
Preface

The primary concern of the work presented here is Poincaré duality for spaces that
are not manifolds, but are still put together from manifolds that form the strata
of a stratification of the space. Goresky and MacPherson’s intersection homology
[GM80, GM83], see also [B+84, KW06, Ban07], associates to a stratified pseudo-
manifold X chain complexes ICp̄

∗ (X ;Q) depending on a perversity parameter p̄,
whose homology IH p̄

∗ (X ;Q)= H∗(ICp̄
∗ (X ;Q)) satisfies generalized Poincaré duality

across complementary perversities when X is closed and oriented. L2-cohomology
[Che80, Che79, Che83] associates to a triangulated pseudomanifold X equipped
with a suitable conical Riemannian metric on the top stratum a differential com-
plex Ω ∗(2)(X), the complex of differential L2-forms ω on the top stratum of X such

that dω is L2 as well, whose cohomology H∗(2)(X) = H∗(Ω ∗(2)(X)) satisfies Poincaré
duality (at least when X has no strata of odd codimension; in more general situa-
tions one must choose certain boundary conditions). The linear dual of IHm̄∗ (X ;R)
is isomorphic to H∗(2)(X), by integration. In the present work, we adopt the “spatial
philosophy” outlined in the announcement [Ban09], maintaining that a theory of
Poincaré duality for stratified spaces benefits from being implemented on the level
of spaces, with passage to coarser filters such as chain complexes, homology or ho-
motopy groups occurring as late as possible in the course of the development. Thus
we pursue here the following program. To a stratified pseudomanifold X , associate
spaces

I p̄X ,

the intersection spaces of X , such that the ordinary homology ˜H∗(I p̄X ;Q) sat-
isfies generalized Poincaré duality when X is closed and oriented. If X has no
odd-codimensional strata and p̄ is the middle perversity p̄ = m̄, then we are thus
assigning to a singular pseudomanifold a (rational) Poincaré complex. The result-
ing homology theory X � ˜H∗(I p̄X) is not isomorphic to intersection homology or
L2-cohomology. In fact, it solves a problem in type II string theory related to the
existence of massless D-branes, which is neither solved by ordinary homology nor
by intersection homology. We show that while IHm̄∗ (X) is the correct theory in the
realm of type IIA string theory (giving the physically correct counts of massless
particles), ˜H∗(Im̄X) is the correct theory in the realm of type IIB string theory. In
other words, the two theories IHm̄∗ (X), ˜H∗(Im̄X) form a mirror pair in the sense of
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mirror symmetry in algebraic geometry. We will return to these considerations in
more detail later in this preface.

The assignment X � I p̄X should satisfy the following requirements:

1. ˜H∗(I p̄X ;Q) should satisfy generalized Poincaré duality across complementary
perversities.

2. ˜H∗(I p̄X ;Q) should be a mirror of IHm̄∗ (X ;Q) in the sense of mirror symmetry.
3. X � I p̄X should be as “natural” as possible.
4. X should be modified as little as possible (only near the singularities; the homo-

topy type away from the singularities should be completely preserved).
5. If X is a finite cell complex, then I p̄X should again be a finite cell complex.
6. X � I p̄X should be homotopy-theoretically tractable, so as to facilitate

computations.

Note that full naturality in (3) with respect to all continuous maps is too much
to expect, since a corresponding property cannot be achieved for intersection ho-
mology either. In order to demonstrate (6), we have worked out numerous examples
throughout the text, giving concrete intersection spaces for pseudomanifolds rang-
ing from toy examples to complex algebraic threefolds and Calabi–Yau conifolds
arising in mathematical physics. In the present monograph, we carry out the above
program for pseudomanifolds with isolated singularities as well as, more gener-
ally, for two-strata spaces with arbitrary bottom stratum but trivial link bundle. In
addition, we make suggestions for how to proceed when there are more than two
strata, or when the link bundle is twisted. Future research will have to determine
the ultimate domain of pseudomanifolds for which an intersection space is defin-
able. Throughout the general development of the theory, we assume the links of
singular strata to be simply connected. In concrete applications, this assumption
is frequently unnecessary, see also the paragraph preceding Example 2.15. In the
example, we discuss the intersection space of a concrete space whose links are
not simply connected. Our construction of intersection spaces is of a homotopy-
theoretic nature, resting on technology for spatial homology truncation, which we
develop in this book. This technology is completely general, so that it may be of
independent interest.

What are the purely mathematical advantages of introducing intersection spaces?
Algebraic Topology has developed a vast array of functors defined on spaces, many
of which do not factor through chain complexes. For instance, let E∗ be any gen-
eralized homology theory, defined by a spectrum E , such as K-theory, L-theory,
stable homotopy groups, bordism and so on. One may then study the composite
assignment

X � I p̄E∗(X) := E∗(I p̄X).

Section 2.7, for example, studies symmetric L-homology, where E∗ is given by
Ranicki’s symmetric L-spectrum E = L•. We show in Corollary 2.38 that capping
with the L•-homology fundamental class of an n-dimensional oriented compact
pseudomanifold X with isolated singularities indeed induces a Poincaré duality iso-
morphism

˜H0(Im̄X ;L•)⊗Q
∼=−→ ˜Hn(In̄X ;L•)⊗Q.
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K-theory is discussed in Section 2.8. A p̄-intersection vector bundle on X may be
defined as an actual vector bundle on I p̄X . More generally, given any structure group
G, one may define principal intersection G-bundles over X as homotopy classes of
maps I p̄X → BG. In Example 2.40, we show that there are infinitely many distinct
seven-dimensional pseudomanifolds X , whose tangent bundle elements in the KO-
theory ˜KO(X − Sing) of their nonsingular parts do not lift to ˜KO(X), but do lift
to ˜KO(In̄X), where n̄ is the upper middle perversity. So this framework allows one
to formulate the requirement that a pseudomanifold have a p̄-intersection tangent
bundle, and by varying p̄, the severity of this requirement can be adjusted at will.
Ultimately, one may want to study the Postnikov tower of I p̄X and view it as a
“p̄-intersection Postnikov tower” of X .

A further asset of the spatial philosophy is that cochain complexes will au-
tomatically come equipped with internal multiplications, making them into dif-
ferential graded algebras (DGAs). The Goresky–MacPherson intersection chain
complexes ICp̄

∗ (X) are generally not algebras, unless p̄ is the zero-perversity, in
which case ICp̄

∗ (X) is essentially the ordinary cochain complex of X . (The Goresky–
MacPherson intersection product raises perversities in general.) Similarly, the dif-
ferential complex Ω ∗(2)(X) of L2-forms on X −Sing is not an algebra under wedge

product of forms because the product of two L2-functions need not be L2 anymore
(consider for example r−1/3 for small r > 0). Using the intersection space frame-
work, the ordinary cochain complex C∗(I p̄X) of I p̄X is a DGA, simply by employing
the ordinary cup product. For similar reasons, the cohomology of I p̄X is by default
endowed with internal cohomology operations, which do not exist for intersection
cohomology. These structures, along with Massey triple products and other sec-
ondary and higher order operations, remain to be investigated elsewhere. Operations
in intersection cohomology that weaken the perversity by a factor of two have been
constructed in [Gor84].

In Section 2.6, we construct cap products of the type

˜Hr(Im̄X)⊗ ˜Hi(X) ∩−→ ˜Hi−r(In̄X). (0.1)

These products have their applications not only in formulating and proving dual-
ity statements, but also in developing various characteristic class formulae, which
may lead to extensions of the results of [BCS03, Ban06a]. An m̄-intersection vector
bundle on X has Chern classes in Heven(Im̄X). Characteristic classes of pseudo-
manifolds, such as the L-class, generally lie only in H∗(X ;Q) and do not lift to
intersection homology or to H∗(Im̄X ;Q), see for example [GM80, Ban06b]. Con-
sequently, the ordinary cap product Hr(Im̄X)⊗Hi(Im̄X)→ Hi−r(Im̄X) is useless
in multiplying the Chern classes of the bundle and the characteristic classes of
the pseudomanifold. The above product (0.1) then enables one to carry out such
a multiplication. The product (0.1) seems counterintuitive from the point of view of
intersection homology because an analogous product

IHr(X)⊗Hi(X) ��� IHi−r(X)
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on intersection homology cannot exist. The motivational Section 2.6.1 explains why
the desired product cannot exist for intersection homology but does exist for inter-
section space homology. The products themselves are constructed in Section 2.6.3.

Let us briefly indicate how intersection spaces are constructed. We are guided
initially by mimicking spatially what intersection homology does algebraically. By
Mayer-Vietoris sequences, the overall behavior of intersection homology is primar-
ily controlled by its behavior on cones. If L is a closed n-dimensional manifold,
n > 0, then

IH p̄
r (

◦
cone(L))∼=

{

Hr(L), r < n− p̄(n + 1),

0, otherwise,

where
◦

cone(L) denotes the open cone on L and we are using intersection homology
built from finite chains. Thus, intersection homology is a process of truncating the
homology of a space algebraically above some cut-off degree given by the perversity
and the dimension of the space. This is also apparent from Deligne’s formula for the
intersection chain sheaf. The task at hand is to implement this spatially. Let C be a
category of spaces, that is, a category with a functor i : C→Top to the category Top
of topological spaces and continuous maps. (For instance, C might be a subcategory
of Top and i the inclusion functor, but it might also be spaces endowed with extra
structure with i the forgetful functor, etc.) Let p : Top→ HoTop be the natural
projection functor to the homotopy category of spaces, sending a continuous map to
its homotopy class. Suppose then that we had a functor

t<k : C−→HoTop,

where k is a positive integer, together with a natural transformation embk : t<k→ pi
(think of pi as the “identity functor”) such that

embk(L)∗ : Hr(t<k(L)) −→ Hr(pi(L))

is an isomorphism for r < k, while Hr(t<k(L)) = 0 for r ≥ k, for all objects L in C.
We refer to such a functor as a spatial homology truncation functor. Let X be an
n-dimensional closed pseudomanifold with one isolated singular point. Such an X
is of the form

X = M∪∂M=L cone(L),

where L, a closed manifold of dimension n− 1, is the link of the singularity, and
M, a compact manifold with boundary ∂M = L, is the complement of a small open
cone-neighborhood of the singularity. Assume that L gives rise to an object L in C.
The intersection space I p̄X is defined to be the homotopy cofiber of the composition

t<k(L)
embk(L)−→ pi(L) = L = ∂M ↪→M,

where k = n−1− p̄(n), see Definition 2.10. In other words: we attach the cone on
a suitable spatial homology truncation of the link to the exterior of the singularity
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along the boundary of the exterior. The two extreme cases of this construction arise
when k = 1 and when k is larger than the dimension of the link. In the former case,
t<1(L) is a point (at least when L is path connected) and thus I p̄X is homotopy equiv-
alent to the nonsingular part X−Sing of X . In the latter case no actual truncation has
to be performed, t<k(L) = L, embk(L) is the identity map and thus I p̄X = X . If there
are several isolated singularities, then we perform spatial homology truncation on
each of the links. If the singularities are not isolated, a process of fiberwise spatial
homology truncation applied to the link bundle has to be used, see Section 2.9. If
there are more than two nested strata, then more elaborate homotopy colimit con-
structions involving iterated truncation techniques can be used.

Theorem 2.12 establishes generalized Poincaré duality for the rational homology
of intersection spaces and simultaneously analyzes the relation to intersection ho-
mology, both in the isolated singularity case. This relation is of a “reflective” nature
(which is also responsible for both theories being mirrors of each other in the con-
text of singular Calabi–Yau threefolds). The requisite abstract language of reflective
diagrams is introduced in Section 2.1. Of particular interest here is to understand
what happens at the cut-off degree k, which is the middle dimension for the mid-
dle perversity. The reflective diagram shows that while IH p̄

k (X) is generally smaller
than both Hk(X −Sing) and Hk(X), being a quotient of the former and a subgroup
of the latter, Hk(I p̄X), on the other hand, is generally bigger than both Hk(X−Sing)
and Hk(X), containing the former as a subgroup and mapping to the latter surjec-
tively. Section 3.9 contains an example of a singular quintic S (a conifold) in P4

such that H3(IS) has rank 204, but IH3(S) has only rank 2. Corollary 2.14 com-
putes the difference of the Euler characteristics of the two theories. As far as Witt
groups are concerned, both theories lead to equivalent intersection forms: We prove
in Theorem 2.28 that for a pseudomanifold X of dimension n = 4m, the symmetric
intersection form on IHm̄

2m(X) and the symmetric intersection form on H2m(Im̄X)
determine the same element in the Witt group of the rationals. In particular, the
signature of the two forms are equal. Definition 2.41 contains the construction of
I p̄X for a space X with a positive dimensional singular stratum with untwisted link
bundle. Theorem 2.47 establishes generalized Poincaré duality in this context.

As our approach relies on the ability to perform spatial homology truncation,
Chapter 1 is devoted to a systematic investigation of this problem. The investiga-
tion and results are of a general nature and can be read and used independently
of any interest in intersection spaces. Throughout the development, we strive to
remain firmly on the plane of elementary homotopy theory, using only classical in-
struments, working unstably, avoiding simplicial or model theoretic language, as
such language does not seem to yield any particular advantage here. Our spaces in
this chapter will be simply connected CW-complexes because, just as Hilton [Hil65]
does, we wish to avail ourselves of the Hurewicz and the Whitehead theorem. Spa-
tial homology truncation on the object level has been studied by several researchers:
the Eckmann–Hilton dual of the Postnikov decomposition is the homology decom-
position (or Moore space decomposition) of a space, see [Hil65, BJCJ59, Moo]. It
seems that the problem has not received much attention on the morphism level;
see, however, [Bau88] for a tower of categories. Consequently, we focus on aspects
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of functoriality, and this is where homology truncation turns out to be harder than
Postnikov truncation because obstructions surface that do not arise in the Postnikov
picture. Given a space X , let pn(X) : X→ Pn(X) denote a stage-n Postnikov approx-
imation for X . If f : X → Y is any map, then there exists, uniquely up to homotopy,
a map pn( f ) : Pn(X)→ Pn(Y ) such that

X
f � Y

Pn(X)

pn(X)

�
pn( f )� Pn(Y )

pn(Y )

�

homotopy commutes. In the introductory Section 1.1.1 we give an example that
shows that this property does not Eckmann–Hilton dualize to spatial homology trun-
cation. Thus a homology truncation functor in this naive sense cannot exist. Our
solution proposes to consider spaces endowed with an extra structure. Morphisms
should preserve this extra structure; one obtains a category CWn⊃∂ . What is this
extra structure? Hilton’s homology decomposition really depends on a choice of
complement to the group of n-cycles inside of the nth chain group. Such a com-
plement always exists and pairs (space,choice of complement) are the objects of
CWn⊃∂ ; morphisms are cellular maps that map the complement chosen for the do-
main to the complement chosen for the codomain. The Compression Theorem 1.32
shows that such morphisms can always be compressed into spatial homology trun-
cations. The upshot at this stage is that we obtain a covariant assignment

t<n : CWn⊃∂ −→HoCWn−1

of objects and morphisms into the rel (n− 1)-skeleton homotopy category of CW-
complexes together with a natural transformation embn from t<n to the identity, such
that for every object (K,Y ) of CWn⊃∂ , where K is a simply connected CW-complex
and Y a complement as discussed above,

embn(K,Y )∗ : Hr(t<n(K,Y ))−→Hr(K)

is an isomorphism for r < n and Hr(t<n(K,Y )) = 0 for r ≥ n, see the first part of
Theorem 1.41. (Note that we do not at this stage claim that t<n is a functor on all
of CWn⊃∂ .) This solves the first order problem of the existence of compressions
of maps. Immediately, the second order problem of the uniqueness of compres-
sions presents itself. Example 1.9 shows that even when domain and codomain of
a map f have unique homological n-truncations and f does have a homological
n-truncation, the homotopy class of that truncation may not be uniquely determined
by f . The obvious idea of imposing the above requirement of complement-
preservation also on homotopies and then just applying the Compression
Theorem 1.32 to compress the homotopy into spatial homology truncations does
not work. We call a map n-compression rigid, if its compression into n-truncations
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agrees with f on the (n− 1)-skeleton and is unique up to rel (n− 1)-skeleton
homotopy, see Definition 1.33 and Proposition 1.34. Example 1.35 exposes a map
that is not compression rigid, even though its domain and codomain have unique
n-truncations. As an instrument for understanding compression rigidity, we intro-
duce virtual cell groups VCn of a space, so named because they are homotopy
groups which are not themselves cellular chain groups, but they sit naturally be-
tween two actual cellular chain groups of certain cylinders. The virtual cell groups
come equipped with an endomorphism so that we can formulate the concept of
a 1-eigenclass (or eigenclass for short) for elements of VCn. We show that a
map is compression rigid if and only if the homotopies coming from the homo-
topy commutativity of the transformation square associated to embn can be chosen
to be eigenclasses in VCn. For 2-connected spaces, virtual cell groups are com-
puted in Proposition 1.18. An obstruction theory for compression rigidity is set
up in Section 1.2. Case studies of compression rigid categories are presented in
Section 1.3. The second part of Theorem 1.41 asserts that the covariant assignment
t<n is a functor on n-compression rigid subcategories of CWn⊃∂ . The dependence
of the spatial homology truncation t<n(K,Y ) on Y is discussed by Proposition 1.25,
Scholium 1.26, Proposition 1.27 and Corollaries 1.30, 1.31. Proposition 1.25 gives
a necessary and sufficient condition for t<n(K,Y ) and t<n(K,Y ) to be homo-
topy equivalent rel (n− 1)-skeleton, where Y,Y are two choices of complements.
Section 1.4 deals with the truncation of homotopy equivalences, Section 1.5 with
the truncation of inclusions, and Section 1.6 with iterated truncation. In Section 1.7,
we investigate spatial homology truncation followed by localization at odd primes.

Theorem 1.61 establishes that this composite assignment t(odd)
<n is a functor on

2-connected spaces. The key ingredients here are the compression rigidity obstruc-
tion theory together with Proposition 1.50, which calculates a pertinent homotopy
group and shows that it is all 2-torsion.

There are important classes of spaces where no complement Y has to be chosen
and the compression rigidity obstructions vanish. We study one such class in detail,
namely spaces with vanishing odd-dimensional homology. We refer to this class as
the interleaf category, ICW. It includes for instance simply connected 4-manifolds,
smooth compact toric varieties, homogeneous spaces arising as the quotient of a
complex simply connected semisimple Lie group by a parabolic subgroup (e.g. flag
manifolds, Grassmannians), and smooth Schubert varieties. A truncation functor
t<n : ICW→ HoCW and cotruncation functor t≥n : ICW→ HoCW are defined.
Mostly, but not exclusively, in the context of the interleaf category, we investigate
continuity properties of the homology truncation of homeomorphisms. We show in
Theorem 1.78 that truncation of cellular self-homeomorphisms of an interleaf space
is a continuous H-map into the grouplike topological monoid of self-homotopy
equivalences of the homology truncation of the space. In Section 1.11, we discuss
fiberwise homology truncation for mapping tori (general simply connected fiber),
flat bundles over spaces whose fundamental group G has a K(G,1) of dimension at
most 2 (for example flat bundles over closed surfaces other than RP2; again for gen-
eral simply connected fiber), and fiber bundles over a sphere of dimension greater
than 1, with interleaf fiber.
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Since spatial homology truncation of a space L in general requires making a
choice of a certain type of subgroup Y in the nth chain group of L in order to obtain
an object (L,Y ) in CWn⊃∂ , and since the construction of intersection spaces uses
this truncation on the links L of singularities, the homotopy type of the intersection
space I p̄X may well depend, to some extent, on choices. We show (Theorem 2.18)
that the rational homology of I p̄X is well-defined and independent of choices. Fur-
thermore, we give sufficient conditions, in terms of the homology of the links in X
and the homology of X−Sing, for the integral homology of I p̄X in the cut-off degree
to be independent of choices. Away from the cut-off degree, the integral homology
is always independent of choices. The conditions are often satisfied in algebraic
geometry for the middle perversity, for instance when X is a complex projective
algebraic threefold with isolated hypersurface singularities that are weighted homo-
geneous and “well-formed,” see Theorem 2.24. This class of varieties includes in
particular conifolds, to be discussed below. Theorem 2.26 asserts that the homotopy
type of I p̄X is well-defined independent of choices when all the links are interleaf
spaces.

It was mentioned before that the homology of intersection spaces addresses cer-
tain questions in type II string theory – let us expand on this. Our viewpoint is
informed by [GSW87, Str95, Hüb97]. In addition to the four dimensions that model
space–time, string theory requires six dimensions for a string to vibrate. Due to
supersymmetry considerations, these six dimensions must be a Calabi–Yau space,
but this still leaves a lot of freedom. It is thus important to have mechanisms to
move from one Calabi–Yau space to another. A topologist’s take on this might
be as follows, disregarding the Calabi–Yau property for a moment. Since any two
6-manifolds are bordant (ΩSO

6 = 0) and since, by Morse theory, any bordism is ob-
tained by performing a finite sequence of surgeries, surgery is not an unreasonable
vessel to travel between 6-manifolds. Note also that every three-dimensional ho-
mology class in a simply connected smooth 6-manifold can be represented, by the
Whitney embedding theorem, by an embedded 3-sphere with trivial normal bundle.
Physicists’ conifold transition starts out with a nonsingular Calabi–Yau threefold,
passes to a singular variety (the conifold) by a deformation of complex structure,
and arrives at a different nonsingular Calabi–Yau threefold by a small resolution
of singularities. The deformation collapses embedded 3-spheres to isolated singular
points, whose link is S3×S2. The resolution resolves the singular points by replacing
each one with a CP1. As we review in Section 3.6, massless particles in four dimen-
sions should be recorded as classes by good cohomology theories for Calabi–Yau
varieties. In type IIA string theory, there are charged twobranes present that wrap
around the CP1 2-cycles and that become massless when those 2-cycles are col-
lapsed to points by the resolution map, see Section 3.5. We show that intersection
homology accounts for all of these massless twobranes and thus is the physically
correct homology theory for type IIA string theory. However, in type IIB string the-
ory, there are charged threebranes present that wrap around the 3-spheres and that
become massless when those 3-spheres are collapsed to points by the deformation
of complex structure. Neither the ordinary homology of the conifold, nor its inter-
section homology (or L2-cohomology) accounts for these massless threebranes. In
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Proposition 3.6 we prove that the homology of the intersection space of the conifold
yields the correct count of these threebranes. From this point of view, the homol-
ogy of intersection spaces appears to be a physically suitable homology theory
in the IIB regime. The theory in particular answers a question posed by [Hüb97]
in this regard. Given a Calabi–Yau threefold M, the mirror map associates to it
another Calabi–Yau threefold W such that type IIB string theory on R4×M cor-
responds to type IIA string theory on R4×W . If M and W are nonsingular, then
b3(W ) = (b2 + b4)(M)+ 2 and b3(M) = (b2 + b4)(W )+ 2 for the Betti numbers of
ordinary homology. The preceding discussion suggests that if M and W are singular,
HIIA∗ is a type IIA D-brane-complete homology theory with Poincaré duality, and
HIIB∗ is a type IIB D-brane-complete homology theory with Poincaré duality, then
one should expect that

rkHIIA
3 (M) = rkHIIB

2 (W )+ rkHIIB
4 (W )+ 2,

rkHIIA
3 (W ) = rkHIIB

2 (M)+ rkHIIB
4 (M)+ 2,

rkHIIB
3 (M) = rkHIIA

2 (W )+ rkHIIA
4 (W )+ 2, and

rkHIIB
3 (W ) = rkHIIA

2 (M)+ rkHIIA
4 (M)+ 2.

Corollary 3.14 establishes that this is indeed the case for HIIA∗ (−) = IH∗(−) and
HIIB∗ (−) = H∗(I−) when M and W are conifolds. Thus (IH∗(−),H∗(I−)) is a
mirror-pair in this sense. Intersection homology and the homology of intersection
spaces reveal themselves as the two sides of one coin.

Prerequisites. In Chapter 1, we assume that the reader is acquainted with the el-
ementary homotopy theory of CW complexes [Whi78, Hil53, Hat02]. In Chapter 2,
a rudimentary knowledge of stratification theory, pseudomanifolds, and intersection
homology is useful. In addition to the references already mentioned in the begin-
ning of this preface, the reader may wish to consult [GM88, Wei94, Sch03, Pfl01].
A geometric understanding of intersection homology in terms of PL or singular
chains is sufficient. Sheaf-theoretic methods are neither used nor required in this
book. Regarding Chapter 3, we have made an attempt to collect in Sections 3.1–3.6
all the background material from string theory that we need for our predominantly
mathematical arguments in Sections 3.7–3.9. Specific competence in, say, quantum
field theory, is not required to read this chapter.

Notation and Conventions. Our convention for the mapping cylinder Y ∪ f X × I
of a map f : X → Y is that the attaching is carried out at time 1, that is, the points
of X ×{1} ⊂ X × I are attached to Y using f . For products in cohomology and
homology, we will use the conventions of Spanier’s book [Spa66]. In particular, for
an inclusion i : A⊂ X of spaces and elements ξ ∈H p(X), x ∈Hn(X ,A), the formula
∂∗(ξ ∩x) = i∗ξ ∩∂∗x holds for the connecting homomorphism ∂∗ (no sign). For the
compatibility between cap- and cross-product, one has the sign

(ξ ×η)∩ (x× y) = (−1)p(n−q)(ξ ∩ x)× (η ∩ y),

where ξ ∈ H p(X), η ∈Hq(Y ), x ∈ Hm(X), and y ∈ Hn(Y ).
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