

Sylvain Cappell - Opera Selecta
 Markus Banag|

Universität Heidelberg
August 2018

Codim 1 Splitting Problems

- Y^{n+1} a connected, closed manifold (Poinc. cplx.), $n \geq 5$.
- $X \subset Y$ a connected, closed codim. 1 submanifold with trivial normal bundle.
- Assume $H=\pi_{1}(X) \rightarrow \pi_{1}(Y)=G$ injective.
- W^{n+1} a (smooth, PL, or top) manifold with h.e.

$$
f: W \longrightarrow Y
$$

- Def. f is splittable along X if $f \simeq f^{\prime}, f^{\prime} \pitchfork X$, such that

$$
f^{\prime} \mid: M=f^{\prime-1}(X) \longrightarrow X
$$

is a homotopy equivalence.

- S-Splitting Problem: When is $f: W \rightarrow Y$ is splittable along X ?
- H-Splitting Problem: When is W h-cobordant to W^{\prime} such that the induced h.e. $f^{\prime}: W^{\prime} \rightarrow Y$ is splittable along X ?

The Universal Cover

- 2 cases: $Y-X$ has two components, or one component.
- Will only discuss here the case of 2 components:

$$
Y=Y_{1} \cup_{X} Y_{2}, G=G_{1} *_{H} G_{2}, G_{i}=\pi_{1}\left(Y_{i}\right), W=W_{1} \cup_{M} W_{2} .
$$

- Description of universal cover:

$$
\begin{gathered}
\widetilde{Y}=\bigcup_{\alpha \in\left[G, G_{1}\right]} \widetilde{Y}_{1} g(\alpha) \cup_{\cup_{\alpha \in[G, H]} \tilde{X} g(\alpha)} \bigcup_{\alpha \in\left[G, G_{2}\right]} \widetilde{Y}_{2} g(\alpha), \\
\partial \widetilde{Y}_{i}=\bigcup_{\alpha \in\left[G_{i}, H\right]} \widetilde{X}_{g} g(\alpha)
\end{gathered}
$$

cosets α, representatives $g(\alpha) \in \alpha$.

- Preferred (i.e. basepoint preserving) lifts

$$
\tilde{x} \subset \tilde{Y}_{i} \subset \tilde{Y}
$$

- $\widetilde{Y}-\widetilde{X}$ has 2 components with closures

$$
Y_{R} \supset \widetilde{Y}_{1}, Y_{L} \supset \widetilde{Y}_{2}
$$

- $\widetilde{Y}=Y_{L} \cup_{\tilde{X}} Y_{R}$.
- Cover $p: \widehat{Y} \rightarrow Y, p_{*} \pi_{1}(\widehat{Y})=\operatorname{Im}(H \rightarrow G)$.
- Preferred (i.e. basepoint preserving) lifts

$$
x \subset \widehat{Y}_{i} \subset \hat{Y}
$$

- Quotients

$$
Y_{I}=Y_{L} / H, Y_{r}=Y_{R} / H .
$$

- Low degrees 0,1 : Make M, W_{1}, W_{2} connected and

$$
\pi_{1}(M) \rightarrow \pi_{1}(X), \pi_{1}\left(W_{i}\right) \rightarrow \pi_{1}\left(Y_{i}\right)
$$

isomorphisms.

- Then above description of universal cover applies to \widetilde{W}. Lift f to $\widetilde{W} \rightarrow \widetilde{Y}, \widehat{W} \rightarrow \widehat{Y}$, get preimages $W_{L}, W_{R}, W_{l}, W_{r}$.
- f h.e. $\Rightarrow f \mid: M \rightarrow X$ deg 1 .

$$
K_{j}(M):=\operatorname{ker}\left(H_{j}^{t}(M ; \mathbb{Z} H) \rightarrow H_{j}^{t}(X ; \mathbb{Z} H)\right)
$$

- Suppose inductively $K_{i}(M)=0$ for $i<j$ and j is below the middle, $j<(n-1) / 2$.
- f h.e. $\Rightarrow K_{*}(\widehat{W})=K_{*}(W)=0$.
- So Mayer-Vietoris \Rightarrow incl. induces iso. of $\mathbb{Z} \pi_{1} M$-modules

$$
K_{j}(M) \stackrel{\cong}{\leftrightarrows} K_{j}\left(W_{l}\right) \oplus K_{j}\left(W_{r}\right) .
$$

- Key device:

$$
P:=\operatorname{ker}\left(K_{j}(M) \rightarrow K_{j}\left(W_{r}\right)\right), Q:=\operatorname{ker}\left(K_{j}(M) \rightarrow K_{j}\left(W_{l}\right)\right)
$$

- Then

$$
K_{j}(M)=P \oplus Q, Q \otimes_{\mathbb{Z} H} \mathbb{Z} G_{1} \xrightarrow{\cong} K_{j}\left(W_{1}\right) .
$$

- How do nilpotence phenomena appear?

Paradigm:

If a class in $K_{j}(M)$ vanishes on the right of \tilde{M} in s steps (i.e. crossing boundary components of translated $\widetilde{W}_{i} s-1$ times), then, by a homology in \widetilde{W}_{1}, the intersection of a cobounding disc ("tentacle") with $\partial \widetilde{W}_{1}-\widetilde{M}$ vanishes (after translation) on the left of \widetilde{M} in $s-1$ steps.

In more detail: Let $\alpha \in P$.

- Then $\alpha=\partial D$ for a tentacle (disc) $D \subset W_{R}$.
- A geometric description of

$$
\rho_{1}: P \hookrightarrow K_{j}(M) \rightarrow K_{j}\left(W_{1}\right) \cong Q \otimes_{\mathbb{Z H}} \mathbb{Z} G_{1}
$$

is given by

$$
\rho_{1}(\alpha):=D \cap\left(\partial \widetilde{W}_{1}-\widetilde{M}\right) .
$$

- Similarly,

$$
\rho_{2}: Q \hookrightarrow K_{j}(M) \rightarrow K_{j}\left(W_{2}\right) \cong P \otimes_{\mathbb{Z} H} \mathbb{Z} G_{2}
$$

and by extension

$$
\rho:(P \oplus Q) \otimes_{\mathbb{Z} H} \mathbb{Z} G \xrightarrow{\rho_{1}+\rho_{2}}(Q \oplus P) \otimes_{\mathbb{Z} H} \mathbb{Z} G .
$$

- Disc D is compact $\Rightarrow D$ intersects only finitely many copies of W_{1}, W_{2} in W. So

$$
\rho^{s}(\alpha)=0
$$

for sufficiently large s.

- There is a finite maximal s that works for all α. Thus ρ is nilpotent.

- Applying iterates of ρ to $P, Q \rightsquigarrow$ finite filtration by f.g. $\mathbb{Z} H$ modules

$$
\begin{aligned}
& P=P_{0} \supset P_{1} \supset \cdots \supset P_{r}=0 \\
& Q=Q_{0} \supset Q_{1} \supset \cdots \supset Q_{r}=0
\end{aligned}
$$

with

$$
\rho_{1}\left(P_{i}\right) \subset Q_{i+1} \otimes_{\mathbb{Z} H} \widetilde{\mathbb{Z}}{ }_{1}, \rho_{2}\left(Q_{i}\right) \subset P_{i+1} \otimes_{\mathbb{Z} H} \widetilde{\mathbb{Z} G_{2}}
$$

where $\widetilde{\mathbb{Z} G_{i}} \subset \mathbb{Z} G_{i}$ is the $\mathbb{Z} H$ submodule generated additively by $G_{i}-H ; \mathbb{Z} G_{i} \cong \mathbb{Z} H \oplus \mathbb{Z} G_{i}$.

- Take $s=$ largest index such that $P_{s} \oplus Q_{s} \neq 0$, say $P_{s} \neq 0$.
- Represent lifts to $\operatorname{ker}\left(\pi_{j+1}\left(W_{1}, M\right) \rightarrow \pi_{j+1}\left(Y_{1}, X\right)\right)$ of generators z_{i} of P_{s} by embeddings $\left(D^{j+1}, S^{j}\right) \rightarrow\left(W_{1}, M\right)$.
- As j is below middle, can perform handle exchanges on these: $f \simeq f^{\prime}, f^{\prime-1}\left(Y_{2}\right)=W_{2} \cup \operatorname{Im}(\mathrm{emb}), f^{\prime-1}(M)=M^{\prime}$ obtained from M by surgery on $z_{i}: S^{j} \times D^{n-j} \rightarrow M$.
- Then

$$
K_{j}\left(M^{\prime}\right) \cong K_{j}(M) /\left\{z_{i}\right\}=P /\left\{z_{i}\right\} \oplus Q=P^{\prime} \oplus Q^{\prime}
$$

- The new filtration

$$
\begin{aligned}
& P^{\prime}=P_{0}^{\prime} \supset P_{1}^{\prime} \supset \cdots \supset P_{t}^{\prime}=0, \\
& Q^{\prime}=Q_{0}^{\prime} \supset Q_{1}^{\prime} \supset \cdots \supset Q_{t}^{\prime}=0
\end{aligned}
$$

has $P_{s}^{\prime}=P_{s} /\left\{z_{i}\right\}=0$, so inductively get

$$
K_{j}\left(M^{\prime}\right)=0
$$

- Assume $n=2 k$ even.
- Need to analyze the middle dimension k. By previous argument, can now assume $K_{i}(M)=0$ for $i<k$.
- Argument of Wall $\Rightarrow K_{k}(M)$ stably free. So

$$
[P]=-[Q] \in \widetilde{K}_{0}(H)(\text { reduced projective class group of } \mathbb{Z} H)
$$

- As $K_{k}\left(W_{i}\right)$ is stably free,

$$
[P]=\left[K_{k}\left(W_{2}\right)\right]=0 \text { in } \widetilde{K}_{0}\left(G_{2}\right)
$$

(Sim. $\left.[Q]=0 \in \widetilde{K}_{0}\left(G_{1}\right).\right)$ So

$$
[P] \in \operatorname{ker}\left(\widetilde{K}_{0}(H) \longrightarrow \widetilde{K}_{0}\left(G_{1}\right) \oplus \widetilde{K}_{0}\left(G_{2}\right)\right)
$$

- $\lambda:=$ nonsingular intersection form on $K_{k}(M)$.
- Standard piping argument (Wall, Zeeman) \Rightarrow finite sets of elements of P, Q can be represented by disjoint (embedded, framed) spheres. So

$$
\left.\lambda\right|_{P}=0,\left.\lambda\right|_{Q}=0, \quad \operatorname{adj}(\lambda): P \cong Q^{*}
$$

Whitehead group:

h.e. f has Whitehead torsion

$$
\tau(f) \in \mathrm{Wh}(G)
$$

Fact: $\Phi(\tau(f))=[P]$.

- Now suppose that

$$
\Phi(\tau(f))=0
$$

Thus $[P]=0$.

- By trivial ambient surgeries (to stabilize P), may assume P (and $Q \cong P^{*}$) free $\mathbb{Z} H$ modules, basis $\left\{a_{i}\right\}$ for P, dual basis $\left\{b_{i}\right\}$ for Q.
- Represent by disjoint (embedded, framed) spheres in M,

$$
a_{i} \cap b_{j}=\varnothing(i \neq j), a_{i} \cap b_{i}=\mathrm{pt}
$$

- Surgery on $\left\{a_{i}\right\} \rightsquigarrow$ normal cobordism C_{P} from M to $M_{P} \simeq X$.
- Similarly, surgery on $\left\{b_{i}\right\} \rightsquigarrow$ normal cobordism C_{Q} from M to $M_{Q} \simeq X$.

- T is a cobordism from $W=W \times 0$ to $W_{\text {mod }}$,

$$
W_{\mathrm{mod}}:\left(W_{2} \cup_{M} C_{P}\right) \cup_{M_{P}}\left(C_{P} \cup_{M} C_{Q}\right) \cup_{M_{Q}}\left(C_{Q} \cup_{M} W_{1}\right)
$$

- $f: W \rightarrow Y$ extends to normal map $F: T \rightarrow Y \times I$.
- Restriction $f_{\text {mod }}=F \mid: W_{\text {mod }} \rightarrow Y$.
- From construction,

$$
M_{P} \longrightarrow X, M_{Q} \longrightarrow X, C_{P} \cup_{M} C_{Q} \longrightarrow X
$$

are all homotopy equivalences.

- Mayer-Vietoris $\Rightarrow f_{\text {mod }}$ h.e.
- From construction, $f_{\text {mod }} \simeq f_{\text {mod }}^{\prime}$ with

$$
f_{\bmod }^{\prime-1}(X)=M_{P}, M_{P} \xrightarrow{\simeq} X .
$$

So $f_{\text {mod }}$ is splittable along X.

- Need to modify T further to get an h-cobordism.

$$
K_{i}(T)= \begin{cases}(P \oplus Q) \otimes_{\mathbb{Z} H} \mathbb{Z} G, & i=k+1 \\ 0, & i \neq k+1\end{cases}
$$

- Intersection form λ_{T} on $K_{k+1}(T)$ can be described in terms of P, Q and ρ.
- Def. $H<G$ is called square-root closed if for all $g \in G$, $g^{2} \in H$ implies $g \in H$.
- $H \sqrt{ }$ closed in $G_{1} *_{H} G_{2}$ iff $H \sqrt{ }$ closed in both G_{1} and G_{2}.
- Normal cobordism T has surgery obstruction

$$
x=\left[\left((P \oplus Q) \otimes_{\mathbb{Z} H} \mathbb{Z} G, \lambda_{T}, \mu\right)\right] \in L_{n+2}^{h}(G)
$$

λ_{T} given by above description in terms of ρ.

- If H is $\sqrt{ }$ closed in G, then a purely algebraic argument shows that

$$
x \in \operatorname{Im}\left(L_{n+2}^{h}(H) \longrightarrow L_{n+2}^{h}(G)\right)
$$

- So there exists a normal cobordism T_{1} on $W_{\text {mod }, 1} \xrightarrow{\simeq} Y_{1}$ (rel $\partial W_{\text {mod, } 1}$) with surgery obstruction

$$
x_{1} \in L_{n+2}^{h}\left(G_{1}\right), x_{1} \mapsto-x .
$$

- $T^{\prime}:=T \cup_{W_{\text {mod }, 1}} T_{1}$.
- Then T^{\prime} has vanishing surgery obstruction, and is a still a cobordism from W to a split h.e. manifold.
- Do surgery on T^{\prime} to get an h-cobordism.

Splitting Theorem. (Cappell.)
If $\pi_{1}(X)$ is square-root closed in $\pi_{1}\left(Y^{2 k+1}\right)$ and $f: W \xrightarrow{\simeq} Y$ has $\Phi(\tau(f))=0$, then W is h-cobordant to a homotopy equivalence which is splittable along X.

- n odd, and the s-splitting problem, can also be treated.
- Led to computations of Wall L-groups, instances of the Novikov conjecture on higher signatures.
- The above P / Q-decomposition/filtration can be further systematized by the UNil obstruction groups.
- Cappell showed
$(\mathbb{Z} / 2)^{\infty} \subset \operatorname{UNil}_{4 k+2}(\mathbb{Z} ; \mathbb{Z}[\mathbb{Z} / 2-e], \mathbb{Z}[\mathbb{Z} / 2-e])$. So \exists closed smooth $M^{4 k+1} \simeq \mathbb{R} P^{4 k+1} \# \mathbb{R} P^{4 k+1}$ which is not a nontrivial connected sum.
- Special cases: theorems of Browder (simply conn.), Wall $\left(H=G_{1}\right)$, R. Lee ($H=0, G$ has no 2-tor), Farrell (fibration problem),...

Homology Surgery (Cappell-Shaneson.)

- $M^{n} \subset W^{n+k}$ be a PL embedding of manifolds.
- For $k \geq 3$, Zeeman unknotting $\Rightarrow M \subset W$ locally flat, and $\pi_{1}(W-M) \rightarrow \pi_{1}(W)$ is an iso.
- For $k=2$, not nec. loc. flat and $\pi_{1}(W-M) \rightarrow \pi_{1}(W)$ is surjective, but rarely an iso.
- Given a group π and epimorphism $\mathbb{Z} \pi \rightarrow \Lambda$, study manifolds V (such as $V=W-M$) with $\pi_{1} V=\pi$ and given homology type over Λ (e.g. $\left.\Lambda=\mathbb{Z} \pi_{1} W\right)$.
- CS define reduced Grothendieck groups $\Gamma_{n}(\mathbb{Z} \pi \rightarrow \Lambda)$.
- $\Gamma_{n}\left(\mathrm{id}_{\Lambda}\right)=L_{n}(\Lambda)$ (Wall group).
- $\Gamma_{\text {odd }}(\mathbb{Z} \pi \rightarrow \Lambda) \subset L_{\text {odd }}(\Lambda)$.
- $\Gamma_{\text {even }}(\mathbb{Z} \pi \rightarrow \Lambda)$ usually much larger than $L_{\text {even }}(\Lambda)$.

Homology Surgery: Obstruction

- A deg. 1 normal map (f, b)

with $\pi_{1} X=\pi$ has an obstruction

$$
\sigma(f, b) \in \Gamma_{n}(\mathbb{Z} \pi \rightarrow \Lambda)
$$

- Thm. (Cappell, Shaneson) $\sigma(f, b)=0 \Leftrightarrow(f, b)$ is normally cobordant to a (simple) homology equivalence over Λ.

Codimension 2 PL embeddings

- M^{n}, W^{n+2} oriented closed PL manifolds, $n \geq 3$.
- Def. A Poincaré embedding (PE) of M in W is a triple (ξ, C, h), where
- ξ is a 2-plane bundle over M,
- C is a CW complex such that $S(\xi) \subset C$,

- Think of C as candidate homotopy type for a complement.
- Rem.: In general, only a spherical fiber space is given. But in codim 2, G_{2} / O_{2} is contractible, so can specify a vector bundle.
- Question: Can the PE be realized by a PL embedding $M \hookrightarrow W$? Idea: Do not attempt $W-M \simeq C$, more natural: homology equivalence.

Normal Invariant of Poincaré embedding.

The PE provides a normal invariant $\eta \in[M, G / P L]$ as follows:

- Make $h \pitchfork$ to 0 -section of ξ in $D \xi \cup C$.
- $N:=h^{-1}(0$-section $) \subset W$,
$\nu:=$ normal bundle of N in W.
- Get deg 1 normal map

has normal invariant as usual (Sullivan).

Thickenings

- Let A^{n} be a closed PL manifold.
- Def. A codim 2 thickening of A is a PL embedding $f: A \hookrightarrow R, R$ a compact $(n+2)$-dimensional PL manifold, $f^{-1}(\partial R)=\varnothing, R$ is a regular neighborhood of $f(A)$ in itself.
- A concordance of codim 2 thickenings is a codim. 2 thickening of $A \times[0,1]$.
- $\mathcal{H}(A):=$ concordance classes of codim. 2 thickenings.
- Stratified Transversality (D. Stone): cont. $f: A \rightarrow B \rightsquigarrow$ $f^{*}: \mathcal{H}(B) \rightarrow \mathcal{H}(A)$.
- \mathcal{H} is a homotopy functor.
- Brown $\Rightarrow \mathcal{H}$ represented by a space $B R N_{2}$ (oriented: $B S R N_{2}$).
- $\pi_{*}\left(B S R N_{2}\right)=\{\operatorname{cod} .2$ thickenings of spheres $\} /$ conc $=\{1$ isol. sing. $\} / \mathrm{conc}=$ knot cob.
- Application of homology surgery: Homotopy type of $B S R N_{2}$.

$B S R N_{2}$

- A thickening $M \subset R$ has an Euler class χ. Get map

$$
B S R N_{2} \rightarrow \mathrm{BSO}_{2}
$$

- Furthermore, thickenings $M \subset R$ have normal maps η. Get $\mathcal{H}_{\text {or }}(M) \rightarrow[M, G / P L]$ and so

$$
B S R N_{2} \rightarrow G / P L .
$$

- So have

$$
(\chi, \eta): B S R N_{2} \rightarrow B S O_{2} \times G / P L
$$

- Thm. (Cappell, Shaneson) (χ, η) has a section

$$
\varphi: B S O_{2} \times G / P L \rightarrow B S R N_{2}
$$

(So get sufficiently many regular neighborhoods.)

Construction of thickening for M

- From PE, have $\xi \in\left[M, B S O_{2}\right]$.
- Using φ, can construct $\alpha \in\left[M, B S R N_{2}\right]$ such that $\chi(\alpha)=\xi$ and $\eta(\alpha)=\eta$.
- Let $M \subset R$ be a representative of α.
- Note: Usually, cannot choose $M \subset R$ to have a uniform block bundle structure; will generally have high-dimensional singular sets (non-locally flat points). $M \subset R$ must accommodate fairly general PL L-classes.
- Main issue to be solved: How to put R into W ?
- Obstruction theory \rightsquigarrow (simple) $\mathbb{Z} \pi_{1} M$-homology equivalence $h^{\prime}:(R, \partial R) \rightarrow(D \xi, S \xi)$.
- As $\eta(\alpha)=\eta$, there is a normal bordism

$$
H: Q \rightarrow D \xi \times I
$$

between $h^{\prime}: R \rightarrow D \xi$ and $h \mid: D \nu \rightarrow D \xi$:

- $W_{0}:=\operatorname{cl}(W-D \nu)$.
- $W^{\prime}:=R \cup_{\partial R} \partial_{0} Q \cup_{S \nu} W_{0}$.

W

- Glue Q to $W \times I$:

$$
P:=W \times I \cup_{D \nu \times 1} Q .
$$

- Then $\gamma:=(h \times \mathrm{id}) \cup H: P \rightarrow(D \xi \cup C) \times I$ is a normal cobordism from h to a map $W^{\prime} \rightarrow D \xi \cup C$.

Construction of complement for n odd

- Assume n odd.
- Then $\Gamma_{n+2}\left(\mathbb{Z} \pi_{1} C \rightarrow \mathbb{Z} \pi_{1} W\right) \rightarrow L_{n+2}\left(\pi_{1} W\right)$ is injective.
- Implies for the homology surgery obstruction $\sigma(\gamma)=0$.
- So by the above homology surgery obstruction theorem, γ is normally cobordant (rel $W \times 0 \cup R$) to a simple $\mathbb{Z} \pi_{1} W$-homology equivalence
$f:(B, W \times 0, R, V) \rightarrow((D \xi \cup C) \times I,(D \xi \cup C) \times 0, D \xi \times 1, C \times 1)$.
- The manifold V is the sought complement!
- Seifert-van Kampen $\Rightarrow f$ induces $\pi_{1}\left(V \cup_{\partial R} R\right) \cong \pi_{1}(D \xi \cup C)$.

Codim. 2 PL Embedding Theorem

- Then B is an s-cobordism.
- So by s-cob. thm. (using $n \geq 3$), get PL homeo.

$$
\psi:(B, W \times 0, V \cup R) \cong(W \times I, W \times 0, W \times 1)
$$

- The sought embedding is

$$
M \subset R \xrightarrow{\left.\psi\right|_{R}} W
$$

- Rem.: $f \mid: V \rightarrow C$ is in general not a homotopy equivalence.
- Thm. (Cappell, Shaneson) Let M^{n}, W^{n+2} be oriented closed PL manifolds, $n \geq 3$, n odd. Then any oriented Poincaré embedding of M in W can be realized by a PL embedding $M \hookrightarrow W$.
- Rem.: Also works for n even if $\pi_{1} W=0$. If n even and $\pi_{1} W \neq 0$, CS construct "spineless" manifolds.

Cappell-Weinberger on Singular Spaces

- M a closed, smooth, simply connected manifold of even dimension $n \geq 5$.
- Browder-Novikov-Sullivan \Rightarrow

$$
\begin{array}{ccc}
S(M) \otimes \mathbb{Q} & \stackrel{L}{\hookrightarrow} & \bigoplus H^{4 j}(M ; \mathbb{Q}) \\
{[h: N \simeq M]} & \mapsto & \left(h^{*}\right)^{-1} L^{*}(T N)-L^{*}(T M),
\end{array}
$$

is injective.

- In other words: M is determined, up to finite ambiguity, by its homotopy type and its L-classes.
- Extension to singular spaces?

Cappell-Weinberger

- Weinberger: TOP surgery fibration sequence for stratified spaces, topologically invariant characteristic classes. But C-W preceded the general theory.
- Thm. (Cappell-Weinberger) X an even dim. stratified pseudomanifold that has no strata of odd dimension. All strata S have $\operatorname{dim} \geq 5$, all strata and all links simply connected. Then:

$$
S(X) \otimes \mathbb{Q} \hookrightarrow \bigoplus_{S \subset X} \bigoplus_{j} H_{j}(\bar{S} ; \mathbb{Q})
$$

where S ranges over the strata of X.

- Use intersection homology $\mathrm{IH}_{*}^{50 \%}(-)$ to define L-classes.

Some other directions:

- Cappell-Weinberger-Yan: classif. of TOP $U(n)$-actions on manifolds, all isotropy groups unitary subgroups ("multiaxial"); existence of closed aspherical manifolds with Center $\left(\pi_{1}\right)=\mathbb{Z}$, but not admitting nontrivial TOP S^{1}-actions; replacement problems for fixed sets;...
- Cappell-Miller: Extending flat vector bundles from part of ∂M to M^{3} (compact 3-mfd); extension of analytic torsion to general flat bundles + extension of Cheeger-Müller thm. on top. invariance (Reidemeister-Franz).
- Cappell-Lee-Miller: Perturbative SU(3)-Casson invariant of integral homology 3-spheres.
- In algebraic geometry: M. Saito's theory of mixed Hodge modules \rightsquigarrow intersection Hirzebruch characteristic classes $I T_{y *}$: Cappell, Libgober, Maxim, Schürmann, Shaneson.

Thank you.

