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These are expanded notes of a talk given at the workshop “The Galois Group of Qp as
Geometric Fundamental Group”. Its purpose was to explain §3.2 and some initial steps in §4
of the paper [Wei].

1 Perfectoid generic fibers

Let K be a perfectoid field with ring of integers oK of residue characteristic p. We fix an
element 0 6= $ ∈ oK such that |p| ≤ |$| < 1.

We consider an oK-algebra S which is complete and Hausdorff with respect to the I-adic
topology for some ideal I ⊆ S. For simplicity we assume that $ ∈ I (cf. Remark 1.6). We equip
the factor ring S/$S with the I/$S-adic topology. The projective limit of oK/$oK-algebras

S[ := lim←−
(.)p

S/$S = lim←−(. . .
(.)p−−−→ S/$S

(.)p−−−→ . . .
(.)p−−−→ S/$S)

equipped with the projective limit topology is a topological oK[-algebra, which is perfect. We
denote by ΦS[ the p-Frobenius automorphism of S[.

Remark 1.1. The rings S/$S and S[ are complete.

Proof. The vertical maps in the commutative diagrams

S/In+1

����

$ // S/In+1

����

pr // (S/$S)/(I/$S)n+1

����

// 0

S/In
$ // S/In

pr // (S/$S)/(I/$S)n // 0

are surjective. Hence the lower horizontal map in the commutative diagram

S

∼=
��

pr // // S/$S

����
lim←−n S/I

n // // lim←−n(S/$S)/(I/$S)n

is surjective. Since the left vertical map is bijective by assumption the right vertical map at
least is surjective. This amounts to the completeness of S/$S. The completeness of S[ then
is a formal consequence.
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A fundamental system of open neighbourhoods of zero in S[ is given by the ideals

Jn,i := {(. . . , α1, α0) ∈ S[ : αi ∈ (I/$S)n} for n ≥ 1 and i ≥ 0.

One checks that

Φi
S[

(Jn,0) = Jn,i,Φ
i
S[

(J1,0) ⊆ Jp
i

1,0 ⊆ Jpi,0, and hence Φi+j

S[
(J1,0) ⊆ Jpj ,i.

This shows the following.

Remark 1.2. The descending sequence of ideals Φn
S[

(J1,0), for n ≥ 0, forms a fundamental

systems of open neighbourhoods of zero in S[. In particular, ΦS[ is a topological automorphism.

Let α = (. . . , αi, . . . , α0) ∈ S[ be any element. We choose elements ai, a
′
i ∈ S such that

ai mod $S = αi = ai mod $S. The usual standard computation shows that the sequences

(ap
i

i )i and (a′p
i

i )i are $-adic Cauchy sequences and that their difference (ap
i

i −a′
pi

i )i is a $-adic
zero sequence. Since $ ∈ I the same then holds true I-adically. But S is I-adically complete
and Hausdorff. It follows that

S[ −→ S

α 7−→ α] := lim
i→∞

ap
i

i

is a well defined multiplicative map such that α] mod $S = α0. In fact, we also could have
used the following observation (which I learned from L. Ramero).

Remark 1.3. The ring S is $-adically complete and Hausdorff.

Proof. The Hausdorff property is clear since
⋂
n$

nS ⊆
⋂
n I

n = 0. Let (ai)i in S be a Cauchy
sequence for the $-adic and hence for the I-adic topology. It has an I-adic limit a. We have
to show that a also is the $-adic limit of the sequence. For this we may replace the original
sequence by any convenient subsequence. Hence we may assume that ai+1− ai ∈ $iS for any
i ≥ 1. Let ai+1 − ai = $izi with zi ∈ S. For j ≥ 1 we then have

ai+j − ai = (ai+j − ai+j−1) + . . .+ (ai+1 − ai) = $i($j−1zi+j−1 + . . .+$zi+1 + zi) .

We put yi,j := $j−1zi+j−1 + . . .+$zi+1 + zi and obtain

yi,j − yi,m = $j−1zi+j−1 + . . .+$mzi+m ∈ $mS

for j > m. It follows that the limit yi := limj→∞ yi,j with respect to the I-adic topology
exists. We finally compute

a− ai = lim
j→∞

(ai+j − ai) = $i lim
j→∞

yi,j = $iyi ∈ $iS .

This shows that the sequence (ai)i converges to a also in the $-adic topology.

Lemma 1.4. The map ] : S[ −→ S is continuous.

Proof. We show that (α+ Jn+1,n)] ⊆ α] + In+1. If β = (. . . , β0) ∈ α+ Jn+1,n then βn−αn =
c mod $S for some c ∈ In+1. For i ≥ n we choose ai, bi ∈ S such that ai mod $S = αi,

bi mod $S = βi, and bn − an ∈ In+1. We have ap
i

i ≡ ap
n

n mod $n+1S and bp
i

i ≡ bp
n

n mod

$n+1S. It follows that bp
i

i − a
pi

i ∈ In+1 for any i ≥ n and hence that β] − α] ∈ In+1.
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Lemma 1.5. The map

lim←−
(.)p

S
'−−→ S[

(. . . , ai, . . . , a0) 7−→ (. . . , ai mod $S, . . . , a0 mod $S)

is a multiplicative homeomorphism with inverse α 7−→ (. . . , (α1/pi)], . . . , α]). In particular, S[

is Hausdorff.1

Proof. Of course, the asserted projection map is multiplicative and continuous. Let α =
(. . . , αi, . . . , α0) ∈ S[ and choose ai ∈ S such that ai mod $S = αi. Then α1/pi = (. . . , αi)

and hence (α1/pi)] = limj→∞ a
pj

i+j , and we compute

((α1/pi+1
)])p = lim

j→∞
ap

j+1

i+1+j = lim
j→∞

ap
j

i+j = (α1/pi)] .

Since (α1/pi)] mod $S = αi, we see that the asserted candidate for the inverse is, at least,
a left inverse of the projection map. It is continuous by Remark 1.2 and Lemma 1.4. It
remains to check that the projection map is injective. Let (. . . , ai, . . . , a0) and (. . . , bi, . . . , b0)

elements in lim←−S such that ai ≡ bi mod $S for any i ≥ 0. We deduce that ai = ap
j

i+j ≡ b
pj

i+j =

bi mod $j+1S for any j ≥ 0. It follows that ai − bi ∈
⋂
j I

j = 0.

Remark 1.6. If the topology of the topological oK-algebra S is the I ′-adic one for some ideal
I ′ ⊆ S then it also is the I-adic one for I := $S + I ′.

Proof. Being a topological oK-algebra we must have $m ∈ I ′ for some m ≥ 1. It follows that
Im ⊆ I ′.

Lemma 1.5 and Remark 1.6 show that the topological oK[-algebra S[ does not depend on
the choice of the element $. It will be technically convenient to assume in the following that
|p| ≤ |$|2 < |$| < 1 and $ ∈ I. Then pS ⊆ $2S ⊆ I2.

Following [GR] §13.1 we now will make additional assumptions on S. The first one is

(1) (S/pS)p = S/pS .

Remark 1.7. Suppose that K has characteristic zero; we then have (S/pS)p = S/pS if and
only if (S/$S)p = S/$S.

Proof. The other direction being trivial we assume that (S/$S)p = S/$S. Because of the
density of the value group we find an element $1 ∈ K such that |$|1/p ≤ |$1| < 1. It
follows that $S ⊆ $p

1S and hence that (S/$p
1S)p = S/$p

1S. Now let a ∈ S be any element.
Inductively we find elements (bn)n≥0 and (an)n≥1 in S such that

a = bp0 +$p
1a1

a1 = bp1 +$p
1a2

...

an = bpn +$p
1an+1

...

1It seems that S/$S need not to be Hausdorff.

3



It follows that there exist elements (cn)n≥0 in S such that

a ≡ cpn +$pn+1

1 an+1 mod pS for any n ≥ 0.

But |$pn+1

1 | ≤ |p| and hence $pn+1

1 S ⊆ pS for sufficiently large n (this is where the charac-
teristic zero assumption is needed). This shows that (S/pS)p = S/pS.

Our further assumptions are:

I is finitely generated.(2)

ker(S/I
(.)p−−→ S/I) is a finitely generated ideal in S/I.(3)

We denote by I ⊆ I1 ⊆ S the finitely generated ideal such that I1/I = ker(S/I
(.)p−−→ S/I).

Then, of course, the map

(4) S/I1
(.)p−−→∼= S/I

is a well defined isomorphism.

Lemma 1.8. Assuming (1), (2), and (3) we have:

i. There are generators I1 = (s1, . . . , sr) such that I = (sp1, . . . , s
p
r).

ii. The I1-adic topology on S coincides with the I-adic one.

Proof. We begin by picking generators I = (a1, . . . , am). As a consequence of assumption (1)
we have (S/I2)p = S/I2. Hence we find elements sj ∈ S such that aj−spj ∈ I2. It follows that

sp1, . . . , s
p
m generate the S-module I/I2. But, since S is I-adically complete and Hausdorff, the

ideal I is contained in the Jacobson radical of S (for any a ∈ I and b ∈ S the series
∑

i≥0(ab)
i

converges to an inverse of 1 − ab). Therefore the Nakayama lemma applies and shows that
I = (sp1, . . . , s

p
m). By construction we have {s1, . . . , sm} ⊆ I1. Since I1 is finitely generated

we may enlarge this set to a finite set of generators s1 = b1, . . . , sm = bm, sm+1, . . . , sr of I1
which satisfies the assertion i. Since Jpr ⊆ I ⊆ I1 the I1-adic topology coincides with the
I-adic one.

We now consider the ideal

I[1 := {(. . . , α1, α0) ∈ S[ : α0 ∈ I1/$S}

in S[.

Proposition 1.9. Assuming (1), (2), and (3) we have:

i. The ideal I[1 is finitely generated.

ii. The topology of S[ is the I[1-adic one.
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Proof. We fix generators I1 = (s1, . . . , sr) as in Lemma 1.8.i. By the assumption (1) we find
elements σj = (. . . , σj,1, σj,0) ∈ S[, for 1 ≤ j ≤ r, such that σj,0 = sj mod $S. Obviously, the
ideal J := (σ1, . . . , σr) is contained in I[1. Hence

Φi
S[

(J) ⊆ Φi
S[

(I[1) = {(. . . , α1, α0) ∈ S[ : αi ∈ I1/$S} for i ≥ 0.

Claim: The natural map J −→ I[1/ΦS[(I
[
1) is surjective.

Let α = (. . . , α0) ∈ I[1. Since α0 ∈ I1/$S there are γj,0 ∈ S/$S such that

α0 = γ1,0σ1,0 + . . .+ γr,0σr,0 .

Again by (1) we have elements γj ∈ S[ of the form γ = (. . . , γj,0). Then

α−
r∑
j=1

γjσj = (. . . , β1, 0) .

Using the bijectivity of (4) the vanishing βp1 = 0 in S/$S implies that β1 ∈ I1/$S. We
conclude that

α ∈
r∑
j=1

γjσj + ΦS[(I
[
1) ⊆ J + ΦS[(I

[
1) ,

which establishes the claim.
We see that all the natural maps Φi

S[
(J)/Φi+1

S[
(J) −→ Φi

S[
(I[1)/Φ

i+1
S[

(I[1), for i ≥ 0, are

surjective. Remark 1.2 and Lemma 1.5 together imply that
⋂
i Φi

S[
(J) =

⋂
i Φi

S[
(I[1) = 0.

On the other hand it follows from Lemma 1.8.ii and Remark 1.2 that the topology of S[ is
defined by the system of open zero neighbourhoods Φi

S[
(I[1). Furthermore, since J is finitely

generated, say with r generators, we have

(5) Φpir

S[
(J) ⊆ Jpir ⊆ Φi

S[
(J) ⊆ Φi

S[
(I[1)

for any i ≥ 0. First of all this shows that the J-adic topology on S[ is finer than the given
topology. From Remark 1.1 and Lemma 1.5 we know that S[ is complete and Hausdorff. In
this situation it follows, by a generalization of the argument in the proof of Remark 1.3 (cf.
[GR] Lemma 5.3.10), that S[ also is complete and Hausdorff for the J-adic topology. Secondly
(5) shows that the J-adic topology on S[ coincides with the topology for which the Φi

S[
(J)

form a fundamental system of open zero neighbourhoods. Hence S[ is complete and Hausdorff
with respect to this latter filtration as well. At this point we have verified all assumptions
of [B-CA] III§2.8 Cor. 2 for the inclusion J ⊆ I[1 viewed as a map of filtered abelian groups
with respect to the filtrations (Φi

S[
(J))i and (Φi

S[
(I[1))i, respectively. The above surjectivity

therefore implies that J = I[1. In particular, I[1 is finitely generated. Going back once more to
(5) we also deduce that the topology of S[ is the I[1-adic one.

We recall ([Sch] Remark 3.5) that in a perfectoid field we can choose the element $,
without changing its absolute value, in such a way that there is an element $[ ∈ o[K such
that

((($[)1/p
i
)])p

i
= $ for any i ≥ 0.

In the following we work with such a pair ($,$[).
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The generic fiber Spf(S)ad of Spf(S) (only assuming (2)) as a (not necessarily honest)
adic space over K is constructed as follows. Choose the finitely generated ideal I as well as
generators I = ($, s1, . . . , sr). For any n ≥ 1 let

Ŝn := $-adic completion of S[Y1, . . . , Yr]/(s
n
1 −$Y1, . . . , snr −$Yr) (cf. Remark 1.3),

Ŝ+
n := integral closure of Ŝn in K ⊗oK Ŝn.

There are natural open immersions of adic spaces

Spa(K ⊗oK Ŝn, Ŝ
+
n ) ↪→ Spa(K ⊗oK Ŝn+1, Ŝ

+
n+1)

over K. Gluing them along these immersions defines the adic space Spf(S)ad. One checks that
the resulting space is independent of the choices I = ($, s1, . . . , sr).

If we assume (1), (2), and (3) then, because of Prop. 1.9, we similarly have the adic generic
fiber Spf(S[)ad of Spf(S[) over K[.

Proposition 1.10. Suppose that S satisfies (1), (2), and (3). Then Spf(S)ad and Spf(S[)ad

are perfectoid spaces over K and K[, respectively, and Spf(S[)ad ∼= (Spf(S)ad)[.

Proof. (Sketch) The proof basically consists in checking that the arguments in the proof of
[Sch] Lemma 6.4 generalize to the present situation. We first consider the space Spf(S[)ad.
Let $[, σ1, . . . , σr be generators of a finitely generated ideal of definition of S[. Since S[ is
perfect it makes sense to introduce

(S[)̂n,j := $[-adic completion of

S[[Y1, . . . , Yr]/((σ
n
1 )1/p

j − ($[)1/p
j
Y1, . . . , (σ

n
r )1/p

j − ($[)1/p
j
Yr)

for any n ≥ 1 and j ≥ 0. We then have the sequence of homomorphisms

(S[)̂n = (S[)̂n,0 −→ . . . −→ (S[)̂n,j −→ S[)̂n,j+1 −→ . . .

with respect to the transition maps sending Yi to Y p
i . One checks that after inverting $[ these

transition maps become isomorphisms. Hence inside K[⊗o
K[

(S[)̂n we have the oK[-subalgebra

(S[)̂ ◦n := $[-adic closure of the union of the images of the (S[)̂n,j .

By construction (S[)̂ ◦n is $[-adically complete and Hausdorff and is a flat (since $-torsion
free) oK[-algebra. It satisfies K[⊗o

K[
(S[)̂ ◦n = K[⊗o

K[
(S[)̂n. At this point the arguments in

the proof of [Sch] Lemma 6.4, part (i)(K of characteristic p) show that (S[)̂ ◦an is a perfectoid
oa
K[-algebra. It then follows from [Sch] Thm. 5.2 that K[ ⊗o

K[
(S[)̂n is a perfectoid K[-

algebra. Therefore Spa(K[ ⊗o
K[

(S[)̂n, (S
[)̂n) is an affinoid perfectoid (and hence honest by

[Sch] Thm. 6.3) adic space over K[. By a gluing argument we finally conclude that Spf(S[)ad

is a perfectoid (and hence honest) adic space over K[.
In order to treat Spf(S)ad we first of all make, in the discussion above, a more specific

choice for the defining ideal of S[. Let I be a defining ideal of S satisfying (1), (2), and (3)
and pick generators I1 = (s1, . . . , sr) = ($, s1, . . . , sr) as in Lemma 1.8. Choose elements
σj = (. . . , sj mod $S) ∈ S[. In Prop. 1.9 we have seen that I[1 = ($[, σ1, . . . , σr) is a defining

ideal of S[. Since σ]j ≡ sj mod $S we have I1 = ($,σ]1, . . . , σ
]
r), which is a defining ideal of S
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by Lemma 1.8.ii. Now one shows as in the proof of [Sch] Lemma 6.4, part (i),(ii)(general K)
that the adic spaces Spa(K⊗oK Ŝn, Ŝ+

n ) are affinoid perfectoid over K with tilts Spa(K[⊗o
K[

(S[)̂n, (S
[)̂n) (this uses the result in the characteristic p case). Again by gluing Spf(S)ad

is perfectoid. Since the tilting construction commutes with gluing, by [Sch] Prop. 6.17, the
isomorphism in the assertion follows as well.

2 The perfectoid open unit disk

Let L/Qp be a finite extension with ring of integers o and residue field k of cardinality q = pf .
We also fix, once and for all, a prime element π of o. Moreover, we choose a Frobenius power
series φ for π, i.e., a formal power series φ(X) ∈ o[[X]] which satisfies

φ(X) = πX + higher terms and φ(X) ≡ Xq mod πo[[X]] .

The Lubin-Tate formal group law Fφ is the unique commutative one dimensional formal group
law Fφ ∈ o[[X,Y ]] such that φ ∈ Endo(Fφ) is a formal endomorphism of φ. There is a unique
homomorphism of rings

o −→ Endo(Fφ)

a 7−→ [a]φ(X) = aX + higher terms

such that [π]φ = φ. In this way the formal o-scheme HL := Spf(o[[X]]) (for the maximal ideal
as an ideal of definition) becomes a formal o-module. Its generic fiber over L is the open unit
disk DL viewed a a rigid or adic space.

We form the projective limit

H̃L := lim←−
φ

HL := lim←−(. . .
Spf(φ)−−−−→ HL

Spf(φ)−−−−→ HL
Spf(φ)−−−−→ . . .

Spf(φ)−−−−→ HL)

in the category of formal o-schemes. Equivalently H̃L = Spf(R̂L) where R̂L is the (π,X)-adic
completion of the o-algebra

RL := lim−→
φ

o[[X]] = lim−→(o[[X]]
φ−→ . . .

φ−→ o[[X]]
φ−→ . . .) .

This is a formal L-vector space.

Remark 2.1. R̂L is flat over o, and

k ⊗o R̂L = R̂k := X-adic completion of lim−→
(.)q

k[[X]].

Proof. In the ring o[[X]] we have the obvious implication:

If Xf1 = πf2, then f1 ∈ πo[[X]] (and f2 ∈ Xo[[X]]).

Using the defining properties of a Frobenius power series one checks that this still holds true
in RL:

If f1, f2 ∈ RL such that Xf1 = πf2, then f1 ∈ πRL (and f2 ∈ XRL).
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We now consider the commutative diagram

0 // Kn+1

0

��

// RL/(π
n+1, Xn+1)

pr

��

π // RL/(π
n+1, Xn+1)

pr

��

pr // RL/(π,X
n+1)

pr

��

// 0

0 // Kn
// RL/(π

n, Xn)
π // RL/(π

n, Xn)
pr // RL/(π,X

n) // 0,

where the terms in the left column are defined to be the kernels of multiplication by π. The
above observation implies that the vertical map in the first column, indeed, is the zero map.
Since countable projective systems with zero transition maps have zero projective limit as
well as zero lim←−

1-term, passing to the projective limit with respect to n in the above exact
sequence gives the short exact sequence

0 −→ lim←−RL/(π
n, Xn)

π−→ lim←−RL/(π
n, Xn) −→ lim←−RL/(π,X

n) −→ 0

On the one hand, since the ideal sequences (πn, Xn) and (π,X)n are cofinal, we have R̂L =
lim←−RL/(π

n, Xn). On the other hand, using that φ(X) ≡ Xq mod πo[[X]] we compute

lim←−RL/(π,X
n) = lim←−(RL/πRL)/(Xn) = lim←−[(lim−→

(.)q

k[[X]])/(Xn)] .

Hence we obtain the short exact sequence

0 −→ R̂L
π−→ R̂L −→ lim←−[(lim−→

(.)q

k[[X]])/(Xn)] −→ 0 .

In particular, R̂L is π-torsion free and therefore flat over o.

We let D̃L := H̃ad
L denote the generic fiber of H̃L as an adic space over L. We briefly

recall the construction: For any n ≥ 1 let R̂L,n denote the π-adic completion of R̂L[Y ]/(Xn−
πY ). There are obvious open immersions of adic spaces Spa(L ⊗o R̂L,n, R̂L,n) ↪→ Spa(L ⊗o
R̂L,n+1, R̂L,n+1)

2. Gluing the Spa(L ⊗o R̂L,n, R̂L,n) along these immersions gives the space
D̃L.

Let K be a perfectoid field K which contains L. In the following a subscript K (instead of
L) indicates the base extension from L to K (or from o to the ring of integers oK) of any of
the above objects. We choose the element $ ∈ oK such that |π| ≤ |$|2 < 1. Then I := ($,X)
is a defining ideal of R̂K . We will verify that I ⊆ S := R̂K also satisfies the conditions (1)
and (3) in section 1. As in the proof of Remark 2.1 we obtain

R̂K/$R̂K = X-adic completion of lim−→
(.)q

oK/$oK [[X]](6)

= X-adic completion of oK/$oK ⊗k R̂k
= oK/$oK⊗̂kR̂k .

To describe this ring completely explicitly let N0[q
−1] denote the set of all rational numbers

of the form `
qm with `,m ≥ 0. Then

R̂K/$R̂K = ring of all series
∑

i∈N0[q−1]

āiX
i with coefficients āi ∈ oK/$oK such that

for any n ≥ 0 there are only finitely many 0 ≤ i < n with āi 6= 0.

2Is R̂L,n integrally closed in L⊗o R̂L,n?
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This description immediately shows that the map (.)q is surjective on R̂K/$R̂K . Because of
Remark 1.7 this settles the condition (1). We also see that the cosets in R̂K/I are represented
by the elements in the set

{
∑

0≤`<qm
ā`X

`/qm : m ≥ 1}.

Hence the kernel of (.)q on R̂K/I is represented by the cosets in

{
∑

qm−1≤`<qm
ā`X

`/qm : m ≥ 1, āq` = 0} = {X1/q ·
∑

0≤`<qm−qm−1

b̄`X
`/qm : m ≥ 1, b̄q` = 0}.

If $1 ∈ oK is such that |$1|q = |$| then it follows that I1 = ($1, X
1/q), which settles the

condition (3).

Lemma 2.2. D̃K is a perfectoid space over K (called the perfectoid open unit disk), and
D̃[
K
∼= Spf(oK[⊗̂kR̂k)ad.

Proof. By the above discussion Prop. 1.10 applies and gives that D̃K is perfectoid with
D̃[
K
∼= Spf(R̂[K)ad. By (6) and since R̂k is perfect there is an obvious homomorphism

oK[ ⊗k R̂k = (lim←−
(.)q

oK/$oK)⊗k R̂k −→ lim←−
(.)q

(oK/$oK⊗̂kR̂k) = R̂[K .

This extends to an isomorphism oK[⊗̂kR̂k ∼= R̂[K where the left hand side is completed with
respect to the ($[, X)-adic topology. The reason is that one has

($[)q
m
oK[ = {(. . . , α1, α0) ∈ lim←−

(.)q

oK/$oK : αm = . . . = α0 = 0} for any m ≥ 0.

Of course, the tilt D̃[
K is a perfectoid space over the tilt K[.

The final purpose of these notes is to explain a second structure as a perfectoid space over
the field L̂[∞ once we remove the origin from D̃[

K . We first recall the definition of the field
L∞.

Let L be an algebraic closure of L with maximal ideal M in its ring of integers. The
formal o-module structure of HL induces an actual o-module structure on M. For any n ≥ 1
let Fn := {z ∈M : [πn]φ(z) = 0} be the πn-torsion submodule. By adjoining these subsets to
L we obtain the tower of algebraic extensions

L ⊆ L1 := L(F1) ⊆ . . . ⊆ Ln := L(Fn) ⊆ . . . ⊆ L∞ :=
⋃
n

Ln ⊆ L .

From Lubin-Tate theory (cf. [LT]) we know:

a. The extension Ln/L does not depend on the choice of φ.

b. Fn is a free o/πno-module of rank one.

c. Ln/L is a totally ramified Galois extension of degree (q − 1)qn−1.
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d. The map

χL,n : Gal(Ln/L)
∼=−−→ (o/πno)×

σ 7−→ a such that σ(z) = [a]φ(z) for any z ∈ Fn

is an isomorphism.

e. Any generator zn of Fn as an o/πno-module generates the ring of integers oLn in Ln as
an o-algebra and is a prime element of oLn .

Lemma 2.3. The completion L̂∞ of the field L∞ is perfectoid.

Proof. The property c. above implies that the value group |L̂×∞| is dense in R×>0. Furthermore
the generators in e. can be chosen in such a way that [π]φ(zn+1) = zn for any n ≥ 1. Since
φ(X) ≡ Xq mod πo[[X]], it follows that zqn+1 ≡ [π]φ(zn+1) = zn mod πoL∞ . Again by e.
the zn generate the o-algebra oL∞ . Hence their cosets generate the k-algebra oL∞/πoL∞ . We
conclude that (oL∞/πoL∞)q = oL∞/πoL∞ .

We therefore may form the tilt L̂[∞ of L̂∞. As a consequence of b. above the o-module

T := lim←−(. . .
[π]φ(.)−−−−→ Fn+1

[π]φ(.)−−−−→ Fn
[π]φ(.)−−−−→ . . .

[π]φ(.)−−−−→ F1) .

is free of rank one. Since φ(X) ≡ Xq mod πo[[X]] we have

yqm+1 ≡ ym mod πoL∞ for any m ≥ 1 and any (yn)n≥1 ∈ T .

Therefore

ι : T −→ oL̂[∞
(yn)n≥1 7−→ (. . . , yn mod πoL∞ , . . . , y1 mod πoL∞ , 0)

is a well defined map (but not a homomorphism). We fix a generator t = (zn)n of the o-module
T . It follows from e. above that ι(t) is neither zero nor a unit in oL̂[∞

. Hence we have the well
defined homomorphism of k-algebras

k[[Z]] −→ oL̂[∞
f(Z) 7−→ f(ι(t)) ,

which extends to an embedding of fields

k((Z)) −→ L̂[∞ .

The image EL of the latter is a complete nonarchimedean discretely valued field of character-
istic p with residue field k. It is called the field of norms of L. The image of the former map
is its ring of integers oEL . One can show:

– EL is independent of the choice of the generator t.

– L̂[∞ is the completion of the perfect hull of EL. This implies that sending X to ι(t) gives
an isomorphism

(7) R̂k
∼=−−→ oL̂[∞

.
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On the other hand sending ι(t) to Z gives a homomorphism oEL −→ oK[ [[Z]]. Using Lemma
2.2 and (7) we obtain isomorphisms

(8) D̃[
K
∼= Spf(oK[⊗̂kR̂k)ad = Spf(oK[⊗̂k oEL⊗̂oELoL̂[∞)ad ∼= Spf(oK[ [[Z]]⊗̂oELoL̂[∞)ad .

Note that Spf(oK[ [[Z]]) is the formal open unit disk over oK[ . To go further we have to remove
the origin from the open unit disk, i.e., we have to start with the adic space D∗K := DK \{0}.
It has a perfectoid version D̃∗K . To compute its tilt we observe that now we may view the
punctured open unit disk D∗

K[ (over K[) as an adic space over EL via the map

EL −→ O(D∗
K[)

Z 7−→ ι(t)|D∗
K[

.

In this setting the formula (8) becomes the following isomorphism. Technically the additional
complication comes from the fact that D∗K is no longer the generic fiber of an affine formal
scheme. So one has to exhaust D∗K by affinoid annuli and has to redo everything above for
them.

Proposition 2.4. (D̃∗K)[ ∼= D∗
K[⊗̂ELL̂

[
∞.

The formal o-module structure of HL induces an action of the multiplicative monoid o\{0}
on the rings R̂L, R̂k, and R̂K and consequently on the perfectoid spaces D̃K and D̃∗K and
their tilts. Under the isomorphism in Lemma 2.2 this action on the left hand side corresponds
to the action on the right hand side through the factor R̂k. The action of π on R̂k is the
q-Frobenius.

On the other hand the Galois group Gal(L∞/L) naturally acts on L̂[∞. The projective

limit of the isomorphisms χL,n in d. above is an isomorphism χL : Gal(L∞/L)
∼=−−→ o×. Hence

we have an o×-action on L̂[∞. Letting π act as the q-Frobenius this extends to an action
of the monoid o \ {0} on L̂[∞. One checks that the isomorphism (7) is equivariant for the
o \ {0}-actions on the two sides.

The latter implies that in the isomorphism in Prop. 2.4 the action of π on the left hand
side corresponds on the right hand side to the map (φ−1⊗ id) ◦φq, where φq is the (absolute)
q-Frobenius and φ on D∗

K[ is given by the q-Frobenius on the coefficients K[ and φ(Z) = Z.
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