The L-Class of Singular Spaces: Old and New Results

Markus Banagl

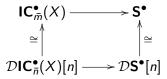
Universität Heidelberg

July 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Self-Dual Perverse Sheaves on General Pseudomanifolds

- X: oriented *n*-dimensional topological pseudomanifold with a locally cone-like topological stratification.
- Define category SD(X): full subcategory of derived category D^b_c(X) satisfying axioms: top stratum normalization, lower bound, n-stalk vanishing condition, self-duality.
- ► *SD*(*X*) may or may not be empty.
- **Def.** X is an *L-space*, if $SD(X) \neq \emptyset$.
- ▶ For $S^{\bullet} \in SD(X)$, there exist morphisms



Postnikov system of Lagrangian Structures

Def. A Lagrangian structure for a complex $S^{\bullet} \in SD(U_k)$ along a stratum $U_{k+1} - U_k = X_{n-k} - X_{n-k-1}$ of odd codimension k is a monomorphism

$$\mathbf{L} \longrightarrow \mathbf{H}^{\overline{n}(k)-n}(Ri_{k*}\mathbf{S}^{\bullet}), \ i_k : U_k \subset U_{k+1},$$

which is stalkwise a Lagrangian subspace.

Thm.(B.) There is an equivalence of categories (say, for *n* even)

$$SD(X) \simeq Lag(X_1 - X_0) \rtimes Lag(X_3 - X_2) \rtimes ...$$

 $\rtimes Lag(X_{n-3} - X_{n-4}) \rtimes Coeff(X - \Sigma).$

(Similarly for *n* odd.)

Examples

- If X is a Witt space (e.g. a complex algebraic variety), then Ob(SD(X)) = {IC[●]_m(X) ≅ IC[●]_n(X)}.
- $X^6 = S^1 \times \text{Susp}(\mathbb{C}P^2)$: $SD(X^6) = \emptyset$.
- $X^4 = S^1 \times \text{Susp}(T^2)$: $SD(X^4) \neq \emptyset$.
- Primary obstruction: Signature of the link, Secondary obstruction: Monodromy.
- ► Thm.(B., Kulkarni) Let X be the reductive Borel-Serre compactification of a Hilbert modular surface X. Then X an L-space, though it is not a Witt space.

Analytic Approach: Cheeger Structures

Joint work with Albin, Leichtnam, Mazzeo, Piazza.

- X: oriented smoothly Thom-Mather-stratified pseudomanifold.
- Radial Blow-up \widetilde{X} : manifold with corners (Melrose).
- S ⊂ X stratum, x ∈ C[∞](X) a boundary defining function (S = x⁻¹(0), |dx| bounded away from 0). An *incomplete edge metric* takes near S the form

$$dx^2 + x^2g_{\mathsf{Link}} + \pi^*g_S, \ \pi: \partial \mathsf{tube} \to S.$$

(iterate inductively.)

- Fact: (Iterated) incomplete edge metrics exist.
- ▶ ^{ie} T^{*}X̃: sections are 1-forms whose restrictions on boundary hypersurfaces vanish on vertical vector fields.

C[∞]_c(X_{reg}; N^j(^{ie} T^{*}X̃)) ⊂ L²(X̃; N^j(^{ie} T^{*}X̃)) dense, so exterior derivative

$$d: C^{\infty}_{c}(X_{reg}; \Lambda^{j}({}^{\mathsf{ie}}T^{*}\widetilde{X})) \longrightarrow C^{\infty}_{c}(X_{reg}; \Lambda^{j+1}({}^{\mathsf{ie}}T^{*}\widetilde{X}))$$

has 2 canonical extensions to a closed operator on L^2 : min/max extension with domains

$$D_{\min}(d), D_{\max}(d) \subset L^2(\widetilde{X}; \Lambda^*({}^{\mathrm{ie}}T^*\widetilde{X}))$$

• X Witt
$$\Rightarrow D_{\min}(d) = D_{\max}(d)$$
.

Every closed extension (d, D(d)) satisfies

$$D_{\min}(d) \subset D(d) \subset D_{\max}(d).$$

- δ formal adjoint of d.
- $\omega_{\delta} = \text{orthog. proj. of } \omega \in D_{\max}(d) \text{ off of } \ker(\delta, D_{\min}(\delta)).$
- Asymptotic Expansion at boundary: Leading term $\alpha(\omega_{\delta}) + dx \wedge \beta(\omega_{\delta}).$

 A flat subbundle L of the vertical cohomology bundle defines a domain

$$D_L(d) = \{ \omega \in D_{\max}(d) \mid \alpha(\omega_{\delta}) \text{ is a section of } L \}.$$

("Cheeger ideal boundary conditions" imposed by L).

- $(d, D_L(d))$ is a closed operator.
- ▶ Def. X is a Cheeger space, if it admits a self-dual subbundle L, i.e. *_{vert}L = L[⊥].

Set

$$\mathsf{L}^2_L\Omega^\bullet = \mathsf{Sheaf}(U \mapsto \{\omega \in D_L(d) \mid \operatorname{supp}(\omega) \subset U \cap X_{\mathsf{reg}}\}).$$

Thm.(B., Albin, Leichtnam, Mazzeo, Piazza.) If X is a Cheeger space with self-dual Cheeger condition L, then L²_LΩ[●] ∈ SD(X), in particular

$$\mathcal{D}\mathbf{L}^2_L\Omega^\bullet[n]\cong\mathbf{L}^2_L\Omega^\bullet.$$

► Cor. Every Cheeger space is an L-space (but not conversely).

The L-class of Singular Spaces.

- Let X be a compact L-space without boundary.
- Given S[•] ∈ SD(X), self-duality → signature σ(S[•]) ∈ Z, bordism invariant.
- ► Thom-Pontrjagin construction ~→

$$L_*(\mathbf{S}^{\bullet}) \in H_*(X; \mathbb{Q}).$$

- ▶ Thm. (B.) $L_*(S^{\bullet})$ is independent of the choice of $S^{\bullet} \in SD(X)$.
- Idea of proof: Construct concordance between different choices by stratifying cylinder with cuts at ¹/₂ to disentangle Langrangian structures. Note that cut has *even* codimension, so does not create problems.
- ► Thus L-spaces have a well-defined L-class L_{*}(X) := L_{*}(S[•]).

Special Cases.

 If X = M is a smooth manifold, get Poincaré dual of Hirzebruch's L-class

$$L_*(X) = L^*(TM) \cap [M].$$

- ► If X has only even codimensional strata (e.g. a complex algebraic variety), then L_{*}(X) is the Goresky-MacPherson L-class.
- If X is a Witt space, then $L_*(X)$ is Siegel's L-class.

Relevance in Classification Problems.

- M a closed, smooth, simply connected manifold of even dimension n ≥ 5.
- Manifold structure set $S(M) = \{[N \xrightarrow{h.e.} M]\} / \text{Diffeo.}$
- The map

$$\begin{array}{ccc} S(M)\otimes \mathbb{Q} & \stackrel{L}{\hookrightarrow} & \bigoplus H^{4j}(M;\mathbb{Q}), \\ [h:N\simeq M] & \mapsto & (h^*)^{-1}L^*(TN) - L^*(TM), \end{array}$$

is injective.

- In other words: M is determined, up to finite ambiguity, by its homotopy type and its L-classes.
- ➤ X an even dim. stratified pseudomanifold that has no strata of odd dimension. All strata S have dim ≥ 5, all strata and all links simply connected.
- ► Cappell-Weinberger: Difference of L-classes gives an injection

$$S(X)\otimes \mathbb{Q} \hookrightarrow \bigoplus_{S\subset X} \bigoplus_{j} H_{j}(\overline{S};\mathbb{Q}),$$

where S ranges over the strata of X.

- Even in the manifold case, many mysteries remain concerning L_{*} (Novikov conj., effective computation, local formulae,...).
- ► Novikov, 1966: "In those cases in which the preceding question (homotopy invariance of higher signatures) has been answered affirmatively, there arises the problem of **computing** the classes L_{*} in terms of homotopy invariants. This problem has not been solved (...)."
- Much less is known about L_{*} in the singular situation. Effective computation? Perhaps for algebraic varieties?
- Here, will discuss transformational properties of L_{*}, adopting the following point of view: Frequently, laws are easier to discern for fundamental classes on bordism, rather than directly for L_{*}.

Intersection Homology Poincaré Spaces

To implement this philosophy, need morphism of spectra

(singular bordism spectra) $\longrightarrow \mathbb{L}^{\bullet}$,

$$\mathbb{L}^{\bullet} = \mathbb{L}^{\bullet} \langle 0 \rangle(\mathbb{Z})$$
 Ranicki's symmetric *L*-spectrum,
 $\pi_n(\mathbb{L}^{\bullet}) = L^n(\mathbb{Z}).$

- joint work with Gerd Laures, Jim McClure.
- Can even work integrally, not just rationally.

Def. (Goresky, Siegel) An *n*-dimensional *Intersection homology Poincaré (IP-) space* is an *n*-dimensional PL pseudomanifold X such that:

- 1. $IH_k^{\overline{m}}(L^{2k};\mathbb{Z}) = 0$ for links L^{2k} and
- 2. $IH_k^{\overline{m}}(L^{2k+1};\mathbb{Z})$ is torsion free for links L^{2k+1} .

► Thm. (Goresky-Siegel.) If (Xⁿ, ∂X) is an oriented compact IP-space, then

 $\mathsf{IC}^{\bullet}_{\bar{m}}(X - \partial X; \mathbb{Z}) \cong \mathsf{RHom}^{\bullet}(\mathsf{IC}^{\bullet}_{\bar{m}}(X - \partial X; \mathbb{Z}), \mathbb{D}^{\bullet}_{X - \partial X})[n]$

(Verdier self-duality over $\mathbb Z$ in the derived category of sheaf complexes) and intersection of cycles induces a nonsingular pairing

$$H_i(X, \partial X; \mathbb{Z})/\operatorname{Tors} imes H_{n-i}(X; \mathbb{Z})/\operatorname{Tors} \longrightarrow \mathbb{Z}.$$

• W. Pardon: IP-bordism $\Omega^{IP}_*(-)$, is a gen. homology theory,

$$\Omega^{\mathsf{IP}}_n(\mathsf{pt}) = egin{cases} \mathbb{Z}, & n \equiv \mathsf{0}(4), \ \mathbb{Z}/_2, & n \geq 5, n \equiv \mathsf{1}(4), \ \mathfrak{0} & ext{otherwise.} \end{cases}$$

Note: very close to $L^n(\mathbb{Z})$.

Ad Theories (Quinn; Buoncristiano-Rourke-Sanderson; Laures-McClure).

Target categories \mathcal{A} of an ad-theory:

 \mathbb{Z} -graded categories \mathcal{A} (no morphisms that decrease dimension), with involution (will suppress). (Have inclusions of cells $\tau \subset \sigma$ only when dim $\tau \leq \dim \sigma$.)

Def. An *ad-theory* ad with target category A is an assignment

 $k \in \mathbb{Z}$, ball complex pairs $(K, L) \mapsto \operatorname{ad}^{k}(K, L)$,

 $\operatorname{ad}^{k}(K,L) \subset \{ \operatorname{functors} F : K - L \to \mathcal{A} \mid F \operatorname{decr.} \operatorname{dim.} \operatorname{by} k \}$

satisfying axioms regulating reindexing of ball pairs, gluing of subdivisions, extension to cylinders.

 $F \in ad^{k}(K, L)$ is called a (K, L)-ad.

Ad Theories: Bordism and Quinn Spectra

- A morphism of ad theories is a functor of target categories which takes ads to ads.
- F, F' ∈ ad^k(pt) are *bordant*, if exists *I*-ad G:
 G|₀ = F, G|₁ = F'. (Is an equivalence relation by axioms reindexing, gluing, cylinder.)
- bordism groups $\Omega_k :=$ bordism classes in $ad^{-k}(pt)$.
- ▶ Geometric realization Q_k := |Q_k| of semisimplicial sets Q_k with *n*-simplices ad^k(∆ⁿ) gives associated Quinn spectrum Q.

- $\pi_*(\mathbf{Q}) = \Omega_*$
- Morphism $\mathsf{ad}_1 \to \mathsf{ad}_2 \rightsquigarrow \mathbf{Q}_1 \to \mathbf{Q}_2$.

IP-ads and \mathbb{L} -ads.

- Target category A^{IP} :
 - Objects: pairs (X, ξ)
 - $(X, \partial X)$ compact, oriented IP-space,
 - ► $\xi \in IS_n^{\overline{0}}(X; \mathbb{Z})$ representative for $[X] \in IH_n^{\overline{0}}(X, \partial X; \mathbb{Z})$. (Singular intersection chains, H. King)
 - ► Morphisms: orientation-preserving PL-homeomorphisms and stratum preserving PL-embeddings → boundary, respecting ξ.
- ▶ ad^{IP,k}(K): all functors $F : K \to A^{IP}$, decr. dim. by k, s.t. for all cells $\sigma \in K$:

$$\operatorname{colim}_{\tau\in\partial\sigma}F(\tau)\overset{\cong}{\longrightarrow}\partial(F(\sigma)),\ \partial\xi_{F(\sigma)}=\sum_{\tau\in\partial\sigma}\pm\xi_{F(\tau)}.$$

- **Prop.** ad^{IP} is an ad theory.
- Get spectrum MIP = \mathbf{Q}^{IP} with $\pi_*(\mathbf{Q}^{IP}) = \Omega^{IP}_*(\text{pt})$.
- Ad theory $ad^{\mathbb{L}}$; get Quinn spectrum $\mathbf{Q}^{\mathbb{L}} \simeq \mathbb{L}^{\bullet}$.

- *n* upper middle perversity.
- On $X \times X$, for strata $S, T \subset X$, let

$$ar{p}(S imes T) = egin{cases} ar{n}(S) + ar{n}(T) + 2, & ext{codim } S, ext{codim } T > 0 \ ar{n}(S) + ar{n}(T), & ext{otherwise} \end{cases}$$

• Diagonal $d: X \rightarrow X \times X$ induces

$$d_*: IS^{\overline{0}}_*(X) \longrightarrow IS^{\overline{p}}_*(X \times X).$$

Have cross product

$$\beta: IS^{\overline{n}}_*(X) \otimes IS^{\overline{n}}_*(X) \stackrel{\simeq}{\longrightarrow} IS^{\overline{p}}_*(X \times X).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(D. Cohen, M. Goresky, Lizhen Ji, G. Friedman)

• Functor Sig : $\mathcal{A}^{\mathsf{IP}} \to \mathcal{A}^{\mathbb{L}}$:

$$(X,\xi)\mapsto (C,D,\beta,\varphi)$$

$$C := IS_*^{\overline{n}}(X; \mathbb{Z}), D := IS_*^{\overline{p}}(X \times X; \mathbb{Z})$$

 $\beta := \text{cross product,}$

•
$$\varphi := d_*(\xi).$$

A morphism $(X,\xi) \rightarrow (X',\xi')$ induces maps on intersection chains.

- ▶ **Prop.** If $F \in ad^{IP}(K)$, then $Sig \circ F \in ad^{\mathbb{L}}(K)$.
- Get morphism Sig : $\operatorname{ad}^{\operatorname{IP}} \to \operatorname{ad}^{\operatorname{\mathbb{L}}}$.
- On Quinn spectra Sig : $\mathbf{Q}^{\mathsf{IP}} \to \mathbf{Q}^{\mathbb{L}}$.

In the stable category, get

$$\mathsf{Sig}:\mathsf{MIP}=\mathbf{Q}^{\mathsf{IP}}\longrightarrow\mathbf{Q}^{\mathbb{L}}\simeq\mathbb{L}^{\bullet}.$$

Induces

$$\Omega^{\mathsf{IP}}_*(X) \longrightarrow \mathbb{L}^{ullet}_*(X)$$
.

- ▶ Thm.(B., Laures, McClure The map $\Omega_n^{\text{IP}}(\text{pt}) \rightarrow \mathbb{L}_n^{\bullet}(\text{pt}) = L^n(\mathbb{Z})$ is an isomorphism for all $n \neq 1$. $(\Omega_1^{\text{IP}}(\text{pt}) = 0, L^1(\mathbb{Z}) = \mathbb{Z}/_2.)$
- This was conjectured by W. Pardon in 1990.
- For a closed IP-space $[X]_{\text{IP}} := [X \stackrel{\text{id}}{\longrightarrow} X] \in \Omega_n^{\text{IP}}(X).$

Def.

$$\begin{array}{rccc} \Omega_n^{\mathsf{IP}}(X) & \longrightarrow & \mathbb{L}_n^{\bullet}(X) \\ [X]_{\mathsf{IP}} & \mapsto & [X]_{\mathbb{L}}. \end{array}$$

Thm. (B., Laures, McClure)

For an *n*-dimensional compact oriented IP-space X there is a fundamental class $[X]_{\mathbb{L}} \in \mathbb{L}_{n}^{\bullet}(X)$ with the following properties:

- 1. $[X]_{\mathbb{L}}$ is an oriented PL homeomorphism invariant,
- 2. The image of $[X]_{\mathbb{L}}$ under assembly is the symmetric signature:

- If X is a PL manifold, then [X]_⊥ is the fundamental class constructed by Ranicki.
- 4. Rationally, $[X]_{\mathbb{L}}$ agrees with the *L*-class of *X*.
- **Rem.** Similar statements hold over \mathbb{Q} for Witt spaces.

Applications: Cartesian Products (as warm up).

The morphism

$$\mathsf{MWitt} \longrightarrow \mathbb{L}^{\bullet}(\mathbb{Q})$$

is a morphism of symmetric ring spectra.

So get multiplicative map

$$\Omega^{\mathrm{Witt}}_*(X) \longrightarrow (\mathbb{L}^{\bullet}(\mathbb{Q}))_*(X).$$

▶ Now $[id_{X \times Y}] = [id_X] \times [id_Y] \in \Omega^{Witt}_*(X \times Y)$, so:

► Thm. (J. Woolf w/ different methods.) For Witt spaces X, Y,

$$L_*(X \times Y) = L_*(X) \times L_*(Y).$$

Application: Homotopy Invariance of Higher Signatures

- G = π₁(X), r : X → BG a classifying map for the universal cover of X.
- $r_*: H_*(X; \mathbb{Q}) \longrightarrow H_*(BG; \mathbb{Q}).$
- The higher signatures of X are the rational numbers

 $\langle a, r_*L(X) \rangle, \ a \in H^*(BG; \mathbb{Q}).$

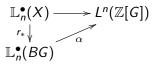
Thm. (B., Laures, McClure) Let X be an n-dimensional oriented closed IP-space such that the assembly map

$$\alpha: \mathbb{L}_n^{\bullet}(BG) \longrightarrow L^n(\mathbb{Z}[G])$$

is rationally injective. Then the higher signatures of X are (orient. pres.) stratified homotopy invariants.

Proof.

f: X' → X an orient. pres. stratified homotopy equivalence. *r*: X → BG, r' = r ∘ f : X' → BG.



- ► $\alpha r_*[X]_{\mathbb{L}} = \sigma_{\mathsf{IP}}^*(X) = \sigma_{\mathsf{IP}}^*(r) = \sigma_{\mathsf{IP}}^*(rf) = \sigma_{\mathsf{IP}}^*(X') = \alpha r'_*[X']_{\mathbb{L}}.$ ► Injectivity assumption $\Rightarrow r_*[X]_{\mathbb{L}} = r'_*[X']_{\mathbb{L}} \in \mathbb{L}^{\bullet}_{\mathsf{n}}(BG) \otimes \mathbb{Q}.$
- Injectivity assumption $\Rightarrow r_*[X]_{\mathbb{L}} = r_*[X]_{\mathbb{L}} \in \mathbb{L}_n^{\circ}(BG) \otimes \mathbb{Q}.$

$$\mathbb{L}_{n}^{\bullet}(X) \otimes \mathbb{Q} \xrightarrow{r_{*}} \mathbb{L}_{n}^{\bullet}(BG) \otimes \mathbb{Q}$$

$$S_{X} \downarrow \cong \cong \downarrow S_{BG}$$

$$\bigoplus_{j} H_{n-4j}(X; \mathbb{Q}) \xrightarrow{r_{*}} \bigoplus_{j} H_{n-4j}(BG; \mathbb{Q})$$

$$\begin{aligned} r_*L_*(X) &= r_*S_X[X]_{\mathbb{L}} = S_{BG}r_*[X]_{\mathbb{L}} \\ &= S_{BG}r'_*[X']_{\mathbb{L}} = r'_*S_{X'}[X']_{\mathbb{L}} = r'_*L_*(X'). \end{aligned}$$

Complex Algebraic Geometry.

- Different Method: Decomposition Theorem (Beilinson, Bernstein, Gabber, Deligne; M. Saito; de Cataldo, Migliorini)
- If f : Y → X is a proper algebraic morphism of algebraic varieties, then

$$Rf_*\mathbf{IC}^{\bullet}_{\bar{m}}(Y) \cong \bigoplus_i j_*\mathbf{IC}^{\bullet}_{\bar{m}}(\overline{Z_i};S_i)[n_i],$$

 Z_i is a nonsingular, irreducible, locally closed subvariety of X, S_i a locally constant sheaf over Z_i , $n_i \in \mathbb{Z}$.

► Since $L_*(Rf_*\mathbf{S}^{\bullet}[-\operatorname{cod}]) = f_*L_*(\mathbf{S}^{\bullet}),$ $L_*(\mathbf{S}^{\bullet}_1 \oplus \mathbf{S}^{\bullet}_2) = L_*(\mathbf{S}^{\bullet}_1) + L_*(\mathbf{S}^{\bullet}_2), \ L_*(j_*\mathbf{S}^{\bullet}[\operatorname{cod}]) = j_*L_*(\mathbf{S}^{\bullet}),$ $f_*L_*(Y) = \sum_i j_*L_*(\overline{Z_i}; S_i).$

Twisted L-Classes.

- Problems with decomposition: Determine Z_i, S_i in practice, compute $L_*(\overline{Z_i}; \mathcal{S}_i)$. (But see Schürmann-Woolf on $W(\operatorname{Perv}(X))$.
- Phenomenon: (Non)Multiplicativity of signature. (W. Neumann, A. Némethi,...)
- **Thm.** (B.) X closed L-space, $S/X \Sigma$ Poincaré local system constant on links. Then

$$L_*(X; \mathcal{S}) = \widetilde{ch}[\mathcal{S}]_K \cap L_*(X).$$

- Proof: Uses Signature Homology Theory (Minatta, Kreck), results of Sullivan, Siegel, families index theorem (Atiyah, W. Meyer).
- Assumption on extendability cannot be eliminated because the formula will fail: examples of 4-dimensional orbifolds with isolated singularities.
- ► Special case: Witt spaces B., Cappell, Shaneson.

Finite degree covers.

- ▶ p: X' → X cover of finite degree d, X, X' singular L-spaces, e.g. complex algebraic pseudomanifolds.
- Transfer

$$p_!:H_*(X;\mathbb{Q}) o H_*(X';\mathbb{Q})$$

such that $p_*p_! = d \cdot id$.

► Thm. (B.)

$$L_*(X')=p_!L_*(X).$$

Cor. Multiplicativity of L-classes for finite covers:

$$p_*L_*(X')=d\cdot L_*(X),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $p_* : H_*(X'; \mathbb{Q}) \to H_*(X; \mathbb{Q})$ is induced by p.

Application: Hodge L-Class and the BSY-Conjecture.

- Let X be a complex algebraic variety.
- Looijenga, Bittner: K₀(Var /X) = {[Y → X]}, modulo scissor relation

$$[Y \to X] = [Z \hookrightarrow Y \to X] + [Y - Z \hookrightarrow Y \to X]$$

for $Z \subset Y$ a closed algebraic subvariety of Y.

 Brasselet-Schürmann-Yokura: motivic Hirzebruch natural transformation

$$T_{y*}: K_0(\operatorname{Var} / X) \longrightarrow H^{BM}_{2*}(X) \otimes \mathbb{Q}[y],$$

Hirzebruch class of X is

$$T_{y*}(X) := T_{y*}([\mathrm{id}_X]).$$

• y = 1: $T_{1*}(X)$ is called the *Hodge L-class* of X.

Application: Hodge L-Class and the BSY-Conjecture.

▶ If X is smooth and pure-dimensional: $T_{y*}(X) = T_y^*(TX) \cap [X]$. For y = 1, $T_1^*(TX) = L^*(X)$, so

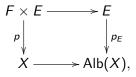
$$T_{1*}(X)=L_*(X).$$

- Examples of singular curves show that generally $T_{1*}(X) \neq L_*(X)$.
- ► BSY conjecture: T_{1*}(X) = L_{*}(X) for compact complex algebraic varieties that are rational homology manifolds.
- Cappell, Maxim, Schürmann, Shaneson: holds for X = Y/G, Y a projective G-manifold, G a finite group of algebraic automorphisms. Also: certain complex hypersurfaces with isolated singularities.
- In proj. case, holds in deg 0 by Saito's intersection cohomology Hodge index theorem.
- Maxim, Schürmann: for simplicial projective toric varieties.

Example: 3-Folds with Trivial Canonical Class

Thm. (B.) The Brasselet-Schürmann-Yokura conjecture holds for normal, projective, complex 3-folds X with at worst canonical singularities, trivial canonical divisor and dim $H^1(X; \mathcal{O}_X) > 0$. **Proof.**

- Have Albanese morphism $X \to Alb(X)$.
- $K_X \equiv 0 \Rightarrow$ Kawamata splitting up to finite degree covering:



- Interesting case irreg. q(X) = 1. Then F is a surface.
- Use above multiplicativity of L_* , and of T_{1*} (\rightarrow CMSS).
- ▶ Use scissor relations and ADE theory on *F*.

•
$$\sigma(F) \in \{-16, -15, \dots, 2, 3\}.$$