Homotopy Theory, Poincaré Duality for Singular Spaces, and String Theory

Markus Banagl

June 2008

Main Topic of Talk:

Poincaré Duality for Singular Spaces

Fails for ordinary homology.
Example: $X^{3}=\operatorname{Susp}\left(T^{2}\right), b_{1}=0, b_{2}=2$.

Solutions:

- L^{2}-cohomology (Cheeger)
- Intersection Homology (Goresky, MacPherson)

We will propose a new (nonisomorphic) Ansatz.

MOTIVATION.

1. General emphasis on spatial constructions in modern algebraic topology: Try to work on the level of spaces/spectra as long as possible, pass to homology/homotopy groups as late as possible.
2. Will address certain problems in string theory for which $H_{(2)}^{\bullet}, I H \bullet$ are too small. $\left(H_{(2)}^{\bullet}, I H \bullet\right.$ miss some dual cycles.)

1. Spatial Philosophy:

X^{n} stratified pseudomanifold.

X	\rightarrow	$I^{\bar{p}} X$
space		"intersection
space"		
\downarrow		\downarrow
$I C_{\bullet}^{\bar{p}}(X)$	$C \bullet\left(I^{\bar{p}} X\right)$	
chain	chain	
complex	complex	
\downarrow	\downarrow	
$I H_{\bullet}^{\bar{p}}(X)$	$H \bullet\left(I^{\bar{p}} X\right)$	
	ordinary	
	homology	

Requirements:

- $H_{\bullet}\left(I^{\bar{p}} X\right)$ should satisfy Poincaré Duality.
- $X \leadsto I^{\bar{p}} X$ should be as "natural" as possible. (It is not expected to be a functor wrt. all continuous maps.)
- X should be modified as little as possible (only near the singularities). The homotopy type away from the singularities should be completely preserved.
- If X is a finite cell complex, then $I^{\bar{p}} X$ should be a finite cell complex.
- $X \leadsto I^{\bar{p}} X$ should be homotopy-theoretically tractable, so as to facilitate computations.

Additional Key Benefit:

$$
\begin{aligned}
E \text { spectrum } \sim & E_{\bullet}\left(I^{\bar{p}} X\right) . \\
& \text { P.D.? }
\end{aligned}
$$

Could look at:

```
\(\pi_{\bullet}^{s}\left(I^{\bar{p}} X\right)\)
\(\Omega_{\bullet}\left(I^{\bar{p}} X\right)\)
\(K_{\bullet}\left(I^{\bar{p}} X\right)\)
\(L_{\bullet}\left(I^{\bar{p}} X\right)\) - have P.D. rationally.
```


2. String Theory.

worldsheet \rightarrow target space $=M^{4} \times X^{6}$.
X should be a Calabi-Yau space. But which one?

Conifold transition is a way to navigate within the moduli space of Calabi-Yau manifolds.
"It appears that all Calabi-Yau vacua may be connected by conifold transitions."
[J. Polchinski]

Def. A (topological) conifold is a compact pseudomanifold S with only isolated singularities.

2-Step Process:

1. Deformation of complex structure:

- X_{ϵ} CY 3-fold whose complex structure depends on a complex parameter ϵ.
- For small $\epsilon \neq 0: X_{\epsilon}$ is smooth.
- $\epsilon \rightarrow 0$: singular conifold S.
- Common Assumption: All singularities are nodes.
- Links $\cong S^{2} \times S^{3}$.
- Topologically: S^{3}-shaped cycles in X_{ϵ} are collapsed.

2. Small resolution:

- $Y \rightarrow S$ replaces every node in S by a $\mathbb{C} P^{1}$.
- Y is a smooth Calabi-Yau manifold.

Conifold Transition:

$$
X_{\epsilon} \leadsto S \leadsto Y .
$$

Massless D-Branes.

- Z: 3-cycle in X_{ϵ} which collapses to a node in S.
- In type IIB string theory: exists a charged 3-brane that wraps around Z.
- Mass (3-brane) $\propto \operatorname{Vol}(Z)$.
- \Rightarrow 3-brane becomes massless in S.
- $\mathbb{C} P^{1}: 2$-cycle in Y which collapses to a node in S.
- In type IIA string theory: exists a charged 2-brane that wraps around $\mathbb{C} P^{1}$.
- Mass (2-brane) $\propto \operatorname{Vol}\left(\mathbb{C} P^{1}\right)$.
- \Rightarrow 2-brane becomes massless in S.

Cohomology and Massless States

Rule: cohomology classes on X are manifested in four dimensions as massless particles.

- ω differential form on $T=M^{4} \times X$.
- For such a form to be physically realistic:

$$
d^{*} d \omega=0 \text { ("Maxwell equation"), }
$$

$d^{*} \omega=0$ ("Lorentz gauge condition").

- So $\Delta_{T} \omega=0, \Delta_{T}=d d^{*}+d^{*} d$ Hodge-de Rham Laplacian on T.
- Decomposition

$$
\Delta_{T}=\Delta_{M}+\Delta_{X} .
$$

- Wave equation

$$
\left(\Delta_{M}+\Delta_{X}\right) \omega=0
$$

- Interpretation: Δ_{X} is a kind of "mass" operator for four-dimensional fields, whose eigenvalues are masses as seen in four dimensions.
- (Klein-Gordon equation $\left(\square_{M}+m^{2}\right) \omega=0$ for a free particle.)
- For the zero modes of Δ_{X} (the harmonic forms on X), one sees in the four-dimensional reduction massless forms.

Physics and Topology of the Conifold Transition.

Type	d	X_{ϵ}	S	Y
Elem. Massless	2	p	p	$p+m$
	3	$q+2(n-m)$	$q+(n-m)$	q
	4	p	$p+m$	$p+m$
D-Branes	2		(massless)	m (2-Branes, massive)
	3	$n-m$ (3-Branes, massive)	$\begin{gathered} n-m \\ \text { (massless) } \end{gathered}$	
Total Massless	2	p	$p+m$	$p+m$
	3	$q+2(n-m)$	$q+2(n-m)$	q
	4	p	$p+m$	$p+m$
H_{*}	2	p	p	$p+m$
	3	$q+2(n-m)$	$q+(n-m)$	q
	4	p	$p+m$	$p+m$
				$\begin{gathered} H_{*}(Y)= \\ I H_{*}(S) \end{gathered}$
$\begin{aligned} & n=\text { number of nodes in } S, \\ & p=b_{2}\left(X_{\epsilon}\right) \end{aligned}$				

Problem posed by T. Hübsch (suggested by work of Strominger):

Construct a homology theory \mathcal{H} defined at least on conifolds S, such that
(SH1) $\mathcal{H}_{*}(S)=H_{*}(S)$ (ordinary homology) if the singular set of S is empty,
(SH2) $\mathcal{H}_{*}(S)$ satisfies Poincaré duality, and
(SH3) $\mathcal{H}_{3}(S)$ is an extension of $H_{3}(S)$ by $\operatorname{ker}\left(H_{3}(S-\Sigma) \rightarrow H_{3}(S)\right)$.

Abdul Rahman: Approach via MacPhersonVilonen Zig-Zag analysis of perverse sheaves.

Backbone of Construction: SPATIAL HOMOLOGY TRUNCATION.

Eckmann-Hilton

dual

- $p_{n}(X): X \rightarrow P_{n}(X)$ stage- n Postnikov approximation for X :

$$
p_{n}(X)_{*}: \pi_{r}(X) \rightarrow \pi_{r}\left(P_{n}(X)\right)
$$

is an isomorphism for $r \leq n$ and $\pi_{r}\left(P_{n}(X)\right)=0$ for $r>n$.

- If Z is a space with $\pi_{r}(Z)=0$ for $r>n$ then any map $g: X \rightarrow Z$ factors up to homotopy uniquely through $P_{n}(X)$.

In particular: Given any map $f: X \rightarrow Y$, there exists, uniquely up to homotopy, a map

$$
p_{n}(f): P_{n}(X) \rightarrow P_{n}(Y)
$$

such that

homotopy commutes.

Observation:

This functorial property of Postnikov approximations does not dualize to homology decompositions!

Example.

- $X:=S^{2} \cup_{2} e^{3}$ a Moore space $M(\mathbb{Z} / 2,2)$.
- $Y:=X \vee S^{3}$.
- $X_{\leq 2}=X, Y_{\leq 2}=X$ Moore approximations.

Claim: whatever maps $i: X_{\leq 2} \rightarrow X$ and j : $Y_{\leq 2} \rightarrow Y$ such that $i_{*}: H_{r}\left(X_{\leq 2}\right) \rightarrow H_{r}(X)$ and $j_{*}: H_{r}\left(Y_{\leq 2}\right) \rightarrow H_{r}(Y)$ are isomorphisms for $r \leq$ 2 one takes, there is always a map $f: X \rightarrow Y$ that cannot be compressed into the stage-2 Moore approximations:

commutative up to homotopy.
Take $f: S^{2} \cup_{2} e^{3} \rightarrow \frac{S^{2} \cup_{2} e^{3}}{S^{2}}=S^{3} \hookrightarrow X \vee S^{3}$.

- Point of view adopted here: lack of functoriality of Moore approximations due to wrong category theoretic setup.
- Solution: consider CW-complexes endowed with extra structure and cellular maps that preserve that extra structure.
- Will see that such morphisms can then be compressed into homology truncations.
- Every CW-complex can indeed be endowed with the requisite extra structure (in general not canonically).
- Given a cellular map, it is not always possible to adjust the extra structure on the source and on the target of the map so that the map preserves the structures.

Concepts.

Let n be a positive integer.

Def. A CW-complex K is called n-segmented if it contains a subcomplex $K_{<n} \subset K$ such that

$$
\begin{equation*}
H_{r}\left(K_{<n}\right)=0 \text { for } r \geq n \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{*}: H_{r}\left(K_{<n}\right) \stackrel{\cong}{\Longrightarrow} H_{r}(K) \text { for } r<n, \tag{2}
\end{equation*}
$$

where i is the inclusion of $K_{<n}$ into K.

Lemma. Let K be an n-dimensional CWcomplex. If its group of n-cycles has a basis of cells then K is n-segmented.

Let $n \geq 3$ be an integer.

Def. A (homological) n-truncation structure is a quadruple ($K, K / n, h, K_{<n}$), where

1. K is a simply connected CW-complex,
2. K / n is an n-dimensional CW-complex with $(K / n)^{n-1}=K^{n-1}$ and such that the group of n-cycles of K / n has a basis of cells,
3. $h: K / n \rightarrow K^{n}$ is the identity on K^{n-1} and a cellular homotopy equivalence rel K^{n-1},
4. $K_{<n} \subset K / n$ is a subcomplex with properties (1) and (2) with respect to K / n and such that $\left(K_{<n}\right)^{n-1}=K^{n-1}$.

Prop. Every simply connected CW-complex K can be completed to an n-truncation structure ($K, K / n, h, K_{<n}$).

Proof is based on methods due to P. Hilton. Not 3-segm. $K=S^{2} \cup_{4} e^{3} \cup_{6} e^{3} \stackrel{h}{\sim}$

$$
S^{2} \cup_{2} e^{3} \cup_{0} e^{3}=K / 3 \text { (3-segmented) }
$$

Def. A morphism

$$
\left(K, K / n, h_{K}, K_{<n}\right) \longrightarrow\left(L, L / n, h_{L}, L_{<n}\right)
$$

of homological n-truncation structures is a commutative diagram

in CW. Get category $\mathbf{C W}_{\supset<n}$ and associated homotopy category $\mathbf{H o C W}_{\supset<n}$.

Def. Category $\mathbf{C W}_{\supset \partial}^{n}$ of n-boundary-split CWcomplexes:

- Objects are pairs (K, Y), where
- K is a simply connected CW-complex,
$-Y \subset C_{n}(K)$ is a subgroup $Y=s\left(\operatorname{Im} \partial_{n}\right)$ given by some splitting

$$
s: \operatorname{Im} \partial_{n} \rightarrow C_{n}(K)
$$

of the boundary operator $\partial_{n}: C_{n}(K) \rightarrow \operatorname{Im} \partial_{n}\left(\subset C_{n-1}(K)\right)$.

- Morphisms $\left(K, Y_{K}\right) \rightarrow\left(L, Y_{L}\right)$ are cellular maps $f: K \rightarrow L$ such that $f_{*}\left(Y_{K}\right) \subset Y_{L}$.

Will construct covariant assignment

$$
\tau_{<n}: \mathbf{C W}_{\supset \partial}^{n} \longrightarrow \mathbf{H o C W}_{\supset<n}
$$

of objects and morphisms.

- Given $(K, Y) \in \mathbf{C W}_{\supset \partial}^{n}$.
- By the proposition, (K, Y) can be completed to an n-truncation structure ($K, K / n, h, K_{<n}$) in $\mathbf{C W}_{\supset<n}$ such that

$$
h_{*} i_{*} C_{n}\left(K_{<n}\right)=Y
$$

where $i_{*}: C_{n}\left(K_{<n}\right) \rightarrow C_{n}(K / n)$ is the monomorphism induced by the inclusion $i: K_{<n} \hookrightarrow K / n$.

- Choose such a completion and set

$$
\tau_{<n}(K, Y)=\left(K, K / n, h, K_{<n}\right)
$$

Compression Theorem. Any morphism
$f:\left(K, Y_{K}\right) \rightarrow\left(L, Y_{L}\right)$ in $\mathbf{C W}_{\supset \partial}^{n}$ can be completed to a morphism $\tau_{<n}\left(K, Y_{K}\right) \rightarrow \tau_{<n}\left(L, Y_{L}\right)$ in $\mathrm{HoCW}_{\mathrm{D}<n}$.

Set $\tau_{<n}(f)=\left(f, f^{n}, f / n, f_{<n}\right)$.

Instructive to return to the example $f: K=S^{2} \cup_{2} e^{3} \rightarrow\left(S^{2} \cup_{2} e^{3}\right) \vee S^{3}=L$,
$\nexists f_{<3}: K_{<3} \rightarrow L_{<3}$.
Compr. Thm. $\Rightarrow f$ cannot be promoted to a morphism $f:\left(K, Y_{K}\right) \rightarrow\left(L, Y_{L}\right)$.

Indeed:
$f_{*}: C_{3}(K)=\mathbb{Z} e^{3} \rightarrow \mathbb{Z} e^{3} \oplus \mathbb{Z} S^{3}=C_{3}(L)$
$f_{*}\left(e^{3}\right)=S^{3}$.
$Y_{K}=C_{3}(K)$ unique, $Y_{L}=\mathbb{Z}\left(e^{3}+m S^{3}\right), m \in \mathbb{Z}$.
$\Rightarrow f_{*}\left(Y_{K}\right)=\mathbb{Z} S^{3} \not \subset Y_{L}$.

- Compressibility criteria for homotopies \leadsto Obstruction theory for
$\tau_{<n}(g \circ f)=\tau_{<n}(g) \circ \tau_{<n}(f)$ in $\mathbf{H o C W}_{\supset<n}$.
(Vanish over \mathbb{Q} if $H_{2}=0$.)
- $f:\left(K, Y_{K}\right) \rightarrow\left(L, Y_{L}\right)$ homotopy equ. $\Rightarrow f_{<n}$: $K_{<n} \rightarrow L_{<n}$ homotopy equ. (no obstruction).
- Particularly benign cases: (s.c.) spaces with vanishing odd-dimensional homology (s.c. 4manifolds; nonsingular toric varieties,...)
- Continuity properties for benign K :

$$
\tilde{t}_{<n} G\left(t_{<n} K\right)
$$

$$
\text { Homeo }_{C W}(K)^{t<n} G\left[t_{<n} K\right]
$$

The map $t_{<n}$ is a group homomorphism. The map $\tilde{t}_{<n}$ is an H-map, but not in general a monoid homomorphism.

- Fiberwise spatial homology truncation in certain situations.

The Intersection Space in the Isolated Singularities Case.

Let X be an n-dimensional, compact, oriented pseudomanifold with isolated singularities x_{1}, \ldots, x_{w} ("conifold") and simply connected links $L_{i}=\operatorname{Link}\left(x_{i}\right)$.

- Set cut-off value to $k=n-1-\bar{p}(n)$.
- Fix completions $\left(L_{i}, Y_{i}\right)$ of L_{i} so that every $\left(L_{i}, Y_{i}\right)$ is an object in $\mathbf{C W}_{\supset \partial}^{k}$.
- Applying truncation, obtain

$$
\tau_{<k}\left(L_{i}, Y_{i}\right)=\left(L_{i}, L_{i} / k, h_{i},\left(L_{i}\right)_{<k}\right) \in \mathbf{H o C W}_{\supset<k}
$$

- Let $f_{i}:\left(L_{i}\right)_{<k} \longrightarrow L_{i}$ be the composition

$$
\left(L_{i}\right)_{<k} \hookrightarrow L_{i} / k \stackrel{h_{i}}{\simeq} L_{i}^{k} \hookrightarrow L_{i}
$$

- $M:=X-\bigsqcup_{i} \operatorname{cone}\left(L_{i}\right) \simeq X$ - Sing.
- $\partial M=\bigsqcup_{i} L_{i}=: L$.
- $L_{<k}:=\bigsqcup_{i}\left(L_{i}\right)_{<k}$
- Define a map

$$
g: L_{<k} \longrightarrow M
$$

by composing

$$
L_{<k} \xrightarrow{f} \partial M \stackrel{j}{\longrightarrow} M,
$$

where $f=\bigsqcup_{i} f_{i}$.

- The intersection space is the homotopy cofiber of the map g :

$$
I^{\bar{p}} X=\text { cone }(\mathrm{g})=M \cup_{g} c\left(L_{<k}\right)
$$

THEOREM. (Rational Coefficients; \bar{p}, \bar{q} complementary perversities.)

1. Generalized Poincaré Duality:

$$
\widetilde{H}_{i}\left(I^{\bar{p}} X\right)^{*} \cong \widetilde{H}_{n-i}\left(I^{\bar{q}} X\right) .
$$

2. $I H_{\bullet}^{\bar{p}}(X)$ and $\widetilde{H}_{\bullet}\left(I^{\bar{p}} X\right)$ are "reflectively" related:

$$
\begin{aligned}
& \cdots \longrightarrow \underset{|l| l \mid}{ } \widetilde{H}_{k-1}\left(I^{\bar{p}} X\right)^{*} \rightarrow I H_{k-1}^{\bar{p}}(X)^{*} \longrightarrow H_{k-1}(L)^{*} \xrightarrow{\beta_{\ddagger}^{*}} \\
& \cdots \longrightarrow \widetilde{H}_{n-k+1}\left(I^{\bar{q}} X\right) \rightarrow I H_{n-k+1}^{\bar{q}}(X) \longrightarrow H_{n-k}(L) \xrightarrow{\delta-}
\end{aligned}
$$

$$
\begin{aligned}
& H_{k}(L)^{*} \longrightarrow I H_{k+1}^{\bar{p}}(X)^{*} \longrightarrow \widetilde{H}_{k+1}\left(I^{\bar{p}} X\right)^{*}
\end{aligned}
$$

$$
\begin{aligned}
& H_{n-k-1}(L) \rightarrow I H_{n-k-1}^{\bar{q}}(X) \rightarrow \widetilde{H}_{n-k-1}\left(I^{\bar{q}} X\right)
\end{aligned}
$$

RETURNING TO STRING THEORY.

Given conifold transition $X \leadsto S \leadsto Y$.
COR. $H_{3}(I S)$ is an extension of $H_{3}(S)$ by $\operatorname{ker}\left(H_{3}(S-\right.$ Sing $\left.) \rightarrow H_{3}(S)\right)$.

Proof: $(M, \partial M)=S$-open nbhd. of nodes.

Exact: $H_{3}(\partial M) \xrightarrow[\alpha_{-} j_{*}]{\longrightarrow} H_{3}(I S) \xrightarrow{\alpha_{+}} H_{3}(j)$

$$
0 \rightarrow \operatorname{Im}\left(\alpha_{-} j_{*}\right) \longrightarrow H_{3}(I S) \xrightarrow{\alpha_{+}} H_{3}(S) \rightarrow 0
$$

$\operatorname{Im} j_{*} \cong \operatorname{Im}\left(\alpha_{-} j_{*}\right)$,

$$
H_{3}(\partial M) \xrightarrow{j_{*}} H_{3}(M) \longrightarrow H_{3}(M, \partial M),
$$

An Example.

- Set $N^{4}=S^{2} \times T^{2}$.
- Drill out a small open 4-ball: $N_{0}=N-\operatorname{int} D^{4}, \partial N_{0}=S^{3}$.
- Set $M^{8}=N_{0} \times S^{2} \times S^{2}$.
- $L=\partial M=S^{3} \times S^{2} \times S^{2}$.
- The pseudomanifold

$$
X^{8}=M \cup_{L} \text { cone }(L)
$$

has one singular point of even codimension.

- $I H_{\bullet}^{\bar{m}}(X)=I H_{\bullet}^{\bar{n}}(X)$, and for the intersection spaces $I^{\bar{m}} X=I^{\bar{n}} X$.
- Cut-off value $k=4, L_{<4}=S^{3} \vee S^{2} \vee S^{2}$.
- Intersection space

$$
I X=\frac{N_{0} \times S^{2} \times S^{2}}{S^{3} \vee S^{2} \vee S^{2}}
$$

- Generating cycles in $H_{\bullet}(N)$:

$$
a=\left[S^{2} \times \cdot \times \cdot\right], b=\left[\cdot \times S^{1} \times \cdot\right], c=\left[\cdot \times \cdot \times S^{1}\right]
$$

- Generating cycles in $H_{\bullet}(L)$:

$$
\begin{gathered}
x=\left[S^{3} \times \cdot \times \cdot\right], y=\left[\cdot \times S^{2} \times \cdot\right], z=\left[\cdot \times \cdot \times S^{2}\right] \\
I H_{4}(X)=\mathbb{Q}\langle a y, b c y, a z, b c z\rangle . \\
H_{4}(M)=\mathbb{Q}\langle a y, b c y, a z, b c z, y z\rangle . \\
H_{4}(j)=H_{4}(X)=\mathbb{Q}\langle a y, b c y, a z, b c z, a b c\rangle \\
\widetilde{H}_{4}(I X)=\mathbb{Q}\langle a y, b c y, a z, b c z, a b c, y z\rangle .
\end{gathered}
$$

Cap Products.

- $\hat{X}:=\operatorname{cone}(j)=X /\left(x_{1} \sim x_{2} \sim \cdots \sim x_{w}\right)$ ("denormalization" of X).
- Canonical maps

$$
M \xrightarrow{b} I^{\bar{p}} X \xrightarrow{c} \hat{X}
$$

such that

$$
H_{r}(M) \xrightarrow{b_{*}} H_{r}\left(I^{\bar{p}} X\right)
$$

commutes.

Proposition. Suppose $n=\operatorname{dim} X \equiv 2 \bmod 4$. Then there exists a cap-product

$$
\widetilde{H}^{2 l}\left(I^{\bar{m}} X\right) \otimes \widetilde{H}_{i}(\hat{X}) \xrightarrow{\cap} \widetilde{H}_{i-2 l}\left(I^{\bar{m}} X\right)
$$

such that

commutes.

Proposition. Suppose $n=\operatorname{dim} X \equiv 1 \bmod 4$. Then there exists a cap-product

$$
\widetilde{H}^{2 l}\left(I^{\bar{m}} X\right) \otimes \widetilde{H}_{i}(\widehat{X}) \xrightarrow{\cap} \widetilde{H}_{i-2 l}\left(I^{\bar{n}} X\right)
$$

such that

$$
\begin{gathered}
\widetilde{H}^{2 l}\left(I^{\bar{m}} X\right) \otimes \widetilde{H}_{i}(\hat{X}) \xrightarrow{\cap} \widetilde{H}_{i-2 l}\left(I^{\bar{n}} X\right) \\
c^{c} \otimes i d \\
\widetilde{H}^{2 l}(\hat{X}) \otimes \widetilde{H}_{i}(\hat{X}) \xrightarrow{\cap} \widetilde{H}_{i-2 l}(\hat{X})
\end{gathered}
$$

commutes.
(Similar statements for $n \equiv 0,3 \bmod 4$.)

L-Theory.

- Let \mathbb{L}^{\bullet} be the symmetric L-spectrum with homotopy groups

$$
\pi_{i}(\mathbb{L} \bullet)=L^{i}(\mathbb{Z})= \begin{cases}\mathbb{Z}, & i \equiv 0(4) \text { (sign.) } \\ \mathbb{Z} / 2, & i \equiv 1(4) \text { (de Rham) } \\ 0, & i \equiv 2,3(4) .\end{cases}
$$

- A compact, oriented n-manifold-with-boundary ($M, \partial M$) possesses a canonical \mathbb{L}^{\bullet}-orientation $[M, \partial M]_{\mathbb{L}} \in H_{n}\left(M, \partial M ; \mathbb{L}^{\bullet}\right)$.
- given rationally by the homology L-class of M:

$$
\begin{aligned}
& {[M, \partial M]_{\mathbb{L}} \otimes 1=\mathcal{L}_{*}(M, \partial M)=\mathcal{L}^{*}(M) \cap[M, \partial M]} \\
& \in H_{n}(M, \partial M ; \mathbb{L} \bullet) \otimes \mathbb{Q}=\bigoplus_{i \geq 0} H_{n-4 i}(M, \partial M ; \mathbb{Q}) .
\end{aligned}
$$

There is defined a cap-product
$\cap: H^{i}\left(M ; \mathbb{L}^{\bullet}\right) \otimes H_{n}\left(M, \partial M ; \mathbb{L}^{\bullet}\right) \longrightarrow H_{n-i}\left(M, \partial M ; \mathbb{L}^{\bullet}\right)$
such that
$-\cap[M, \partial M]_{\mathbb{L}}: H^{i}\left(M ; \mathbb{L}^{\bullet}\right) \longrightarrow H_{n-i}\left(M, \partial M ; \mathbb{L}^{\bullet}\right)$
is an isomorphism (Poincaré duality).

THEOREM. Let X be an n-dimensional pseudomanifold with isolated singularities. Capping with the \mathbb{L}^{\bullet}-homology fundamental class $[\widehat{X}]_{\mathbb{L}} \in \widetilde{H}_{n}\left(\widehat{X} ; \mathbb{L}^{\bullet}\right)$ induces rationally an isomorphism
$[\widehat{X}]_{\mathbb{L}} \otimes 1 \cap-: \widetilde{H}^{0}\left(I^{\bar{m}} X ; \mathbb{L}^{\bullet}\right) \otimes \mathbb{Q} \xlongequal{\cong} \widetilde{H}_{n}\left(I^{\bar{m}} X ; \mathbb{L}^{\bullet}\right) \otimes \mathbb{Q}$ for $n \equiv 2 \bmod 4$ and $n \equiv 4 \bmod 8$ such that

$$
\begin{gathered}
\widetilde{H}^{0}\left(I^{\bar{m}} X ; \mathbb{L}^{\bullet}\right) \otimes \mathbb{Q} \frac{\cong}{[\hat{X}]_{\mathbb{L}} \otimes 1 \cap-} \widetilde{H}_{n}\left(I^{\bar{m}} X ; \mathbb{L}^{\bullet}\right) \otimes \mathbb{Q} \\
c^{*} \mid \\
\widetilde{H}^{0}\left(\hat{X} ; \mathbb{L}^{\bullet}\right) \otimes \mathbb{Q} \xrightarrow{[\hat{X}]_{\mathbb{L}} \otimes 1 \cap-} \widetilde{H}_{n}(\widehat{X} ; \mathbb{L} \bullet) \otimes \mathbb{Q}
\end{gathered}
$$ commutes.

For $n \equiv 1 \bmod 4$:

$$
\begin{gathered}
\widetilde{H}^{0}\left(I^{\bar{m}} X ; \mathbb{L} \bullet\right) \otimes \mathbb{Q} \frac{\cong}{[\hat{X}]_{\mathbb{L}} \otimes 1 \cap-} \widetilde{H}_{n}\left(I^{\bar{n}} X ; \mathbb{L}^{\bullet}\right) \otimes \mathbb{Q} \\
\left.c^{*}\right|_{c_{*}} \\
\widetilde{H}^{0}(\hat{X} ; \mathbb{L} \bullet) \otimes \mathbb{Q} \xrightarrow[{[\hat{X}]_{\mathbb{L}} \otimes 1 \cap}-]{ } \widetilde{H}_{n}(\hat{X} ; \mathbb{L} \bullet) \otimes \mathbb{Q}
\end{gathered}
$$

For $n \equiv 3 \bmod 4$:

An Example.

Consider the pseudomanifold

$$
X^{12}=D^{4} \times \mathbb{P}^{4} \cup_{S^{3} \times \mathbb{P}^{4}} c\left(S^{3} \times \mathbb{P}^{4}\right)
$$

- Cutoff-value $k=6$.
- $L_{<6}=\left(S^{3} \times \mathbb{P}^{4}\right)^{5}$. (5-skeleton)
- $I^{\bar{m}} X=\operatorname{cofiber}\left(\left(S^{3} \times \mathbb{P}^{4}\right)^{5} \hookrightarrow D^{4} \times \mathbb{P}^{4}\right)$.

$$
\begin{array}{ccc}
\widetilde{H}_{12}\left(I^{\bar{m}} X ; \mathbb{L}^{\bullet}\right) \otimes \mathbb{Q}= & \mathbb{Q}[p t] \times\left[\mathbb{P}^{4}\right] & \oplus \\
\widetilde{H}^{0}\left(I^{\bar{m}} X ; \mathbb{L}^{\bullet}\right) \otimes \mathbb{Q}= & \rceil_{P D .}\right) & \left.\uparrow_{P D .}\right] \\
\mathbb{Q} d \times 1 & \oplus \mathbb{Q} 1 \times g^{4} .
\end{array}
$$

$\left(\mu=\left[D^{4}, S^{3}\right] \in H_{4}\left(D^{4}, S^{3}\right)\right.$,
$d \in H^{4}\left(D^{4}, S^{3}\right)$ gen. s.t. $d \cap \mu=[p t] \in H_{0}\left(D^{4}\right)$, $g=-c_{1}$ (taut. line bundle) $\in H^{2}\left(\mathbb{P}^{4}\right)$.)

Beyond Isolated Singularities.

- Let X be an n-dimensional, compact, stratified pseudomanifold with two strata

$$
X=X_{n} \supset X_{n-c}
$$

- The singular set $\Sigma=X_{n-c}$ is thus an ($n-c$)-dimensional closed manifold.
- Assume that X has a trivial link bundle, that is, a neighborhood of Σ in X looks like $\Sigma \times \operatorname{cone}(L)$, where L is a $(c-1)$ dimensional closed manifold, the link of Σ.
- Assume that L is simply connected.
- Idea: construct $I^{\bar{p}} X$ by performing fiberwise truncation.
- Set cut-off to $k=c-1-\bar{p}(c)$.
- Fix completion (L, Y) of L so that $(L, Y) \in \mathbf{C W}_{\partial \partial}^{k}$.
- Applying truncation, obtain

$$
\begin{aligned}
& \tau_{<k}(L, Y)=\left(L, L / k, h, L_{<k}\right) \in \mathbf{H o C W}_{\supset<k} \\
& \text { and a map }
\end{aligned}
$$

$$
f: L_{<k} \longrightarrow L
$$

- Manifold $M^{n}:=X-(\Sigma \times \operatorname{cone}(L))$.
- $\partial M=\Sigma \times L$.
- Let

$$
g: \Sigma \times L_{<k} \longrightarrow M
$$

be the composition

$$
\Sigma \times L_{<k} \xrightarrow{i d_{\Sigma \times f}} \Sigma \times L=\partial M \stackrel{j}{\hookrightarrow} M .
$$

- The intersection space is the homotopy cofiber of the map g :

$$
I^{\bar{p}} X=\text { cone }(\mathrm{g})=M \cup_{g} c\left(\Sigma \times L_{<k}\right)
$$

THEOREM. There exists a generalized Poincaré duality isomorphism

$$
D: \widetilde{H}^{n-r}\left(I^{\bar{p}} X\right) \stackrel{\cong}{\Longrightarrow} \widetilde{H}_{r}\left(I^{\bar{q}} X\right)
$$

such that both

$$
\begin{aligned}
& \widetilde{H}^{n-r}\left(I^{\bar{p}} X\right) \longrightarrow H^{n-r}(M) \\
& D \mid \cong \\
& \cong \widetilde{H}_{r}\left(I^{\bar{q}} X\right) \longrightarrow-\cap[M, \partial M] \\
& \cong H_{r}(M, \partial M)
\end{aligned}
$$

and

commute.

An Example.

- $L:=S^{3} \times S^{4}, M^{14}:=D^{3} \times S^{2} \times S^{2} \times L$.
- Pseudomanifold

$$
X^{14}=M \cup_{\partial M} S^{2} \times S^{2} \times S^{2} \times \text { cone }(L)
$$

- Singular set $\Sigma=S^{2} \times S^{2} \times S^{2} \times\{c\}$, Link $=L$.
- Cut-off value $k=4$.
- $L_{<4}=S^{3} \times p t$.
- Intersection space

$$
I^{\bar{m}} X \simeq \frac{D^{3} \times S^{2} \times S^{2} \times S^{3} \times S^{4}}{S^{2} \times S^{2} \times S^{2} \times S^{3} \times p t}
$$

- If A, B are cycles in a 2 -sphere and C is a cycle in the 3 -sphere then

$$
\begin{array}{r}
D^{3} \times A \times B \times C \times p t \cup_{S^{2} \times A \times B \times C \times p t} \\
\operatorname{cone}\left(S^{2} \times A \times B \times C \times p t\right)
\end{array}
$$

is a cycle in the space $I^{\bar{m}} X$.

- We shall denote the homology class of such a cycle briefly by $\left[D^{3} \times A \times B \times C \times p t\right]^{\wedge}$.

Dual cycles are next to each other in the same

 row.| | $\widetilde{H}_{*}\left(I^{\bar{m}} X\right)$ | $\widetilde{H}_{14-*}\left(I^{\bar{m}} X\right)$ |
| :---: | :---: | :---: |
| $*=0$ | 0 | 0 |
| $*=1$ | 0 | 0 |
| $*=2$ | 0 | 0 |
| $*=3$ | $\left[D^{3} \times p t \times p t \times p t \times p t\right]^{\wedge}$ | $\left[p t \times S^{2} \times S^{2} \times S^{3} \times S^{4}\right]$ |
| $*=4$ | $\left[p t \times p t \times p t \times p t \times S^{4}\right]$ | $\left[D^{3} \times S^{2} \times S^{2} \times S^{3} \times p t\right]^{\wedge}$ |
| $*=5$ | $\left[D^{3} \times S^{2} \times p t \times p t \times p t\right]^{\wedge}$ | $\left[p t \times p t \times S^{2} \times S^{3} \times S^{4}\right]$ |
| | $\left[D^{3} \times p t \times S^{2} \times p t \times p t\right]^{\wedge}$ | $\left[p t \times S^{2} \times p t \times S^{3} \times S^{4}\right]$ |
| $*=6$ | $\left[p t \times S^{2} \times p t \times p t \times S^{4}\right]$ | $\left[D^{3} \times p t \times S^{2} \times S^{3} \times p t\right]^{\wedge}$ |
| | $\left[p t \times p t \times S^{2} \times p t \times S^{4}\right]$ | $\left[D^{3} \times S^{2} \times p t \times S^{3} \times p t\right]^{\wedge}$ |
| | $\left[D^{3} \times p t \times p t \times S^{3} \times p t\right]^{\wedge}$ | $\left[p t \times S^{2} \times S^{2} \times p t \times S^{4}\right]$ |
| $*=7$ | $\left[p t \times p t \times p t \times S^{3} \times S^{4}\right]$ | $\left[D^{3} \times S^{2} \times S^{2} \times p t \times p t\right]^{\wedge}$ |
| | $\left[D^{3} \times S^{2} \times S^{2} \times p t \times p t\right]^{\wedge}$ | $\left[p t \times p t \times p t \times S^{3} \times S^{4}\right]$ |

