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Main Topic of Talk:

Poincaré Duality for Singular Spaces

Fails for ordinary homology.

Example: X3 = Susp(T2), b1 = 0, b2 = 2.

Solutions:

• L2-cohomology (Cheeger)

• Intersection Homology (Goresky, MacPher-

son)

We will propose a new (nonisomorphic) Ansatz.
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MOTIVATION.

1. General emphasis on spatial constructions

in modern algebraic topology: Try to work

on the level of spaces/spectra as long as

possible, pass to homology/homotopy groups

as late as possible.

2. Will address certain problems in string the-

ory for which H•
(2)

, IH• are too small.

(H•
(2)

, IH• miss some dual cycles.)
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1. Spatial Philosophy:

Xn stratified pseudomanifold.

X → I p̄X
space “intersection

space”
↓ ↓

IC
p̄
•(X) C•(I p̄X)

chain chain
complex complex
↓ ↓

IH
p̄
•(X) H•(I p̄X)

ordinary
homology
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Requirements:

• H•(I p̄X) should satisfy Poincaré Duality.

• X ; I p̄X should be as “natural” as pos-

sible. (It is not expected to be a functor

wrt. all continuous maps.)

• X should be modified as little as possi-

ble (only near the singularities). The ho-

motopy type away from the singularities

should be completely preserved.

• If X is a finite cell complex, then I p̄X should

be a finite cell complex.

• X ; I p̄X should be homotopy-theoretically

tractable, so as to facilitate computations.
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Additional Key Benefit:

E spectrum ; E•(I p̄X).

P.D.?

Could look at:

πs
•(I

p̄X)

Ω•(I p̄X)

K•(I p̄X)

L•(I p̄X)— have P.D. rationally.
...
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2. String Theory.

worldsheet → target space = M4 ×X6.

X should be a Calabi-Yau space. But which

one?

Conifold transition is a way to navigate within

the moduli space of Calabi-Yau manifolds.

“It appears that all Calabi-Yau vacua may be

connected by conifold transitions.”

[J. Polchinski]

Def. A (topological) conifold is a compact

pseudomanifold S with only isolated singulari-

ties.
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2-Step Process:

1. Deformation of complex structure:

• Xǫ CY 3-fold whose complex structure de-

pends on a complex parameter ǫ.

• For small ǫ 6= 0 : Xǫ is smooth.

• ǫ→ 0 : singular conifold S.

• Common Assumption: All singularities are

nodes.

• Links ∼= S2 × S3.

• Topologically: S3-shaped cycles in Xǫ are

collapsed.

2. Small resolution:

• Y → S replaces every node in S by a CP1.

• Y is a smooth Calabi-Yau manifold.

Conifold Transition:

Xǫ ; S ; Y.
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Massless D-Branes.

• Z : 3-cycle in Xǫ which collapses to a node

in S.

• In type IIB string theory: exists a charged

3-brane that wraps around Z.

• Mass (3-brane) ∝ Vol(Z).

• ⇒ 3-brane becomes massless in S.
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• CP1 : 2-cycle in Y which collapses to a

node in S.

• In type IIA string theory: exists a charged

2-brane that wraps around CP1.

• Mass (2-brane) ∝ Vol(CP1).

• ⇒ 2-brane becomes massless in S.
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Cohomology and Massless States

Rule: cohomology classes on X are manifested

in four dimensions as massless particles.

• ω differential form on T = M4 ×X.

• For such a form to be physically realistic:

d∗dω = 0 (“Maxwell equation”),

d∗ω = 0 (“Lorentz gauge condition”).

• So ∆Tω = 0, ∆T = dd∗ + d∗d Hodge-de

Rham Laplacian on T .

• Decomposition

∆T = ∆M + ∆X.
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• Wave equation

(∆M + ∆X)ω = 0.

• Interpretation: ∆X is a kind of “mass”

operator for four-dimensional fields, whose

eigenvalues are masses as seen in four di-

mensions.

• (Klein-Gordon equation (2M + m2)ω = 0

for a free particle.)

• For the zero modes of ∆X (the harmonic

forms on X), one sees in the four-dimensional

reduction massless forms.
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Physics and Topology of the

Conifold Transition.

Type d Xǫ S Y

2 p p p + m
Elem. 3 q + 2(n−m) q + (n−m) q
Massless 4 p p + m p + m

m m
2 (massless) (2-Branes,

massive)D-Branes
n−m n−m

3 (3-Branes, (massless)
massive)

2 p p + m p + m
Total 3 q + 2(n−m) q + 2(n − m) q
Massless 4 p p + m p + m

2 p p p + m
H∗ 3 q + 2(n−m) q + (n−m) q

4 p p + m p + m
H∗(Y ) =
IH∗(S)

n = number of nodes in S,
p = b2(Xǫ),
q = rk(H3(S −Σ)→ H3(S)) = rk IH3(S),
m = rkcoker(H4(Xǫ)→ H4(S)).
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Problem posed by T. Hübsch (suggested by

work of Strominger):

Construct a homology theory H defined at least

on conifolds S, such that

(SH1) H∗(S) = H∗(S) (ordinary homology) if

the singular set of S is empty,

(SH2) H∗(S) satisfies Poincaré duality, and

(SH3) H3(S) is an extension of H3(S) by

ker(H3(S −Σ)→ H3(S)).

Abdul Rahman: Approach via MacPherson-

Vilonen Zig-Zag analysis of perverse sheaves.
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Backbone of Construction:

SPATIAL HOMOLOGY TRUNCATION.

Postnikov
decomposition

←→
Moore space
decomposition

Eckmann-Hilton
dual

• pn(X) : X → Pn(X) stage-n Postnikov ap-

proximation for X:

pn(X)∗ : πr(X)→ πr(Pn(X))

is an isomorphism for r ≤ n and

πr(Pn(X)) = 0 for r > n.

• If Z is a space with πr(Z) = 0 for r > n

then any map g : X → Z factors up to

homotopy uniquely through Pn(X).
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In particular: Given any map f : X → Y, there

exists, uniquely up to homotopy, a map

pn(f) : Pn(X)→ Pn(Y )

such that

X
f

- Y

Pn(X)

pn(X)

? pn(f)
- Pn(Y )

pn(Y )

?

homotopy commutes.

Observation:

This functorial property of Postnikov approxi-

mations does not dualize to homology decom-

positions!
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Example.

• X := S2 ∪2 e3 a Moore space M(Z/2,2).

• Y := X ∨ S3.

• X≤2 = X, Y≤2 = X Moore approximations.

Claim: whatever maps i : X≤2 → X and j :

Y≤2 → Y such that i∗ : Hr(X≤2) → Hr(X) and

j∗ : Hr(Y≤2)→ Hr(Y ) are isomorphisms for r ≤

2 one takes, there is always a map f : X → Y

that cannot be compressed into the stage-2

Moore approximations:

X
f

- Y

X≤2

i

6

6∃f≤2
- Y≤2

j

6

commutative up to homotopy.

Take f : S2 ∪2 e3 → S2∪2e3

S2 = S3 →֒ X ∨ S3.
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• Point of view adopted here: lack of func-

toriality of Moore approximations due to

wrong category theoretic setup.

• Solution: consider CW-complexes endowed

with extra structure and cellular maps that

preserve that extra structure.

• Will see that such morphisms can then be

compressed into homology truncations.

• Every CW-complex can indeed be endowed

with the requisite extra structure (in gen-

eral not canonically).

• Given a cellular map, it is not always pos-

sible to adjust the extra structure on the

source and on the target of the map so

that the map preserves the structures.
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Concepts.

Let n be a positive integer.

Def. A CW-complex K is called n-segmented

if it contains a subcomplex K<n ⊂ K such that

Hr(K<n) = 0 for r ≥ n (1)

and

i∗ : Hr(K<n)
∼=
−→ Hr(K) for r < n, (2)

where i is the inclusion of K<n into K.

Lemma. Let K be an n-dimensional CW-

complex. If its group of n-cycles has a basis of

cells then K is n-segmented.
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Let n ≥ 3 be an integer.

Def. A (homological) n-truncation structure

is a quadruple (K, K/n, h, K<n), where

1. K is a simply connected CW-complex,

2. K/n is an n-dimensional CW-complex with

(K/n)n−1 = Kn−1 and such that the group

of n-cycles of K/n has a basis of cells,

3. h : K/n → Kn is the identity on Kn−1 and

a cellular homotopy equivalence rel Kn−1,

4. K<n ⊂ K/n is a subcomplex with properties

(1) and (2) with respect to K/n and such

that (K<n)n−1 = Kn−1.
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Prop. Every simply connected CW-complex K

can be completed to an n-truncation structure

(K, K/n, h, K<n).

Proof is based on methods due to P. Hilton.

Not 3-segm. K = S2 ∪4 e3 ∪6 e3
h
≃

S2 ∪2 e3 ∪0 e3 = K/3 (3-segmented)

Def. A morphism

(K, K/n, hK, K<n) −→ (L, L/n, hL, L<n)

of homological n-truncation structures is a com-

mutative diagram

K �
⊃Kn �

hK

≃
K/n �

⊃K<n

L

f

?
�

⊃Ln

f |

?
�

hL

≃
L/n

f/n

?
�

⊃L<n

f<n

?

in CW. Get category CW⊃<n and associated

homotopy category HoCW⊃<n.
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Def. Category CWn
⊃∂ of n-boundary-split CW-

complexes:

• Objects are pairs (K, Y ), where

– K is a simply connected CW-complex,

– Y ⊂ Cn(K) is a subgroup Y = s(Im ∂n)

given by some splitting

s : Im ∂n→ Cn(K)

of the boundary operator

∂n : Cn(K)→ Im ∂n(⊂ Cn−1(K)).

• Morphisms (K, YK) → (L, YL) are cellular

maps f : K → L such that f∗(YK) ⊂ YL.
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Will construct covariant assignment

τ<n : CWn
⊃∂ −→ HoCW⊃<n

of objects and morphisms.

• Given (K, Y ) ∈ CWn
⊃∂.

• By the proposition, (K, Y ) can be com-

pleted to an n-truncation structure

(K, K/n, h, K<n) in CW⊃<n such that

h∗i∗Cn(K<n) = Y,

where i∗ : Cn(K<n)→ Cn(K/n) is the

monomorphism induced by the inclusion

i : K<n →֒ K/n.

• Choose such a completion and set

τ<n(K, Y ) = (K, K/n, h, K<n).
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Compression Theorem. Any morphism

f : (K, YK) → (L, YL) in CWn
⊃∂ can be com-

pleted to a morphism τ<n(K, YK)→ τ<n(L, YL)

in HoCW⊃<n.

Set τ<n(f) = (f, fn, f/n, f<n).

Instructive to return to the example

f : K = S2 ∪2 e3 → (S2 ∪2 e3) ∨ S3 = L,

6 ∃f<3 : K<3 → L<3.

Compr. Thm. ⇒ f cannot be promoted to a

morphism f : (K, YK)→ (L, YL).

Indeed:

f∗ : C3(K) = Ze3 → Ze3 ⊕ ZS3 = C3(L)

f∗(e3) = S3.

YK = C3(K) unique, YL = Z(e3+mS3), m ∈ Z.

⇒ f∗(YK) = ZS3 6⊂ YL.

23



• Compressibility criteria for homotopies

; Obstruction theory for

τ<n(g ◦ f) = τ<n(g) ◦ τ<n(f) in HoCW⊃<n.

(Vanish over Q if H2 = 0.)

• f : (K, YK)→ (L, YL) homotopy equ. ⇒ f<n :

K<n → L<n homotopy equ. (no obstruction).

• Particularly benign cases: (s.c.) spaces with

vanishing odd-dimensional homology (s.c. 4-

manifolds; nonsingular toric varieties,. . .)

• Continuity properties for benign K:

G(t<nK)

��

HomeoCW (K)
t<n

//

t̃<n 33

G[t<nK]

The map t<n is a group homomorphism. The

map t̃<n is an H-map, but not in general a

monoid homomorphism.

• Fiberwise spatial homology truncation in cer-

tain situations.
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The Intersection Space in

the Isolated Singularities Case.

Let X be an n-dimensional, compact, oriented

pseudomanifold with isolated singularities

x1, . . . , xw (“conifold”) and simply connected

links Li = Link(xi).

• Set cut-off value to k = n− 1− p̄(n).

• Fix completions (Li, Yi) of Li so that every

(Li, Yi) is an object in CWk
⊃∂.

• Applying truncation, obtain

τ<k(Li, Yi) = (Li, Li/k, hi, (Li)<k) ∈ HoCW⊃<k.

• Let fi : (Li)<k −→ Li be the composition

(Li)<k →֒ Li/k
hi
≃ Lk

i →֒ Li.
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• M := X −
⊔

i
◦

cone(Li) ≃ X − Sing.

• ∂M =
⊔

i Li =: L.

• L<k :=
⊔

i(Li)<k

• Define a map

g : L<k −→M

by composing

L<k
f
−→ ∂M

j
→֒M,

where f =
⊔

i fi.

• The intersection space is the homotopy

cofiber of the map g:

I p̄X = cone(g) = M ∪g c(L<k).
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THEOREM. (Rational Coefficients; p̄, q̄ com-

plementary perversities.)

1. Generalized Poincaré Duality:

H̃i(I
p̄X)∗ ∼= H̃n−i(I

q̄X).

2. IH
p̄
•(X) and H̃•(I p̄X) are “reflectively” re-

lated:

. . . // H̃k−1(I
p̄X)∗ //

∼=
��

IH p̄
k−1(X)∗ //

∼=
��

Hk−1(L)∗
β∗+

//

∼=
��

. . . // H̃n−k+1(I
q̄X) // IH q̄

n−k+1(X) // Hn−k(L)
δ−

//

IH p̄
k(X)∗

∼=
��

�
u

α′∗−

''PPPPPPPPPPP

Hk(j)
∗

α′∗+ 77 77nnnnnnnnnnn

�
u

α∗+
''PPPPPPPPPPP

∼=d′M
��

IH q̄
n−k(X)

�
u γ ′+

PP
PP

''PPPPP

Hk(M)∗

∼=dM
��

β∗−
//

Hn−k(M)

γ ′−
nnnnn

77 77nnnn

�
u

γ− ((PPPPPPPPPP
H̃k(I

p̄X)∗
α∗−

77 77nnnnnnnnnnn

∼=d
��

Hn−k(j)
δ+

//

H̃n−k(I
q̄X)

γ+

66 66nnnnnnnnnn

Hk(L)∗ //

∼=dL
��

IH p̄
k+1(X)∗ //

∼=
��

H̃k+1(I
p̄X)∗ //

∼=
��

. . .

Hn−k−1(L) // IH q̄
n−k−1(X) // H̃n−k−1(I

q̄X) // . . .

27



RETURNING TO STRING THEORY.

Given conifold transition X ; S ; Y .

COR. H3(IS) is an extension of H3(S) by

ker(H3(S − Sing)→ H3(S)).

Proof: (M, ∂M) = S−open nbhd. of nodes.

H3(M)

Exact: H3(∂M)
α−j∗

-

j∗
-

H3(IS)
α+

-

⊂ α
−

-

H3(j) - 0.

0→ Im(α−j∗) −→ H3(IS)
α+
−→ H3(S)→ 0,

Im j∗
∼= Im(α−j∗),

H3(∂M)
j∗
−→ H3(M) −→ H3(M, ∂M),

H3(M) - H3(M, ∂M)

H3(S − Sing)

∼=
?

- H3(S)

∼=
?

2
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An Example.

• Set N4 = S2 × T2.

• Drill out a small open 4-ball:

N0 = N − intD4, ∂N0 = S3.

• Set M8 = N0 × S2 × S2.

• L = ∂M = S3 × S2 × S2.

• The pseudomanifold

X8 = M ∪L cone(L)

has one singular point of even codimension.

• IHm̄
• (X) = IHn̄

• (X), and for the intersec-

tion spaces Im̄X = In̄X.
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• Cut-off value k = 4, L<4 = S3 ∨ S2 ∨ S2.

• Intersection space

IX =
N0 × S2 × S2

S3 ∨ S2 ∨ S2
.

• Generating cycles in H•(N):

a = [S2×·×·], b = [·×S1×·], c = [·×·×S1].

• Generating cycles in H•(L):

x = [S3×·×·], y = [·×S2×·], z = [·×·×S2].

IH4(X) = Q〈ay, bcy, az, bcz〉.

H4(M) = Q〈ay, bcy, az, bcz, yz 〉.

H4(j) = H4(X) = Q〈ay, bcy, az, bcz, abc 〉,

H̃4(IX) = Q〈ay, bcy, az, bcz, abc, yz 〉.
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Cap Products.

• X̂ := cone(j) = X/(x1 ∼ x2 ∼ · · · ∼ xw)

(“denormalization” of X).

• Canonical maps

M
b
−→ I p̄X

c
−→ X̂

such that

Hr(M)
b∗

- Hr(I p̄X)

Hr(X̂)

c∗

?

a
∗

-

commutes.
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Proposition. Suppose n = dimX ≡ 2 mod 4.

Then there exists a cap-product

H̃2l(Im̄X)⊗ H̃i(X̂)
∩
−→ H̃i−2l(I

m̄X)

such that

H̃2l(Im̄X)⊗ H̃i(X̂)
∩

- H̃i−2l(I
m̄X)

H̃2l(X̂)⊗ H̃i(X̂)

c∗⊗id

6

∩
- H̃i−2l(X̂)

c∗
?

commutes.

Proposition. Suppose n = dimX ≡ 1 mod 4.

Then there exists a cap-product

H̃2l(Im̄X)⊗ H̃i(X̂)
∩
−→ H̃i−2l(I

n̄X)

such that

H̃2l(Im̄X)⊗ H̃i(X̂)
∩

- H̃i−2l(I
n̄X)

H̃2l(X̂)⊗ H̃i(X̂)

c∗⊗id

6

∩
- H̃i−2l(X̂)

c∗
?

commutes.

(Similar statements for n ≡ 0,3 mod 4.)
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L-Theory.

• Let L• be the symmetric L-spectrum with

homotopy groups

πi(L
•) = Li(Z) =





Z, i ≡ 0(4) (sign.)

Z/2, i ≡ 1(4) (de Rham)

0, i ≡ 2,3(4).

• A compact, oriented n-manifold-with-boundary

(M, ∂M) possesses a canonical L•-orientation

[M, ∂M ]L ∈ Hn(M, ∂M ;L•).

• given rationally by the homology L-class of

M :

[M, ∂M ]L⊗1 = L∗(M, ∂M) = L
∗(M)∩[M, ∂M ]

∈ Hn(M, ∂M ;L•)⊗Q =
⊕

i≥0

Hn−4i(M, ∂M ;Q).
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There is defined a cap-product

∩ : Hi(M ;L•)⊗Hn(M, ∂M ;L•) −→ Hn−i(M, ∂M ;L•)

such that

− ∩ [M, ∂M ]L : Hi(M ;L•) −→ Hn−i(M, ∂M ;L•)

is an isomorphism (Poincaré duality).

THEOREM. Let X be an n-dimensional pseu-

domanifold with isolated singularities. Cap-

ping with the L•-homology fundamental class

[X̂]L ∈ H̃n(X̂;L•) induces rationally an isomor-

phism

[X̂]L⊗1∩− : H̃0(Im̄X;L•)⊗Q
∼=
−→ H̃n(I

m̄X;L•)⊗Q

for n ≡ 2 mod 4 and n ≡ 4 mod 8 such that

H̃0(Im̄X;L•)⊗Q
∼=

[X̂]L⊗1∩−
- H̃n(Im̄X;L•)⊗Q

H̃0(X̂;L•)⊗Q

c∗
6

[X̂]L⊗1∩−
- H̃n(X̂;L•)⊗Q

c∗
?

commutes.
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For n ≡ 1 mod 4:

H̃0(Im̄X;L•)⊗Q
∼=

[X̂]L⊗1∩−
- H̃n(In̄X;L•)⊗Q

H̃0(X̂;L•)⊗Q

c∗

6

[X̂]L⊗1∩−
- H̃n(X̂;L•)⊗Q

c∗

?

For n ≡ 3 mod 4:

H̃0(In̄X;L•)⊗Q
∼=

[X̂]L⊗1∩−
- H̃n(Im̄X;L•)⊗Q

H̃0(X̂;L•)⊗Q

c∗

6

[X̂]L⊗1∩−
- H̃n(X̂;L•)⊗Q

c∗

?
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An Example.

Consider the pseudomanifold

X12 = D4 × P4 ∪S3×P4 c(S3 × P4).

• Cutoff-value k = 6.

• L<6 = (S3 × P4)5. (5-skeleton)

• Im̄X = cofiber((S3 × P4)5 →֒ D4 × P4).

H̃12(I
m̄X;L•)⊗Q = Q[pt]× [P4] ⊕ Qµ× [P0]

lPD. lPD.

H̃0(Im̄X;L•)⊗Q = Qd× 1 ⊕ Q1× g4.

(µ = [D4, S3] ∈ H4(D
4, S3),

d ∈ H4(D4, S3) gen. s.t. d∩µ = [pt] ∈ H0(D
4),

g = −c1(taut. line bundle) ∈ H2(P4).)
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Beyond Isolated Singularities.

• Let X be an n-dimensional, compact, strat-

ified pseudomanifold with two strata

X = Xn ⊃ Xn−c.

• The singular set Σ = Xn−c is thus an

(n− c)-dimensional closed manifold.

• Assume that X has a trivial link bundle,

that is, a neighborhood of Σ in X looks

like Σ ×
◦

cone(L), where L is a (c − 1)-

dimensional closed manifold, the link of Σ.

• Assume that L is simply connected.

• Idea: construct I p̄X by performing fiber-

wise truncation.
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• Set cut-off to k = c− 1− p̄(c).

• Fix completion (L, Y ) of L so that

(L, Y ) ∈ CWk
⊃∂.

• Applying truncation, obtain

τ<k(L, Y ) = (L, L/k, h, L<k) ∈ HoCW⊃<k

and a map

f : L<k −→ L

• Manifold Mn := X − (Σ×
◦

cone(L)).

• ∂M = Σ× L.

38



• Let

g : Σ× L<k −→M

be the composition

Σ× L<k
idΣ×f
−→ Σ× L = ∂M

j
→֒M.

• The intersection space is the homotopy cofiber

of the map g:

I p̄X = cone(g) = M ∪g c(Σ× L<k).
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THEOREM. There exists a generalized Poincaré

duality isomorphism

D : H̃n−r(I p̄X)
∼=
−→ H̃r(I

q̄X)

such that both

H̃n−r(I p̄X) - Hn−r(M)

H̃r(I q̄X)

D ∼=

?

- Hr(M, ∂M)

∼= −∩[M,∂M ]

?

and

Hn−r−1(Σ× L<k)
δ∗

- H̃n−r(I p̄X)

Hr(∂M,Σ× L<c−k)

−∩[∂M ] ∼=

?
- H̃r(I q̄X)

∼= D

?

commute.
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An Example.

• L := S3 × S4, M14 := D3 × S2 × S2 × L.

• Pseudomanifold

X14 = M ∪∂M S2 × S2 × S2 × cone(L).

• Singular set Σ = S2 × S2 × S2 × {c},

Link = L.

• Cut-off value k = 4.

• L<4 = S3 × pt.
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• Intersection space

Im̄X ≃
D3 × S2 × S2 × S3 × S4

S2 × S2 × S2 × S3 × pt
.

• If A, B are cycles in a 2-sphere and

C is a cycle in the 3-sphere then

D3 × A×B × C × pt ∪S2×A×B×C×pt

cone(S2 ×A×B × C × pt)

is a cycle in the space Im̄X.

• We shall denote the homology class of such

a cycle briefly by [D3 ×A×B × C × pt]∧.
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Dual cycles are next to each other in the same

row.

H̃∗(Im̄X) H̃14−∗(Im̄X)
∗= 0 0 0
∗= 1 0 0
∗= 2 0 0
∗= 3 [D3 × pt× pt× pt× pt]∧ [pt× S2 × S2 × S3 × S4]
∗= 4 [pt× pt× pt× pt× S4] [D3 × S2 × S2 × S3 × pt]∧

∗= 5 [D3 × S2 × pt× pt× pt]∧ [pt× pt× S2 × S3 × S4]
[D3 × pt× S2 × pt× pt]∧ [pt× S2 × pt× S3 × S4]

∗= 6 [pt× S2 × pt× pt× S4] [D3 × pt× S2 × S3 × pt]∧

[pt× pt× S2 × pt× S4] [D3 × S2 × pt× S3 × pt]∧

[D3 × pt× pt× S3 × pt]∧ [pt× S2 × S2 × pt× S4]
∗= 7 [pt× pt× pt× S3 × S4] [D3 × S2 × S2 × pt× pt]∧

[D3 × S2 × S2 × pt× pt]∧ [pt× pt× pt× S3 × S4]
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