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Fix K a perfectoid base field with tilt K[, and write $ ∈ K resp. $[ ∈ K[ for pseudo-
uniformizers.

We already have
• tilting equivalence for the sites of analytic topology, identifying rational subsets;
• partial results for the étale sites, including

-- tilting equivalence for perfectoid fields, identifying finite étale extensions;
-- for perfectoid algebras, we have the untilting functor R[

fet → Rfet passing from
characteristic p > 0 to characteristic zero, which is fully faithful with essential
image being strongly fet perfectoid algebras over R.

To complete the picture, including a global version for the étale sites of perfectoid spaces,
Scholze starts with the strongly étale version and prove, essentially involving the almost purity
of Faltings, that the strengthened version coincides with the usual one defined in terms of fet
and étale morphisms of adic spaces. The positive characteristic case is known, and the general
case is obtained by tilting.

We write fet for finite étale.
The notion of pro-étale topology is NOT discussed in this talk.

1. ÉTALE MORPHISMS STRENGTHENED

First recall the classical version of Huber:

Definition 1.1 (étale morphisms for adic spaces). Fix for simplicity k a non-archimedean base
field.

(1) A map of affinoid k-algebras (R,R+)→ (S, S+) is fet :=
• R→ S is fet as a map of k-algebras
• S+ equals the integral closure of R+ → S.

(2) A map of adic spaces f : X → Y over k is fet := for some affinoid open cover Y =
⋃
i Vi

• each pull-back Ui = Vi ×Y X is affinoid, and
• f : Ui → Vi is given by a fet map (OXUi, O

+
XUi)← (OY Vi, O

+
Y Vi).

(3) A map of adic spaces f : X → Y is étale := étale everywhere, i.e. for any x ∈ X there
exists open neighborhoods x ∈ U ⊂ X and f(U) ⊂ V ⊂ Y such that f : U → V factors
through

U
j→ W

p→ V

with p fet and j open embedding.

A few useful facts in the (locally noetherian) adic case:
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Facts 1.2. (1) Both fet morphisms and étale morphisms are open, stable under composition and
arbitrary base change. If g and g ◦ f are both étale then so it is with f .

The (small) étale site Xet of X is the category of étale morphisms toward X , with covers
being jointly surjective families of morphisms.

(2) If X → Y is fet with Y affinoid and locally noetherian, then X is also affinoid (actually
valid for finite morphisms).

(3) The functor OX : U ∈ Xet 7→ OUU is an étale sheaf. For X affinoid with a finite
fetaffinoid cover (Ui), the associated Cech complex for the presheaf O+

X is exact up to π-power
torsions, π being some pseudo-uniformizer of k.

For perfectoid spaces over K (the perfectoid base field), one starts with a stronger version:

Definition 1.3 (strengthened étale morphisms for perfectoid spaces). (1) A map of affinoid
perfectoid K-algebras f : (R,R+)→ (S, S+) is strongly fet :=

• f is fet as a map of affinoid K-algebras;
• f : R◦a → S◦a is fet.

(2) A map of perfectoid spaces f : X → Y over K is strongly fet if there exists an open
affinoid cover Y =

⋃
i Vi such that

• each pull-back Ui = Vi ×Y X is an affinoid perfectoid space over K;
• the restriction f : Ui → Vi gives (OXUi, O

+
XUi)← (OY Vi, O

+
Y Vi) strongly fet for each

i.
(3) A map of perfectoid spaces f : X → Y over K is strongly étale if it is strongly étale

everywhere onX , i.e. for any x there exist open neighborhoods x ∈ U ⊂ X and f(U) ⊂ V ⊂ Y
such that f : U → V is a strongly fet morphism composed with an open embedding.

It is already clear that this strengthened version is stable under tilting (and untilting).

Remark 1.4 (integral structure). Given a fet morphism of affinoid algebras (R,R+)→ (S, S+),
it is clear that S+ is uniquely determined by R+ and the fet map R → S. In this way we see
that (R,R+)fet

∼= Rfet as categories once a choice of R+ is specified.
For R a perfectoid K-algebra, there could be different choices of R+. By definition, R◦ is the

maximal one; on the other hand, the intersection R◦min =
⋂
{R+ ⊂ R} of all possible integral

structures of R is open and integrally closed: it is open as it is a subring containing the open
ideal R◦◦, and it is integrally closed because so it is with each R+ in the intersection. In general
the difference between R◦min and R◦ could be non-trivial.

There are of course cases when R◦ = R◦min. For example, in the completed perfection
R = Fp((t1/p

∞
)) of Fp((t)) we have R◦ = Fp[[t1/p

∞
]] = R◦min, and by tilting arguments we see

that the same holds for (Qp(µp∞))
∧ and (Qp(p

1/p∞))∧ (the p-adic completions).

2. STABILITY UNDER BASE CHANGE AND COMPOSITION

Lemma 2.1 (base change). (1) Given affinoid perfectoid spaces X = Spa(A,A+), Y =
Spa(B,B+), Z = Spa(C,C+) and morphisms

(A,A+)
f← (B,B+)→ (C,C+)

with f strongly fet, then X×Y Z = Spa(D,D+) with D = A⊗BC and D+ the integral closure
of C+ in D. Moreover (C,C+)→ (D,D+) is strongly fet.

Globally, for X → Y a strongly fet resp. strongly étale morphism between perfectoid spaces,
its base change along an arbitrary map Z → Y of perfectoid spaces remains of the same type,
and the map of topological spaces |X ×Y Z| → |X| ×|Y | |Z| is onto.

(2) In characteristic p, the classical notion of fet resp. étale morphisms (in the adic sense)
coincides with the strengthened one.
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Proof. (1) Note that D = A⊗B C is already complete and finite projective as a C-module as
B → A is fet, which implies that D is complete and perfectoid. It is also clear that the base
change D◦a = A◦a ⊗B◦a C◦a is fet over C◦a.

The global statements are reduced to the local affinoid case and the surjectivity does involve
some delicate construction of valuative spectra, which we refer to the arguments in [2] 3.9(i) for
details.

(2) For a map of affinoid algebras (R,R+)→ (S, S+) in characteristic p > 0, fet in the sense
of Huber, R being perfectoid implies the same with S, and R◦a → S◦a is also fet due to the
positive characteristic. �

Hence strongly fet morphisms and strongly étale morphisms are stable under base change.

Lemma 2.2 (completion and decompletion). (1) Let A be a flat K◦-algebra henselian along
($) with $-adic completion Â, the $-adic completion functor is an equivalence:

A[$−1]fet → Â[$−1]fet, B 7→ B̂.

(2) Let (Ai)i be a filtered inductive system of complete flat K◦-algebras, and A = (lim−→i
Ai)
∧

the completed inductive limit, which is clearly flat over K◦. Then we have a category equiva-
lence:

A[$−1]fet
∼= 2− lim−→(Ai[$

−1]fet).

(3) In particular, for (Ri) a filtered system of perfectoid K-algebras and R = (lim−→Ri)
∧ the

completed inductive limit, we have Rfet
∼= 2− lim−→(Ri,fet).

If moreover K is of characteristic p and (R,R+) = ((S, S+)1/p
∞
)∧ is p-finite, i.e. completed

perfection of some affinoid algebra (S, S+) reduced and topologically of finite type. Then
Rfet
∼= Sfet.

Proof. (1) This is done in Gabber-Ramero (5.4.53).
(2) Use standard reductions of filtered inductive limits in combination with the completion

functor in (1):
2− lim−→(Ai[$

−1]fet) ∼= (lim−→Ai[$
−1])fet

∼= A[$−1]fet.

(3) This is the special case of (2) for R = (lim−→S1/pn)∧ and S1/pn

fet
∼= Sfet for all n. �

The lemma above allows us to descend, after tilting if necessary, to (locally) noetherian adic
spaces:

Proposition 2.3. (1) Let f : X → Y be a strongly fet morphism of perfectoid spaces over K,
and V ⊂ Y an open affinoid perfectoid subspace. Then U = V ×Y X is also affinoid perfectoid,
and the map of global sections (OY V,O

+
Y V )→ (OXU,O

+
XU) is strongly fet.

(2) In characteristic p > 0, if f : X → Y is étale, then for any x ∈ X , there exist open
affinoid perfectoid neighborhoods x ∈ U ⊂ X and f(U) ⊂ V ⊂ Y such that f : U → V is
pulled back from some étale morphism U0 → V0 of affinoid noetherian adic spaces.

In fact one may take V → V0 as the completed perfection of V0.

Proof. (1) Tilting reduces the proof to positive characteristic, and up to shrinking K to a
perfectoid subfield we may assume that K◦ = K◦min in the sense of Remark 1.4 and Y = V =
Spa(R,R+) is affinoid with R+ a K◦-algebra.

We proceed to show that X is affinoid itself. Since (R,R+) is the completion of the filtered
inductive limit lim−→(Ri, R

+
i ) of its p-finite affinoid perfectoid subalgebras, the morphismX → Y

descends to the case where Y = Spa(R,R+) is p-finite. In this case a strongly fet morphism
between perfectoid spaces is the same as a fet morphism defined in terms of adic spaces, and
X → Y descends further to some fet morphism X0 → Y0 = Spa(R0, R

+
0 ) with (R0, R

+
0 )
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reduced and topologically of finite type, and (R,R+) = ((R0, R
+
0 )

1/p∞)∧. Then Huber’s result
in the adic case implies that X0 is affinoid with (OY0Y0, O

+
Y0
Y0)→ (OX0X0, O

+
X0
X0) fet.

(2) Similar to the arguments in (1), we are reduced to the case where X is a rational subset
of some fet cover of Y and further to the p-finite case which is descendable by completed
perfection. �

Corollary 2.4 (composition). Strongly fet morphisms and strongly étale morphisms are both
open and stable under composition.

Proof. Again reduce to positive characteristic by tilting, and reduce further to Huber’s classical
case of étale morphisms for locally noetherian adic spaces upon p-finite devissage. �

3. ALMOST PURITY AND ÉTALE TOPOLOGY

So far the strengthened étale morphisms already define a topology, which will be indicated
by the subscript sfet. This section discusses its relation to the classical one.

Theorem 3.1 (almost purity). Let (R,R+) be an affinoid perfectoid K-algebra, with X =
Spa(R,R+) and X[ = Spa(R[, R[+) the tilt. Then:

(1) For any open affinoid perfectoid subspace U ⊂ X the functor

Usfet → (OXU)fet, (V → U) 7→ (OUU → OV V ),

where Usfet is the category of strongly fet morphisms toward U , is a category equivalence
respecting covers (reduced to faithfully flat objects)

(2) If R→ S is a fet cover of K-algebras, then S is perfectoid and R◦a → S◦a is fet, and S◦a

is uniformly almost finitely generated as an R◦a-module.
In particular, the strengthened version of fet resp. étale morphisms between perfectoid spaces

is the same as the classical one computed in adic spaces.

Proof. We may assume that U = X = Spa(R,R+).
(1) The full faithfulness is clear: if V → X is strongly fet, then V is affinoid and is determined

by the fet (OXX)◦a-algebra (OV V )◦a.
It remains to prove the essential surjectivity: start with an arbitrary S ∈ Rfet, find Y → X

strongly fet so that OY Y = S.
We first do this locally: for any x ∈ X , there exists an affinoid perfectoid neighborhood

x ∈ U ⊂ X (not the U specified in the statement) and V → U strongly fet such that OV V ∼=
OXU ⊗OXU S as OXU -algebras. Note that U could be taken arbitrarily small. In fact using
Hensel lifting and tilting we have

2− lim−→
x∈U

(OXU)fet
∼= k̂(x)fet

∼= k̂(x[)fet
∼= 2− lim−→

x[∈U[

(OX[U [
fet).

The object in 2 − lim−→x∈U(OXUfet) represented by R → S passes to some V [ → U [ fet for
some U ⊂ X small affinoid neighborhood of x and untilting gives V → U strongly fet. Thus X
adimits a finite cover

⋃
i Ui by open affinoid perfectoid subspaces, and each Ui is equipped with

a strongly fet cover Vi → Ui defined by the same R-algebra S via OViVi = Si = OUi
Ui ⊗R S

such that Vi = Spa(Si, S
+
i ), where S+

i is the integral closure of O+
XUi in Si.

Note that these Vi’s do glue to an perfectoid space Y , where the gluing condition is lifted
from the one for the open affinoid cover X =

⋃
i Ui as the base change along R → S pulls

back the gluing condition for the cover (one may write Ui ∩ Uj =
⋃
αWα with open affinoid

Wα = Spa(R′α, R
′+
α ) and then Vi ∩ Vj =

⋃
αW

′
α with W ′

α = Spa(S ′α, S
′+
α ) pulled back using

S ′α = R′α and verify the cocycle condition similarly).
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Thus we get Y → X a strongly fet morphism between perfectoid spaces, which implies that
Y = Spa(A,A+) is affinoid itself. Finally the maps of S-algebras∏

i

OXUi ⊗R S →
∏
i,j

OX(Ui ∩ Uj)⊗R S

and ∏
i

OY Vi →
∏
i,j

OY (Vi ∩ Vj)

are identical, hence their kernels coincide, i.e. A = S.
(2) This is immediate from (1) by taking global sections and tilting. �

Corollary 3.2 (fet base change). Both fet and étale morphisms between perfectoid spaces
(computed in adic spaces) are stable under arbitrary base change along morphisms between
perfectoid spaces, and the evident map |X ×Y Z| → |X| ×|Y | |Z| similar to the one used in 2.1
is onto.

Proof. This is reduced to the positive characteristic case in 2.1(2) by tilting. �

Definition 3.3 (étale site). For X a perfectoid space, the (small) étale site Xet is the category of
étale morphisms toward X , with jointly surjective families of morphisms as covers. Denote by
X∼et the associated topos of set-valued sheaves.

Given f : X → Y a morphism between perfectoid spaces, we have f : Xet → Yet and
f : X∼et → Y ∼et the associated morphisms between sites and topoi.

Theorem 3.4 (tilting equivalence for étale sites). For X a perfectoid space over K with tilt X[

over K[, the tilting operation induces an isomorphism of sites Xet
∼= X[

et and it is functorial in
X .

Proof. The proof is reduced to the followig commutative diagram for affinoid perfectoid algebras

(R,R+)fet
∼= R◦afet

∼= R[◦a
fet
∼= (R[, R[+)fet.

�

Similar to the classical case, the structure sheaf functor is a étale sheaf:

Proposition 3.5 (structure sheaf). For X a perfectoid space over K, the functor

Xop
et → K − Perf, U 7→ OUU

is a sheaf, which is denoted as OX . If moreover X is affinoid, then H i(Xet, O
◦a
X ) vanishes for

any i > 0.

Proof. The exactness of

0→ (OXX)◦a →
∏
i

(OUi
Ui)
◦a →

∏
i,j

(OUij
Uij)

◦a

given by an étale cover (Ui) of X with Ui,j = Ui ×X Uj is reduced first to the characteristic p
case by tilting, then to the p-finite case, and finally descend finally to the classical noetherian
case treated by Huber, which proves that the Cech complex of the presheaf O+

X associated to an
étale cover is acyclic up to π-torsions, π being suitable topological nilpotent element in K. �
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