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Main Topic of Talk:

Poincaré Duality for Singular Spaces

Fails for ordinary homology.
Example: X3 = Susp(T?), by =0, by = 2.

Solutions:

e L2-cohomology (Cheeger)

e Intersection Homology (Goresky, MacPher-
son)

We will propose a new (nonisomorphic) Ansatz.



MOTIVATION.

1. General emphasis on spatial constructions
in modern algebraic topology: Try to work
on the level of spaces/spectra as long as
possible, pass to homology/homotopy groups
as late as possible.

2. Will address certain problems in string the-
ory for which H(‘Q),IH. are too small.

(H(‘Q),IH. miss some dual cycles.)



1. Spatial Philosophy:

X" stratified pseudomanifold.

X — IPX
space “intersection
space”
1 |
ICS(X) Ce(IPX)
chain chain
complex complex
1 |
THJ(X) He(IPX)
ordinary

homology



Requirements:

He(IPX) should satisfy Poincaré Duality.

X ~» IPX should be as “natural’ as pos-
sible. (It is not expected to be a functor
wrt. all continuous maps.)

X should be modified as little as possi-
ble (only near the singularities). The ho-
motopy type away from the singularities
should be completely preserved.

If X is a finite cell complex, then IPX should
be a finite cell complex.

X ~» IPX should be homotopy-theoretically
tractable, so as to facilitate computations.
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Additional Key Benefit:

E spectrum ~» Eo(IPX).
P.D.7?

Could look at:

7S(IPX)
Qe(IPX)
Keo(IPX)
Le(IPX)— have P.D. rationally.



2. String T heory.
worldsheet — target space = M* x X°.

X should be a Calabi-Yau space. But which
one?

Conifold transition is a way to navigate within
the moduli space of Calabi-Yau manifolds.

“It appears that all Calabi-Yau vacua may be
connected by conifold transitions.”
[J. Polchinski]

Def. A (topological) conifold is a compact
pseudomanifold S with only isolated singulari-
ties.



2-Step Process:

1. Deformation of complex structure:

o X CY 3-fold whose complex structure de-
pends on a complex parameter e.

e For small e # 0 : X¢ is smooth.

e ¢ — O : singular conifold S.

e Common Assumption: All singularities are
nodes.

o Links & 52 x S3.

e [opologically: 53—shaped cycles in X are
collapsed.

2. Small resolution:
e Y — S replaces every node in S by a cpl.
e Y is a smooth Calabi-Yau manifold.

Conifold Transition:

Xe~ S~Y.



Massless D-Branes.

Z . 3-cycle in X¢ which collapses to a node
in S.

In type IIB string theory: exists a charged
3-brane that wraps around Z.

Mass (3-brane) «x Vol(Z).

= 3-brane becomes massless in S.



CPl : 2-cycle in Y which collapses to a
node in S.

In type IIA string theory: exists a charged
2-brane that wraps around CP1.

Mass (2-brane) « Vol(CPD).

= 2-brane becomes massless in S.



Cohomology and Massless States

Rule: cohomology classes on X are manifested
in four dimensions as massless particles.

o w differential form on T'= M* x X.

e For such a form to be physically realistic:

d*dw = 0 (“Maxwell equation”),
d*w = 0 (“Lorentz gauge condition”).

e SO Ayw = 0, A = dd* + d*d Hodge-de
Rham Laplacian on T.

e Decomposition
A=Ay + Ax.
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VWave equation

(Apy + Ax)w =0.

Interpretation: Ax is a kind of “mass”
operator for four-dimensional fields, whose
eigenvalues are masses as seen in four di-
mensions.

(Klein-Gordon equation (O + m2)w = 0
for a free particle.)

For the zero modes of Ax (the harmonic
forms on X)), one sees in the four-dimensional
reduction massless forms.

11



Physics and Topology of the
Conifold Transition.

n = number of nodes in S,

p == bQ(X6)7

q = rk(H3(S — X) — H3(S)) = rk IH3(S),
m = rk coker(Has(X.) — H4(S)).

Type d X S Y
2 P P p+m
Elem. 3lg+2(n—m)| g+ (n—m) q
Massless | 4 P p+m p+m
™m m
2 (massless) | (2-Branes,
D-Branes massive)
n—m n—m
3| (3-Branes, (massless)
massive)
2 p p+m p+m
Total 31lg+2(n—m) | q+2(n—m) q
Massless | 4 D p+m p+m
2 P P p+m
H, 3lgt+2(n—m) | g+ (n—m) q
4 p p+m p+m
H.(Y) =
IH.(S)
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Problem posed by T. Hiibsch (suggested by
work of Strominger):

Construct a homology theory H defined at least
on conifolds S, such that

(SH1) H«(S) = H«(S) (ordinary homology) if
the singular set of S is empty,

(SH2) H«(S) satisfies Poincaré duality, and

(SH3) H3(S) is an extension of H3(S) by
ker(H3z(S — X) — H3(S)).

Abdul Rahman: Approach via MacPherson-
Vilonen Zig-Zag analysis of perverse sheaves.
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Backbone of Construction:
SPATIAL HOMOLOGY TRUNCATION.

Postnikov Moore space
decomposition decomposition

Eckmann-Hilton
dual

o pn(X) : X — Pp(X) stage-n Postnikov ap-
proximation for X:
Pr(X)x @ mr(X) — mr(Pn(X))

is an isomorphism for »r < n and
mr(Pn(X)) =0 for r > n.

e If Z is a space with m(Z) = 0 for »r > n
then any map g : X — Z factors up to
homotopy uniquely through P,(X).
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In particular: Given any map f: X — Y, there
exists, uniquely up to homotopy, a map

pr(f) @ Pn(X) — Pr(Y)

such that
X / Y
pn(X) pn(Y)
Pu(x) 2 p (v)

homotopy commutes.

Observation:

T his functorial property of Postnikov approxi-
mations does not dualize to homology decom-
positions!
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Example.

e X := 52Uy e3 a Moore space M(Z/,2).
oY (=X VS3.
e Xco =X, Yco = X Moore approximations.

Claim: whatever maps i : X<o — X and j :
Y<o — Y such that s : Hr(X<p) — Hr(X) and
g« - Hr(Y<o) — Hr(Y) are isomorphisms for r <
2 one takes, there is alwaysa map f: X —- Y
that cannot be compressed into the stage-2
Moore approximations:

X / Y
i J
2f<2
Xez - 72y




Point of view adopted here: lack of func-
toriality of Moore approximations due to
wrong category theoretic setup.

Solution: consider CW-complexes endowed
with extra structure and cellular maps that
preserve that extra structure.

Will see that such morphisms can then be
compressed into homology truncations.

Every CW-complex can indeed be endowed
with the requisite extra structure (in gen-
eral not canonically).

Given a cellular map, it is not always pos-
sible to adjust the extra structure on the
source and on the target of the map so
that the map preserves the structures.
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Concepts.
Let n be a positive integer.

Def. A CW-complex K is called n-segmented
if it contains a subcomplex K, C K such that

and
iv Ho(Kep) — Ho(K) for r <n, (2)

where 7 is the inclusion of K-, into K.
Lemma. Let K be an n-dimensional CW-

complex. If its group of n-cycles has a basis of
cells then K is n-segmented.
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Let n > 3 be an integer.

Def. A (homological) n-truncation structure
is a quadruple (K,K/n,h, K<p), Where

1. K is a simply connected CW-complex,

2. K/n is an n-dimensional CW-complex with
(K/n)"~1 = K" 1 and such that the group
of n-cycles of K/n has a basis of cells,

3. h: K/n — K" is the identity on K™ 1 and
a cellular homotopy equivalence rel Kn—1

4. Kepn C K/n is a subcomplex with properties
(1) and (2) with respect to K/n and such
that (K<p)® 1 = K1,
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Prop. Every simply connected CW-complex K
can be completed to an n-truncation structure
(K,K/n,h, K<p).

Proof is based on methods due tho P. Hilton.
Not 3-segm. K = S2 U, e3 Ug e3 ~
S2 Uy e3 Ug e3 = K/3 (3-segmented)

Def. A morphism

(Ka K/TL, hK7 K<n) — (L7 L/?”L, hL7 L<n)

of homological n-truncation structures is a com-
mutative diagram

h

K K™ K K/n S Ken
hp

L _)Ln L/n _)L<n

Y

in CW. Get category CW->-,, and associated
homotopy category HOCW - ,.
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Def. Category CW’ga of n-boundary-split CW-
complexes:

e Objects are pairs (K,Y), where
— K is a simply connected CW-complex,

— Y C Cnh(K) is a subgroup Y = s(Imdy)
given by some splitting

s :Imo, — Cr(K)

of the boundary operator
On . Cp(K) - Imop(C C,,_1(K)).

e Morphisms (K,Yx) — (L,Y;) are cellular
maps f : K — L such that f«(Yx) C Y7.
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Will construct covariant assignment

T<n - CW%@ — HOCW .,

of objects and morphisms.

e Given (K,Y) € CWZ,.

e By the proposition, (K,Y) can be com-
pleted to an n-truncation structure
(K,K/n,h, K<p) in CW-o<y, such that

where iy : Cn(K<p) — Cn(K/n) is the
monomorphism induced by the inclusion
i Kep — K/n.

e Choose such a completion and set
T<n(K7 Y) — (K7 K/?’L,h, K<n)
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Compression Theorem. Any morphism
fi (K, Yg) — (L, Yy) in CWZ, can be com-
pleted to a morphism 7«<n(K,Yx) — 7<n(L,Y])

Set T<n(f) — (fa fn7f/n7f<n)'

Instructive to return to the example
fiK=S52Ure3 = (S2Uye3)vS3=1,

Af<z K<z — Les.

Compr. Thm. = f cannot be promoted to a
morphism f: (K,Yyx) — (L,Y7).

Indeed:

fe 1 C3(K) = Ze3 — Ze3 @ 753 = C3(L)

fx(e3) = S3.

Y = C3(K) unique, Y7, = Z(e3+mS3), m € Z.
= f«(Yi) =7ZS3 ¢ Y.
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e Compressibility criteria for homotopies
~» Obstruction theory for

T<n(go f) = 7<n(g) o T<n(f) in HOCW> .
(Vanish over Q if H>, = 0.)

o f:(K,Yy)— (L,Yy) homotopy equ. = f<n :
K<n — L<p homotopy equ. (no obstruction).

e Particularly benign cases: (s.c.) spaces with
vanishing odd-dimensional homology (s.c. 4-
manifolds; nonsingular toric varieties,...)

e Continuity properties for benign K:

t G(t<nK)

HOmech(Kw f<n G[t<nK]

The map t<n is a group homomorphism. The
map t<n is an H-map, but not in general a
monoid homomorphism.

e Fiberwise spatial homology truncation in cer-
tain situations.
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The Intersection Space in
the Isolated Singularities Case.

Let X be an n-dimensional, compact, oriented
pseudomanifold with isolated singularities
x1,...,2w ("conifold”) and simply connected
links L; = Link(x;).

e Set cut-off valueto k=n—1 —p(n).

e Fix completions (L;,Y;) of L; so that every
(L;,Y;) is an object in CWH* ..

e Applying truncation, obtain
T<k(Li7Yi) — (LZ7LZ/k7 hia (LZ)<k) S HOCWD<I€'

o Let f;: (L;)cp. — L; be the composition
hi &
(L;) < — Li/k = Lj — L.
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M := X —|J;cone(L;) ~ X — Sing.
OM = ||, L; =: L.

L= (L) <k

Define a map
by composing

Lo, oM<,

where f = ||; f;.

The intersection space is the homotopy
cofiber of the map g:

IPX = cone(g) = M Uy ¢(Ly,).
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THEOREM. (Rational Coefficients; p, g com-
plementary perversities.)
1. Generalized Poincaré Duality:

H;(IPX)* & H,,_;(19X).

2. THP(X) and He(I?X) are “reflectively” re-
lated:

N ) _ . B
H, 1(I?PX)*—1IH; [(X)*——Hp_1(L)*———

lg ) = lg

o

LHY(X)T

L

Ho(5): JTH (X)), He(M)*———

d’Ml% /\O;i ?*/\: dMl% 5
H,_.(M) Hk(IﬁX)*i Hy 1, (j)———

R I

Hk(L)*—>IH,§+1(X)*—>f[k+1(]ﬁX)*—>. -,

dng = lg

Hy p—1(L) —>IH7q;_k_1(X) *ﬁn—k—l(ﬁX) ...
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RETURNING TO STRING THEORY.

Given conifold transition X ~ S~ Y.
COR. H3(IS) is an extension of H3(S) by
ker(H3(S — Sing) — H3(S)).

Proof: (M,0M) = S—open nbhd. of nodes.
H3(M)

N

Exact: Hz(0M) H3(IS) —— H3(j) —0.

(@ gy 5

0 — Im(a_js) — Ha(IS) =5 Hs(S) — 0,

Im jx« = Im(a—jx),
Ha(OM) % Ha(M) — Ha(M, dM),
H3 (M) H3(M,0M)

~ ~

H3(S — Sing) H3(S)
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An Example.
Set N4 = §2 x T2,

Drill out a small open 4-ball:
Ng = N — int D%, 9Ny = S3.

Set M8 = Ny x S2 x S2.
L =0M = 53x52x 52

The pseudomanifold
X8 = M Uy cone(L)

has one singular point of even codimension.

TH™(X) = IH}(X), and for the intersec-
tion spaces I"X = ["X.
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Cut-off value k =4, L4 = S3Vv 52V S2.

Intersection space

N0><52><52
S3v S2v 827

I1X =

Generating cycles in He(N):

a=1[S’x-x], b=[xStx], c=[x-xS%.

Generating cycles in He(L):

r=1[93x-x], y=[%x9°x"], z=[x-x57].

TH4(X) = Q{ay, bcy, az, bcz).

Ha(M) = Qlay, bey, az, bez,[77)-

Ha(§) = Ha(X) = Qlay, bey, az, bez, [abel),

Hi(IX) = Q(ay, bcy, az, bcz,|abc, yz ).
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Cap Products.

e X ;= cone(j) = X/(z1 ~ To ~ -+ ~ Ty)
(“denormalization” of X).

e Canonical maps
M- Px S %
such that

b

Hy(M) Hr(IﬁX)

Cx

Hy(X)
commutes.
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Proposition. Suppose n =dimX =2 mod 4.
Then there exists a cap-product
H(I™X) ® Hy(X) -5 H;_o(I™X)
such that
H2(I"™X) ® H;y(X) —m’ﬁz‘—Ql(ImX)

c*Rid
~ R ~ N ~ ~
H(X) @ H(X) —— H;_2(X)
commutes.

Cy

Proposition. Suppose n=dimX =1 mod 4.
Then there exists a cap-product
H2(I™X) ® Hy(X) — H;_5(I"X)
such that
H2A(I™X) ®ﬁ[i(X)—m’ﬁIi—2l(IﬁX)

c®id
H?(X) ® Hi(X) —— H;_2(X)
commutes.
(Similar statements for n = 0,3 mod 4.)

Cy
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L-T heory.

o Let L®* be the symmetric L-spectrum with
homotopy groups

(7, i = 0(4) (sign.)
m(L®) = LY(Z) ={Z/>, i=1(4) (de Rham)
0, i =2,3(4).

\

e A compact, oriented n-manifold-with-boundary
(M,0M ) possesses a canonical LL*-orientation
[M,0M]y € Hyo(M,0M;1L*).

e given rationally by the homology L-class of
M:

[M,0M]; ®1 = Ly(M,0M) = L*(M)N[M, dM]

€ Hn(M,0M;L*)®Q = & Hy,—4;(M,0M; Q).
i>0
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There is defined a cap-product

N: H(M;L)®QH,(M,0M;L*) — H, _,(M,M;L*)
such that

— N [M,0M]y, : H(M;L®*) — H,,_;(M,0M;L*)

is an isomorphism (Poincaré duality).

THEOREM. Let X be an n-dimensional pseu-
domanifold with isolated singularities. Cap-
ping with the L®*-homology fundamental class
[X]y € Hn(X;L®) induces rationally an isomor-
phism

[X]; ®1n—: HOUI™X: L*)QQ —— Hn(I™X; L*)®0Q

forn=2 mod 4 and n=4 mod 8 such that

Y

HO(I™m X 1e —
( ) ®Q SR
HO(X: L)@ Q— Hy(X; L) ®Q
[(X]L®1Nn-—

H,(I"X:L*)®Q

commutes.
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Forn=1 mod 4:

|2

HO(IMX;L*) ® Q H,(I"X;L*) ® Q

[XIL®1n-
c* Cx
HO(X: L) @ Q—— Hy(X; L) ®Q
[X]L®1n-—
For n =3 mod 4:
HO(I"X;1L*) ® Q———— Hp(I™X; L*) @ Q
[(X]L®1Nn—
c* Cx
HO(X: L) ®@Q Hy(X: L) ®Q

[X]L®1Nn—
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An Example.
Consider the pseudomanifold
x1? = p% x p? Ugs, pa c(S3 x PH).
e Cutoff-value k = 6.

o L_g=(S3xP*)>. (5-skeleton)

o /"X = cofiber((S3 x P*)°> — D% x P4).

Hio(IMX;L*) @ Q = Q[pt] x [PY] @& Qu x [PY]
- §:35) §:35)
HO(IX:L*) @ Q = Qdx1 @& Q1 x g%

(n = [D*, S3] € H4(D*, 53),
d € H*(D* S3) gen. s.t. dnp = [pt] € Ho(D*),
g = —cy(taut. line bundle) € H2(P%).)
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Beyond Isolated Singularities.

Let X be an n-dimensional, compact, strat-
ified pseudomanifold with two strata

X =X,D Xn_o.

The singular set > = X,,_. is thus an
(n — ¢)-dimensional closed manifold.

Assume that X has a trivial link bundle,
that is, a neighborhood of > in X looks
like >~ x coone(L), where L is a (¢ — 1)-
dimensional closed manifold, the link of 2.

Assume that L is simply connected.

Idea: construct IPX by performing fiber-
wise truncation.
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Set cut-off to k =c— 1 — p(e).

Fix completion (L,Y) of L so that
(L,Y) € CWE .

Applying truncation, obtain

T<k(L7 Y) — (L7 L/k7 h7 L<k) S HOCWD<I€

and a map

Manifold M" := X — (X x coone(L)).

OM = > x L.
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o Let
g:2 XL —M

be the composition

Sx Lo, B s =oM< M.

e [ he intersection space is the homotopy cofiber
of the map g:

IPX = cone(g) = M Uy (X x L_y).
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THEOREM. There exists a generalized Poincaré
duality isomorphism

D: HV"(IPX) = H,(I1X)
such that both

HV T (IPX) —— H" " (M)
D= = | —N[M,0M]
H,(17X) Hy(M,0M)
and

*

H" "1 x Loy) — H" "(IPX)

—N[oM]

112

112

Hy(OM,%~ X L._1) H,(I1X)
commute.
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An Example.
L:=83x8% M¥:=D3x52xS52xL.

Pseudomanifold

x4 = M Ugps 52 x S2 x 82 x cone(L).

Singular set ¥ = 82 x §2 x 52 x {c},
Link = L.

Cut-off value k = 4.

L<4 — S3 X pt.
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e Intersection space

D3 x 82 x §2 x 83 x s4

ImX ~ .
52 % 52 x S2 x S3 x pt

e If A, B are cycles in a 2-sphere and
C' is a cycle in the 3-sphere then

D3x Ax BxC X pt Us2y Ax BxCxpt

cone(S? x A x B x C X pt)

is a cycle in the space I"X.

e \We shall denote the homology class of such
a cycle briefly by [D3 x A x B x C x pt].
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Dual cycles are next to each other in the same

Frow.
H.(I"X) His o (I™X)
* = 0 0]
*x = 1 0 0
* = 0 0]
* = [D3 x pt x pt x pt x pt]" | [pt x S% x 5% x S3 x §%]
* = [pt X pt X pt x pt x S%] | [D3 x §2% x §2 x 53 x pt]"
* = [D3 x S% x pt x pt x pt]" | [pt x pt x §% x 53 x §7]
[D3 x pt x S? x pt x pt]" | [pt x S? x pt x S3 x S4]
x =6 | [ptxS?xptxptxS* | [D>xptxS?xS3xpt]"
[pt x pt x S2 x pt x S4 | [D3 x 52 x pt x 83 x pt]"
[D3 x pt x pt x S3 x pt]" | [pt x S? x S? x pt x S4]
x =7 | [pt xptxptxS3x8% | [D3xS5?xS5?xptxpt]"

[D3 x 52 x S? x pt x pt]"

[pt x pt x pt x S3 x S4]
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