
TALK II : VECTOR BUNDLES ON THE ALGEBRAIC

FARGUES-FONTAINE CURVE

SUDHANSHU SHEKHAR

These notes are an exposition of my talk at the workshop ”Gal(Qp/Qp) as a

geometric fundamental group, May 4-8, 2015, Neckarbischofseim, Germany.” We

closely follow ([Durham, Section 6]). We shall use results from the previous talks in

the workshop. In the first section we recall briefly the notation from the previous

talks. In the second section we recall the definition of algebraic Fargues-Fontaine

curve X and compute certain cohomology groups associated to these curves. In the

final section we state the classification theorem of vector bundles on X and prove an

important result which will be used to prove this classification theorem in the next

talk.

0.1. Notation and definition.

Throughout the talk we fix the following notation.

Let p be a fix prime,

E/Qp be a local field extension, OE denote the ring of integer of E/Qp.

Put mE = πO, Fq = O/mE , q = pf where f denote the degree of F over Z/p
F/Fq be a perfect, complete, non-archimedean algebraic closed field for a non-trivial

valuation v : F −→ R ∪ {+∞}. Put | − | := q−v(−).

Let E/E be the unique complete unramified extension of inducing the residue field

extension F/Fq.
Let |.| : F −→ OE denote the Teichmuller lift.

Then we have, E = {Σn≥−∞|xn|πn (unique writing) | xn ∈ F}. Let ϕE : E −→ E
be the Frobenius morphism defined as ϕE(Σn≥−∞|xn|πn) = Σn≥−∞|xqn|πn.

Put, Bb = {Σn≥−∞|xn|πn ∈ E|∃ C,∀|xn| ≤ C} and

Bb,+ = {Σn≥−∞|xn|πn ∈ E|xn ∈ OF }.
For x = Σn≥−∞|xn|πn ∈ Bb and r ≥ 0 put vr(x) = infn∈Z{v(xn) + nr} and if

ρ ∈ (0, 1] then put |x|ρ = q−vr(n).

Let B (resp B+) denote the completion of Bb (resp. Bb,+) with respect to the family

of multiplicative norms (| − |ρ)ρ∈(0,1] (see [Durham, definition 1.5]). The Frobenius

morphism ϕE extends to B (resp. B+) by continuity.
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For an interval I ⊂ (0, 1) let BI denote the completion of Bb with respect to I. Set,

B := lim←−
I⊂(0,1)

BI .

Let |Y | denote the set of closed points of B and for a maximal ideal m ∈ |Y | let

B+
dR,m denote the m-adic completion of B (see [Durham, corollary 3.11, definition

3.1]).

0.2. The graded algebra P and the curve X.

For an integer r, put Pr := {b ∈ B|ϕE(b) = πrb} = BϕE=πr
. From [Durham, 1.15]

we get that Pr = 0 when r < 0, Pr = E when r = 0 and Pr = (B+)ϕ=π
r

if r ≥ 0.

Consider the graded E algebra

PF,E,π = PE :=
⊕
r≥0

Pr.

Let XF,E,π = XE := ProjPE denote the projective spectrum of PE with the struc-

ture sheaf OXE
.

Proposition 0.1. ([FF, Theorem 10.2]) .

(a) The scheme XE is noetherian, integral and regular of dimension one. We have

the following bijection

div : (P1\{0})/E× −→ |XE | := {x ∈ XE closed}

t 7−→ ∞t = V +(t) = Proj(PE/tPE)

(b) Γ(XE ,OXE
) = P0 = E.

(c) If E′/E is a finite extension of fields then there is a canonical isomorphism

XE′
∼= XE ×SpecE SpecE′ and XE′ −→ XE is a finite étale Galois cover of degree

[E′ : E].

For an integer h ≥ 0, let Eh denote the unique unramified Galois extension of E

of degree h. Put Xh := XEh
and X := XE . We have that πh : Xh −→ X is a finite

étale Galois extension of curves with Galois group Gal(Eh/E) ∼= Z/hZ.

Definition 0.2. Let d, h ∈ Z such that (d, h) = 1.

Put PEh
[d] :=

⊕
r∈Z PEh

[d]r where PEh
[d]r := PEh,d+r.

Let OEh
(d) := P̃Eh

[d] be the sheaf associated to the graded module PEh
[d] and put

OX(d/h) := πh∗(OXh
(d)).
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Let ∞ ∈ |X| and choose an element t ∈ P1 such that V +(t) =∞ (see Proposition

0.1). Put Be := Γ(X\{∞}). From Theorem 5.5 there is a bijection between |Y |/ϕZ

and |X|. Let m ∈ |Y | be a be the maximal ideal corresponding to {∞} under

this bijection. Then we have that B+
dR,m = B+

dR
∼= ÔX,∞ where −̂ denote the t-

adic completion.(see [Durham, Theorem 5.3]). Put, BdR = B+
dR[1/t]. The ring B+

dR

is a discrete valuation ring with maximal ideal m generated by t (see [Durham,

Theorem 5.3]) . Let V BXE
/ ∼ denote the isomorphism classes of vector bundles

on X and C be the category of pairs (M,W ) where W is a free B+
dR module of

finite type and M ⊂ W [1/t] is a sub Be-module of finite type with an isomorphism

M ⊗Be BdR
∼−→W [1/t].

Proposition 0.3. (See [FF, Section 2]) There is an equivalence of categories

V BXE

∼−→ C

E 7−→ (Γ(X\{∞}, E), Ê∞).

Furthermore, if E corresponds to the pair (M,W ) then,

0 −→ H0(X, E) −→M ⊕W δ−→W [1/t] −→ H1(X, E) −→ 0.

is an exact sequence. In particular,

H0(XE , ) ∼= M ∩W and H1(XE , ) ∼= W [1/t]/(W +M).

Theorem 0.4. Let d ∈ Z. We have, H1(XE ,OXE
) = 0 if d ≥ 0 and H1(XE ,OXE

) =

B+
dR/(t

−dB+
dR + E) if d < 0.

Proof. Following the notation of Proposition 0.3, the line bundle OXE
corresponds to

the pair (Be, B
+
dR). Therefore, H1(XE ,OXE

) = B+
dR[1/t]/(B+

dR +Be). For a positive

integer i, put FiliBe := {x/ti|x ∈ Pi}. From the Fundamental Exact sequence

(see [Durham, Theorem 5.1] we have that the natural map FiliBe/F ili−1Be
∼−→

t−iB+
dR/t

−i+1B+
dR is an isomorphism for every positive integer i. This implies that

B+
dR[1/t] = B+

dR + Be and therefore H1(XE ,OE) = 0. Now consider the exact

sequence

0 −→ OX
td−→ OX(d) −→ i∗ÔX,∞/tdÔX,∞ −→ 0.

where i : {∞} ↪→ X. Since i∗ÔX,∞/tdÔX,∞ is a torsion sheaf with finite support on

the reduced curve X, we get that H1(X, i∗ÔX,∞/tdÔX,∞) = 0. From the associated

long exact cohomology sequence and using the vanishing of H1(X,OE), it follows
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that H1(X,OE(d)) = 0 for every positive integer d. Next, we suppose that d < 0.

From the short exact sequence

0 −→ OX(d)
t−d

−→ OX −→ i∗ÔX,∞/t−dÔX,∞ −→ 0.

we get the following long exact cohomology sequence

H0(XE ,OX(d))
t−d

→ H0(X,OX)→ i∗H
0(X, ÔX,∞/t−dÔX,∞)→ H1(X,OX(d))→ 0.

Now, the theorem follows by using the facts H0(X,OX(d)) = 0, H0(X,OX) = P0 =

E and H0(X, ÔX,∞/t−dÔX,∞) = B+
dR/t

−dB+
dR. �

Corollary 0.5. Let λ, µ ∈ Q.

(a) Ext0(OX(λ),OX(µ)) = 0 if and only if λ > µ.

(b) Ext1(OX(λ),OX(µ)) 6= 0 if and only if λ > µ.

Proof. From [FF, Proposition 4.23] we have that Exti(OX(λ),OX(µ)) ∼= H i(X,OX(µ−
λ)). Let µ − λ = d/h, for some d, h ∈ Z such that (d, h) = 1 and h ≥ 1. From

Shapiro’s Lemma we get thatH i(X,OX(µ−λ)) = H i(X,πh∗OX(d)) = H i(Xh,OXh
(d)).

Now the corollary follows from Theorem 0.4. �

Proposition 0.6. Let E be a vector bundle on X and h ≥ 1 be a positive integer.

(a)The vector bundle E is semi-stable of slope µ(E) = λ if and only if π∗hE is semi-

stable of slope µ(π∗hE) = hλ.

(b) E ∼= OrX(λ) for some integer r if and only if π∗hE ∼= Or
′
Xh

(hλ) for some integer r′.

Proof. We have µ(π∗hE) = deg(π∗hE)/rk(π∗hE) = hdeg(E)/rk(E) = hµ(E). Here,

deg(E) (resp. rk(E)) denote the degree (resp. rank) of E .

Recall that the map πh : Xh −→ X is Galois with Galois group Gal(Eh/E).

Therefore we have an equivalence of categories

π∗h : VBX/ ∼ −→ Gal(Eh/E)− equivariant vector bundle on Xh

E 7−→ π∗hE .

Now suppose that E is semi-stable and consider the Harder-Narasimhan filtration

(HNF)

0 = Z0 ( Z1 ( · · ·Zn = π∗hE

of E . By uniqueness of (HNF) and the fact that µ(τ∗Z1) = µ(Z1) for every τ ∈
Gal(Eh/E) it follows that Z1 is a Galois equivariant sub-bundle of π∗hE . Let Z ′1 ↪→
E be a vector bundle such that π∗hZ

′
1 = Z1. Since E is semi-stable we get that
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µ(Z ′1) ≤ µ(E). Therefore,µ(Z1) ≤ π∗hE . This implies that n = 1 and therefore π∗hE is

semi-stable.

Now suppose that π∗hE is semi-stable and let Z ↪→ E be a vector bundle. Since π∗hE
is semi-stable and π∗hZ ⊂ π∗hE we get that µ(π∗hZ) ≤ µ(π∗hE). Therefore µ(Z) ≤ µ(E).

This proves that E is semi-stable.

The statement (b) is an immediate consequence of Hilbert Theorem 90. �

0.3. Classification of vector bundles on X.

Next we state the main theorem about vector bundles.

Theorem 0.7. (i) The semi-stable vector bundle of slope λ on X are the direct sums

of OX(λ).

(ii) The Harder-Narsimhan filtration) (HNF) of a vector bundle on X is split.

(iii) There is a bijection

{λ1 ≥ · · · ≥ λn|n ∈ N, λi ∈ Q} ∼−→ V BX/ ∼

(λ1, · · · , λn) 7→ [

n⊕
i=1

OX(λi)]

Remark

(a) (i)+(ii) ⇐⇒ (iii) (easy).

(b) Using the fact that Ext1(OX(λ),OX(µ)) = 0 for λ ≥ µ it can be easily shown

that (i) =⇒ (ii).

The aim of this talk is to prove the following theorem

Theorem 0.8. Theorem 0.7 is equivalent to the following statement: for any n ≥ 1

and any vector bundle E that is an extension

0 −→ OX(−1/n) −→ E −→ O(1) −→ 0

one has H0(X, E) 6= 0.

Proof. Let E be a vector bundle that is an extension as in the statement of the the-

orem. Suppose that Theorem 0.7 is true. Then, we have that E ∼= ⊕iOX(λi). Since

deg(OX(−1/n) = deg(π∗nOXh
(−1)) = deg(OXh

(−1)) = −1 Therefore deg(E) = 0.

This implies that λi ≥ 0 for some i. From Corollary we get that 0.2 H0(X, E) 6= 0.

To prove the other direction let E be a semi-stable bundle on X. For simplicity

we shall assume that rk(E) = 2. The general case can be proved similarly but

the complete argument is more technical (see [FF, Theorem 4.26]. Without loss of
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generality using Proposition 0.6 we can assume that µ(E) ∈ Z. We can also replace

E by a twist E ⊗ O(d) and assume that µ(E) = 0.

Since E is semi-stable, µ(L) ≤ 0 for every sub-line bundle µ(L) of E we have that

µ(L) ≤ µ(E). We mention that here by a sub-line bundle L of E we mean that L is

a sub-sheaf of E such that E/L is a vector bundle. From [Durham, Proposition 6.3])

we have an isomorphism Z ∼−→ Pic(X) given by d 7→ OX(d). Let L be a sub-line

bundle with maximal degree. Writing L ∼= OX(−d) for some integer d ≥ 0 and using

the assumption that rkE = 2, we get the following exact sequence

0 −→ OX(−d) −→ E −→ OX(d) −→ 0.

If d = 0 then using the fact that H0(X,OX) = 0, we have E ∼= OX ⊕ OX . Now

suppose that d > 0. Since −d + 2 ≤ d, from Corollary 0.2 we have Hom(OX(−d +

2),OX(d)) 6= 0. Let

u : OX(−d+ 2)
6=0−→ OX(d)

be a non-trivial morphism. We consider the pull-back exact sequence

0 −→ OX(−d) −→ E ′ −→ OX(−d+ 2) −→ 0

with a morphism E ′ −→ E which is a generic isomorphism. By twisting the above

exact sequence by OX(d− 1), we get the following exact sequence

0 −→ OX(−1) −→ E ′(d− 1) −→ OX(1) −→ 0.

From the assumption of the theorem we get that H0(X, E ′(d− 1)) 6= 0 and therefore

there is a non-trivial morphism OX(1 − d) −→ E ′. Composing it with the generic

isomorphism E ′ −→ E , we get a non-trivial morphism u′ : OX(1 − d) −→ E . Since

the image of u′ has degree ≥ −d we get a contradiction. Therefore d = 0. This

proves the theorem. �
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