E
simply by π(E).

In order to phrase the statement of the main theorem let us introduce
the following notation: we will denote by (X,S;E) (and call it a triple over
F ) any triple consisting of X → S smooth morphism of F -varieties with
geometrically connected fibers and E ∈ Strat(X/S). We denote furthermore
by F ′ = F ′(X,S;E) a (minimal) algebraically closed subfield of F such that
(X,S;E) is defined over F ′, and by (X ′, S′;E′) the descent of the triple
(X,S;E) to F ′. Then the following result holds
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Theorem 3.3.1. Let (X,S;E) be a triple over F , let F ′ = F ′(X,S;E) ⊂ F
and (X ′, S′;E′) the descent of the triple to F ′. Let k(S′) be the function field
of S′. Let us assume:

∃ i ∶ k(S′)↪ F extending F ′ ⊂ F. (∗)

If for every s ∈ S(F ) we have that Es is finite, then so is Eη̄. More specifically
there exists s ∈ S(F ) such that

π(Es)(F ) ≃ π(Eη̄)(k(S))

in particular:

i) ∣π(Es)∣ is bounded over S(F );

ii) if p ∤ ∣π(Es)∣ for every s ∈ S(F ) then p ∤ ∣π(Eη̄)∣;

iii) any group property holding for π(Es) for every s ∈ S(F ) holds for
π(Eη̄).

Proof. The inclusion in (∗) allows us to consider Xs → SpecF both as a
closed fiber of X → S and as a geometric generic one of X ′ → S′ and then to
conclude using the results of Section 2.3. Let ∆ ∶ S′ → S′ ×SpecF ′ S

′ be the
diagonal morphism and i ∶ k(S′) ↪ F be an immersion as in (∗). Then the
base change along

SpecF
i // Speck(S′) // SpecS′

induces (s ∶ SpecF → S) ∈ S(F ) such that X ′ ⊗k(S′) F ≃Xs and

i∗E′ = Es,

where we are considering i ∶ k(S′) ↪ F as a geometric generic point of
S′. In particular, π(i∗E′) = π(Es). Let η̄′ be a generic geometric point of
S′ given by the algebraic closure of k(S′) into k(S). By 2.3.1, π(Es) =

π(i∗E′) = π(E′η̄′) ⊗k(S′) F and π(Eη̄) = π(E′η̄′ ⊗k(S′) k(S)) = π(E′η̄′) ⊗k(S′)
k(S). In particular as abstract groups they all agree and hence π(Es)(F ) ≃

π(Eη̄)(k(S)), and the rest of the theorem follows.

Remark 3.3.2. One can picture the previous proof via the following diagram

Xη̄
//

��

X

��

Xs
//

��

oo X ′
η̄′

//

��

X ′

��
η̄ //

ε

ý
55S

//
s = SpecF //oo η̄′ // S′
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with the caveat that the composition η̄ → S → SpecF → η̄′ on the bottom
row is not coming from the natural inclusion ε ∶ k(S′) ⊂ k(S). All the squares
are Cartesian andXs → s is, with respect to the left hand side of the diagram,
a closed fiber while, with respect to the right hand side of the diagram, it
is a geometric generic fiber (notice that the inclusion i ∶ k(S′) ↪ F extends
naturally to an inclusion of k(S′)). So we can use the base change properties
of the monodromy group to go from properties of Es to the ones of E′η̄′ and
then, by base change via ε, to the ones of Eη̄.

Remark 3.3.3. the theorem holds also asking for the finiteness property to
hold on all closed points of some open S̃ if this open is defined over any field
extension of F ′ such that (∗) still holds.

The proof actually tell us that the theorem is true for more general
properties of the monodromy group than finiteness:

Corollary 3.3.4. Let (X,S;E) be a triple over F , let F ′ = F ′(X,S;E) ⊂ F
and (X ′, S′;E′) the descent of the triple to F ′. Let k(S′) be the function field
of S′. Let us assume:

∃ i ∶ k(S′)↪ F extending F ′ ⊂ F. (∗)

Then there exists a point s ∈ S(F ) such that

π(Es) = π(E′η̄′)⊗k(S′) F π(Eη̄)π(E′η̄′)⊗k(S′) k(S
′)

where on the left hand side the tensor is via the inclusion i and on the right
hand side via the natural inclusion. In particular any group scheme property
invariant for base change (on algebraically closed fields) that holds for all
π(Es) holds for π(Eη̄).

As promised, the main result of this chapter is the following:

Corollary 3.3.5. If F is uncountable then the assumption (∗), hence the
theorem, always holds.

Proof. Let F be uncountable, then it suffices to show that for any triple
(X,S;E) over F there exists F ′ = F ′(X,S;E) and an inclusion k(S′) ⊂ F
extending F ′ ⊂ F . But it is easy to check that a triple (X,S;E) is defined
by countably many data; hence, we can choose F ′ such that it has countable
transcendence degree over Fp. As F is uncountable, it has infinite transcen-
dence degree over F ′; hence, there always exists k(S′) ⊂ F as in (∗).
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Remark 3.3.6. Notice that if the smooth morphism X → S does not have
geometrically connected fibers then we lose the notion of monodromy group
on the closed and geometric generic fibers: if X is a F -variety which is not
connected and IX/F is the trivial stratified bundle onX then End(IX/F ) ≠ F ,
hence Strat(X/F ) is not a Tannakian category. Nevertheless, if we do not
assume X → S to have geometrically connected fibers, the same proof shows
that if Es is finite when restricted to every connected component of Xs, then
the same holds for Eη̄ on every connected component of Xη̄.
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Chapter 4

Regular singularity and a
refinement of the theorem

Regardless of the example in Section 3.2, there is a way to broaden the
theorem in the case where F is countable, making the additional assumption
that the stratified bundle is regular singular on the geometric generic fiber.
As in last chapter, F will be assumed to be algebraically closed.

Let X be a smooth variety over F and let (X,X) be a good partial
compactification of X; that is: X is a smooth variety over F such that X ⊂X
is an open sub-scheme and D =X/X is a strict normal crossing divisor. Let
DX/F (logD) ⊂ DX/F the sub-algebra generated by the differential operators
that locally fix all powers of the ideal of definition of D. If U ⊂ X admits
global coordinates x1, . . . , xd and D is smooth and given by {x1 = 0} then

DX/F (logD)∣U = OU[x
k
1∂
(k)
x1
, ∂(k)xi ∣ i ∈ {2, . . . , d}, k ∈ N>0].

Definition 4.0.7. A stratified bundle E ∈ Strat(X/F ) is called (X,X)-
regular singular if it extends to a locally free OX -coherent DX/k(logD)-
module E on X. It is regular singular if it is (X,X)-regular singular for
every partial good compactification (X,X).

Remark 4.0.8. There is a parallel notion of regular singularities in charac-
teristic zero. Despite the fact that isotrivial implies regular singular over the
complex numbers, this is not longer true in positive characteristic, due to
the existence of wild coverings (for a more precise statement, see [Kin12a,
Thm. 1.1]).

For a (X,X)-regular singular stratified bundle E we have a theory of
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exponents (see [Gie75, §3]) of E along D: it is a finite subset ExpD(E) ⊂ Zp/Z
given by the following:

Proposition 4.0.9. [Gie75, Lemma 3.8],[Kin12a, Prop. 4.12] Let X = SpecA
be a smooth variety over F = F̄ with global coordinates x1, . . . , xd and let D be
the smooth divisor defined by {x1 = 0}. Let E ∈ Strat(X/F ) a (X,X)-regular
singular stratified bundle and E a locally free DX/F (logD)-module extending
E . Then there exists a decomposition of E∣D = ⊕Fα with α ∈ Zp such that
xk1∂

(k)
x1 acts on Fα by multiplication by (α

k
). The image in Zp/Z of the α ∈ Zp

such that Fα ≠ 0 are called the exponents of E along D and do not depend
on the choice of E.

If D is not smooth ExpD(E) is defined to be the union of the exponents
along all the irreducible components of D. By [Kin12a, Cor. 5.4] E extends to
a stratified bundle E on X if and only if its exponents are zero. In particular,
[Kin12a, Prop. 4.11] implies that if E is finite then its exponents are torsion.
Moreover:

Lemma 4.0.10. Let E be a DX/S-module such that Es is finite for every
s ∈ S̃ a dense subset of S(F ). If Eη̄ is regular singular then the exponents of
Eη̄ with respect to any partial good compactification of Xη̄ are torsion.

Proof. Let us fix (Xη̄,X η̄) a partial good compactification and let Dη̄ =

X η̄/Xη̄. As the exponents can be checked locally, we can shrink X η̄ around
the generic point of one of the irreducible components of Dη̄ at a time.
Moreover in order to prove the lemma we are allowed to take a generically
finite étale open S′ of S and substitute X by X×SS

′ (and S̃ by its preimage)
as the geometric generic fiber is the same. Finally for every s ∈ S(F ) we have
that X ′

s is either empty or a finite union of copies of Xs; hence, we will still
denote by s any point s′ ∈ S′ lying over it.

Hence, without loss of generality, we can assume that we are in the follow-
ing situation: the partial good compactification (Xη̄,X η̄) is the restriction
of a relative good partial compactification (X,X) defined on the whole S,
X is the spectrum of a ring A, with global relative coordinates x1, . . . , xd
over S and finally D =X/X is defined by {x1 = 0}. Moreover we can assume
that E is globally free and that on the geometric generic fiber Eη̄ extends to
a globally free D

Xη̄/k(S)
-module Eη̄.

Let s ∈ S̃ be any point such that Xs ∩D ≠ ∅, and let us consider the
globally free OX -module Ē = OX ē1 ⊕⋯⊕OX ēr. Then the ēi induce a basis
on the restriction of E to the closed fiber over s (as well as to the geometric
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generic one) and to the boundary divisor (as well as to its complement) as
in the following commutative diagram:

Es =⊕
r
i=1 OXse

s
i E =⊕r

i=1 OXei
⊗k(s)oo ⊗k(S) // Eη̄ =⊕

r
i=1 OXη̄εi

Es =⊕
r
i=1 OXs

ēsi

∣Xs

OO

∣Ds
��

E =⊕r
i=1 OX ēi

⊗k(s)oo ⊗k(S) //

∣X

OO

∣D
��

Eη̄ =⊕
r
i=1 OX η̄

ε̄i

∣Xη̄

OO

∣Dη̄
��

E ∣Ds =⊕
r
i=1 ODs ẽ

s
i E ∣D =⊕r

i=1 ODẽi
⊗k(s)oo ⊗k(S)// E ∣Dη̄ =⊕

r
i=1 ODη̄ ε̃i.

Consider the first line of the diagram: on the first (respectively second
and third) column there is an action of DXs/k(s) (respectively DX/S and
D
Xη̄/k(S)

), compatible with each other. On the last column this action ex-

tends to a logarithmic action on Eη̄ that we want to extend compatibly to
E.

Similarly as in Section 3.2, let Ai,k be the matrices describing the action
of ∂(k)xi ∈ DX/S in the basis ei, then the same ones describe the action of
∂
(k)
xi ∈ D

Xη̄/k(S)
in the basis εi. By regular singularity of Eη̄ this action extends

to a D
X η̄/k(S)

(logDη̄)-action. Therefore, there is a second basis ε′1, . . . , ε
′
d on

the geometric generic fiber such that in the new basis the matrices A′
i,k have

no poles in x1 for i ≠ 1 and logarithmic poles for i = 1. Let U ∈ H0(Xη̄,GLr)
the basis change matrix from εi to ε′i. Taking a generically finite étale open
of S we can assume that U is defined on the whole S; hence, the A′

i,k are
defined over the whole S as well and this defines an action of

DX/S(logD) ≐ OX[xk1∂
(k)
x1
, ∂(k)xi ∣ i ∈ {2, . . . , d}, k ∈ N>0]

on E, compatible with the logarithmic action on the fibers over η̄. In partic-
ular, this induces a DXs

(logDs)-action on Es; hence, Es is (Xs,Xs)-regular
singular (notice that if S′ is an étale open of S then for s ∈ S(F ) the fiber
X ′
s of X ′ = X ×S S

′ is either empty or the disjoint union of finitely many
copies of Xs).

We want now to compare ExpDη̄(Eη̄) and ExpDs(Es). By Proposition
4.0.9 we have that Eη̄∣Dη̄ = ⊕Fα; hence, there exists ε̃i a basis of E ∣Dη̄ such

that the matrices B̃k defining the action of xk1∂(k),x1
are diagonal with values

(α
k
) ∈ Fp. Let ε̄i be a lift of ε̃i, then up to taking an étale generically finite

open of S we can assume that ε̄i is a restriction of a basis ēi of E over
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X. In particular, the decomposition extends as well and E∣D = ⊕Fα induces
a decomposition on Es∣Ds . This decomposition must coincide with the one
given by Proposition 4.0.9; hence, the exponents must be the same of the
ones of Eη̄. As Es is isotrivial, its exponents are torsion; hence, so must be
the ones of Eη̄.

Remark 4.0.11. While the previous proof shows that if Eη̄ is regular singular
so are the Es for every s ∈ S(F ), the example in Section 3.2, together with
Theorem 4.0.13, shows that the converse does not hold in general (however,
one can prove it is the case when F is uncountable). On the contrary, in
characteristic zero it is always true that if a relative flat connection is regular
with respect of some smooth good compactification on the fibers over a dense
set of points of S, then it is regular on the geometric generic fiber, as proven
in [And04, Lemma 8.1.1].

Before stating and proving the main theorem of this section we need to
prove the existence of Kawamata coverings in positive characteristic. Analo-
gously to the original construction in characteristic zero ([Kaw81, Thm. 17])
we have the following

Theorem 4.0.12. Let X be a projective smooth variety of dimension d over
an algebraically closed field F of characteristic p and let D be a simple nor-
mal crossing divisor on X. Let m ∈ N prime to p, then there exist a projec-
tive smooth variety Y and a finite surjective mapping f ∶ Y → X such that
(f∗D)red is a simple normal crossing divisor on Y and if f∗D = ∑miD̃i

is the decomposition in irreducible components with D̃i ≠ D̃j for i ≠ j then
m ∣mi for all i and mi are all prime to p.

Proof. The proof follows the one of the original theorem ([Kaw81, Thm. 17]).
Let D = ∑ti=1Di the decomposition in irreducible components of D, we will
construct Y in t steps Y = Yt → ⋯ → Y1 → X taking care of one of the
components of D at a time. Let us start with D1: as X is projective there
exists an ample line bundle M on X and N ≫ 0 such that NM − D1 is
very ample, moreover we can choose N so that m ∣ N and (N,p) = 1. Fix a
presentation M = (Us, as), let ast = as/at ∈ Γ(Us ∩ Ut,O

∗
X). Then we claim

that we can choose

i) H1, . . . ,Hd ∈ ∣NM−D1∣ general elements such that ∑Hi+D is a simple
normal crossing divisor;

ii) φi,s local equations in Us of D1 +Hi such that φi,s = aNstφi,t.
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For point (i), NM − D1 is very ample; hence, so is its restriction to any
closed sub-scheme of X. A very ample line bundle defines a closed immersion
in the projective space; hence, by [Kle74, Cor. 12], any general member it is
regular, hence smooth. In particular, we can choose H1 to be smooth and to
intersect smoothly D, and recursively choose the Hi so that ∑Hi +D is a
normal crossing divisor. As for (ii), let φi,s any local equations for D1 +Hi,
then we have that OX(D1 +Hi) = NM; hence, φi,s/φi,t = aNstψi,s/ψi,t with
ψi,s ∈ OX(Us)

∗. Therefore, it suffices to replace φi,s with φi,sψi,s.
Now notice that by (ii) the field extension of k(X) given by

Ls = k(X)(φ
1/N
1,s , . . . , φ

1/N
d,s )

does not depend on s; hence, we can consider Y1 the normalization of X in
L = Ls.

To show that Y1 is regular, it enough to show it fiberwise; for every x ∈X
let Bx = OX,x ×X Y1. It is a semi-local ring, more precisely the normalization
of OX,x in L. Let x ∈ Us and let us denote from now on φi = φi,s. Clearly
OX,x ⊂ B′

x = OX,x[φ
1/N
1 , . . . , φ

1/N
d ] ⊂ Bx, moreover as L = Frac(B′

x) then
Bx is also the normalization of B′

x. Now, as ∑Hi +D1 is a simple normal
crossing divisor then ⋂di=1Hi ∩D1 = ∅ as in every point there can be at most
d irreducible components intersecting. Hence, for every point x ∈X, if x ∈D1

then x ∉Hi for some i, so one of the two following situations happens:

case 1: x ∉ D1, x ∉ Hi for i = 1, . . . , l and x ∈ Hi for i = l + 1, . . . , d, with l
possibly zero. Then φi are units in OX,x for i = 1, . . . , l and part of
a regular system of parameters for i = l + 1, . . . , d. Therefore, by the
[GM71, Lemma 1.8.6] B′

x is a semi-local regular ring, hence normal,
hence equal to Bx which is then a semi-local regular ring.

case 2: x ∈D1, x ∉Hi for i = 1, . . . l and x ∈Hi for i = l + 1, . . . , d but this time
l is at least 1. Then φi/φ1 are units in OX,x for i = 1, . . . , l, while φi/φ1

are, together with φ1, part of a regular system of parameters of OX,x

which is, up to multiplication by units, the one coming from the local
equation defining Hl+1, . . . ,Hd,D1. Remark that in this case

B′
x ⊂ B

′′
x = OX,x[φ

1/N
1 , φ

1/N
2 /φ

1/N
1 , . . . , φ

1/N
d /φ

1/N
d ] ⊂ Bx

and again by [GM71, Lemma 1.8.6], B′′
x is a semi-local regular ring,

hence normal, hence equal to Bx which is again a semi-local regular
ring.
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To verify that the (f∗1Di)red are nonsingular and cross normally it suffices
to apply the same argument to the Di instead of X, and f1 ∶ Y1 → X
clearly ramifies along D1 with index N ; hence, f∗D1 = N(f∗D1)red. We
can now apply the same construction to Y1 and (f∗1D2)red obtaining Y2 and
by recurrence we get Y →X which has the required properties.

We can now state and prove the following

Theorem 4.0.13. Let X → S be a smooth morphism of F -varieties with
geometrical connected fibers and let E ∈ Strat(X/S). Assume that there exists
a dense subset S̃ ⊂ S(F ) such that, for every s ∈ S̃, the stratified bundle Es
has finite monodromy and that the highest power of p dividing ∣π(Es)∣ is
bounded over S̃. Assume moreover that Eη̄ is regular singular, then

i) there exists fη̄ ∶ Yη̄ →Xη̄ a finite étale cover such that f∗Eη̄ decomposes
as direct sum of stratified line bundles;

ii) if F ≠ F̄p then Eη̄ is finite.

Proof. Let U ⊂ X be a dense open, then by invariance of the monodromy
group it is enough to show the theorem for E∣U moreover it is enough to
prove finiteness for its pullback along any finite étale cover. Therefore, we
can always work up to generically finite étale covers. Using [dJ96] we can
find an alteration generically finite étale f ∶ X ′ → X such that X ′ admits
a good projective compactification relative to S. By [Kin12a, Prop. 4.4] the
pullback of a regular singular stratified bundle is again regular singular.
Hence, without loss of generality, we can assume that X admits a good
projective compactification X relative to S. We will denote by D =X/X the
divisor at infinity.

Let ExpD(Eη̄) ⊂ Zp/Z be the finite set of exponents of Eη̄ along Dη̄ (as
defined in Lemma 4.0.9). As Eη̄ is regular singular then by Lemma 4.0.10 the
exponents of Eη̄ are torsion; letm ∈ N an integer prime to p killing the torsion
of ExpD(Eη̄) and let f ∶ Y η̄ →X η̄ be the Kawamata covering constructed in
Theorem 4.0.12: it ramifies on a simple normal crossing divisor D̃η̄ containing
the divisor at infinity Dη̄ = X η̄ −Xη̄ and it is Kummer on X η̄ − D̃η̄. As m
divides the ramification order alongDη̄ by [Kin12a, Prop. 4.11] the exponents
of the pullback of Eη̄ along (f∗Dη̄)red are zero; hence, it extends to the whole
Yη̄. Up to taking an étale open of S and using a similar argument as in the
proof of Lemma 4.0.10 we can assume that this extension is defined on the
whole S. Therefore, we have reduced the problem to Theorem 3.1.3.
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On isotrival vector bundles

In this last chapter we use similar techniques as in Chapter 3 to obtain results
of isotriviality on families of vector bundles. The setup is parallel to the one
of the case of stratified bundles, and the proof will follow similar ideas.

5.1 Finite vector bundles

The notion of isotriviality also has relevance in the category of vector bundles
over a proper smooth F -variety, even though it is not equivalent to the notion
of finiteness (see [Nor76, Lemma 3.1] and following definition) for vector
bundles, at least in positive characteristic. In order to prove Theorem 3.1.1,
Esnault and Langer proved in the same paper the following:

Theorem 5.1.1. [EL13, Thm. 5.1] Let X → S be a smooth projective mor-
phism of F -varieties with geometrically connected fibers and let E be a locally
free sheaf over X. Assume that there exists a dense subset S̃ ⊂ S(F ) such
that, for every s ∈ S̃, there is a finite étale Galois cover hs ∶ Ys →Xs of order
prime to p such that h∗s(Es) is trivial. Then

i) there exists fη̄ ∶ Yη̄ → Xη̄ a finite étale cover of order prime to p such
that f∗Eη̄ decomposes as direct sum of line bundles;

ii) if F ≠ F̄p then Eη̄ is trivialized by a finite étale cover of order prime to
p.

Then, a reasoning similar to the proof of Theorem 3.1.3 proves the fol-
lowing:

Theorem 5.1.2. Let X → S be a smooth projective morphism of F -varieties
with geometrically connected fibers and let E be a locally free sheaf over X.
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Assume that there exists a dense subset S̃ ⊂ S(F ) such that, for every s ∈ S̃,
there is a finite étale Galois cover hs ∶ Ys → Xs such that h∗s(Es) is trivial
and that the highest power of p dividing the order of such covers is bounded
over S̃. Then

i) there exists fη̄ ∶ Yη̄ →Xη̄ a finite étale cover such that f∗Eη̄ decomposes
as direct sum of line bundles;

ii) if F ≠ F̄p then Eη̄ is trivialized by a finite étale cover.

Proof. We will reduce this theorem to Theorem 5.1.1. By taking an étale
open of S we can assume there exists a section σ ∶ S →X. Let r be the rank
of E and fix s a closed point in S. As Xs is a smooth k(s)-variety, then
(see [EL13, Definition 3.2] and following discussion) every étale trivializable
vector bundle is Nori semi-stable. In particular, the Galois cover hs ∶ Ys →Xs

corresponds to a representation of rank r of the Nori fundamental group
scheme πN1 (Xs, σs) (for the definition of the Nori group scheme see [Nor76])
that factors through the étale fundamental group:

πN1 (Xs, σ(s))↠ πét
1 (Xs, σ(s))↠ Γs ⊂ GLr(F ),

where Γs is the Galois group of hs ∶ Ys → Xs. The rest of the proof follows
exactly as in Theorem 3.1.3.

If the morphism X → S is not projective but only smooth the connection
with finite bundles is lost. In particular, we do not have a notion of mono-
dromy group of a vector bundle in this case. Nevertheless, we get a similar
result to Corollary 3.3.5:

Theorem 5.1.3. Let F be an algebraically closed field of positive charac-
teristic with infinite transcendental degree over Fp. Let X → S be a smooth
morphism of varieties over F and E a vector bundle over X. Assume that
there exists a dense open S̃ ⊂ S such that Es is isotrivial for every s ∈ S̃(F ),
then so is Eη̄.

Proof. There exists F ′ a sub-field of F of finite type over Fp such that X → S
and E descend to X ′ → S′ and E′. Moreover as F has infinite transcendence
degree over Fp there exists an immersion k(S′) ↪ F over F ′ and a point
s ∈ S(F ), like in the proof of Theorem 3.3.1, such that the morphism i ∶
SpecF → Speck(S′) given by k(S′) ⊂ F is a geometric generic point of S′,
and on X ′ ⊗k(S′) F ≃Xs

i∗E′ = Es.
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The variation of the monodromy group of stratified bundles

Note that as F has infinite transcendence degree over F ′, there exists an
immersion ι ∶ F ↪ k(S) (which is not the natural one given by the fact that S
is a F -variety) that is the identity on k(S′). One can construct this immersion
by choosing an (infinite) basis of transcendent elements of F over k(S′) and
sending it injectively to one of k(S) (note that the two basis have the same
cardinality). Hence, via ι we have that Xη̄ ≃ X

′ ⊗k(S′) k(S) ≃ Xs ⊗F k(S).
In particular, if we continue to consider F as a sub-field of k(S) via the
immersion ι, then hs ⊗F k(S) ∶ Ys ×SpecF Speck(S)→Xη̄ trivializes Eη̄.
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