Perfectoid Spaces

Marten Bornmann, University of Münster

May 5, 2015

We closely follow Chapter 6 in [Sch12]. Let K be a perfectoid field with maximal ideal \mathfrak{m} and $\varpi \in \mathfrak{m}$ such that $|p| \leq |\varpi| < 1$.

Definition 1. A perfectoid affinoid K-algebra is an affinoid K-algebra (R, R^+) such that R is a perfectoid K-algebra.

Remark 2. - If (R, R^+) is a perfectoid affinoid K-algebra, we have $\mathfrak{m}R^{\circ} \subseteq R^+ \subseteq R^{\circ}$. In particular, if R^+ is a K° -algebra, R^+ is almost equal to R° .

Proof. Let $x \in \mathfrak{m}R^{\circ}$. Then x is topologically nilpotent, so some power of x lies in R^{+} , i.e. x is integral over R^{+} . As R^{+} is integrally closed in R by definition, the claim follows.

Lemma 3. The categories of perfectoid affinoid K-algebras and perfectoid affinoid K^{\flat} -algebras are equivalent.

Proof. First of all, R° is integrally closed in R: If $x \in R$ is integral over R° , $R^{\circ}[x]$ is a finitely generated R° -module and hence $R^{\circ}[x] \subseteq aR^{\circ}$ for some $a \in K$. Hence, x is power bounded, i.e. $x \in R^{\circ}$. This implies that a subring $R^{+} \subseteq R^{\circ}$ is integrally closed in R° if and only if it is integrally closed in R.

We claim that we have a bijective correspondence

 $\{\text{open integrally closed subrings of } R^{\circ}\} \stackrel{\cong}{\longleftrightarrow} \{\text{integrally closed subrings of } R^{\circ}/\varpi R^{\circ}\}$

mapping R^+ in the left hand side to $R^+/\varpi R^\circ$ and S in the right hand side to its preimage under the canonical projection $pr: R^\circ \to R^\circ/\varpi R^\circ$. This is well-defined by Remark 2.

Firstly, let $S \subseteq R^{\circ}/\varpi R^{\circ}$ be an integrally closed subring. Then $pr^{-1}(S)$ contains ϖR° and hence is open. If $x \in R^{\circ}$ is integral over $pr^{-1}(S)$, pr(x) is integral over S which implies $pr(x) \in S$. Hence $x \in pr^{-1}(S)$. On the other hand, if $R^{+} \subseteq R^{\circ}$ is open and integrally closed and \overline{x} is integral over $R^{+}/\varpi R^{\circ}$, choose a lift $x \in R^{\circ}$ of \overline{x} . Then there exists a monic polynomial $f \in R^{+}[X]$ such that $f(x) \in \varpi R^{\circ} \subseteq R^{+}$. Hence, x is integral over R^{+} , i.e. lies in R^{+} and $\overline{x} \in R^{+}/\varpi R^{+}$. This implies the claim.

Now we have $R^{\circ}/\varpi R^{\circ} \cong R^{\flat^{\circ}}/\varpi^{\flat} R^{\flat^{\circ}}$ from the construction of the tilting equivalence for perfectoid algebras. Applying the claim to R and R^{\flat} instead of R yields a correspondence between open integrally closed subrings of R° and open integrally closed subrings of $R^{\flat_{\circ}}$.

Theorem 4. Let (R, R^+) be a perfectoid affinoid K-algebra and $X = \operatorname{Spa}(R, R^+)$ with tilt $(R^{\flat}, R^{\flat+})$ and $X^{\flat} = \operatorname{Spa}(R^{\flat}, R^{\flat+})$.

- (i) We have a homeomorphism $X \cong X^{\flat}$ mapping $x \in X$ to the valuation $x^{\flat} \in X^{\flat}$ defined by $|f(x^{\flat})| = |f^{\sharp}(x)|$. It identifies rational subsets.
- (ii) For any rational subset $U \subseteq X$ mapping to $U^{\flat} \subseteq X^{\flat}$ the complete affinoid K-algebra $(\mathcal{O}_X(U), \mathcal{O}_X^+(U))$ is perfected with tilt $(\mathcal{O}_{X^{\flat}}(U^{\flat}), \mathcal{O}_{X^{\flat}}^+(U^{\flat}))$.

These are the first two parts of Theorem 6.3 in [Sch12]. The goal of these notes is to outline the proof of the theorem above. The fact that x^{\flat} is a valuation can be seen analogously to the case when R is a field (see the proof of [Sch12][Proposition 3.6]).

To see the continuity of the map $X \to X^{\flat}$ let $U(\frac{f_1,\dots,f_n}{g}) \subseteq X^{\flat}$ be a rational subset. We may assume that f_n is a power of ϖ^{\flat} without changing the rational subset $U(\frac{f_1,\dots,f_n}{g})$ (cf. [Sch12][Remark 2.8]). Then the preimage of $U(\frac{f_1,\dots,f_n}{g})$ is given by $U(\frac{f_1^{\sharp},\dots,f_n^{\sharp}}{g^{\sharp}})$ and this is rational because $f_n^{\sharp} \in K^{\times}$, i.e. the ideal generated by $f_1^{\sharp},\dots,f_n^{\sharp}$ is equal to R. Hence, $X \to X^{\flat}$ is continuous.

Lemma 5. Let $U = U(\frac{f_1, \dots, f_n}{g}) \subseteq X^{\flat}$ be rational with preimage $U^{\sharp} \subseteq X$. Without changing U we may assume that all $f_i, g \in R^{\flat \circ}$ and that $f_n = \varpi^{\flat N}$ for some N.

- (i) Let $A := R^{\circ} \langle (\frac{f_i}{g})^{1/p^{\infty}\sharp} \rangle$ be the ϖ -adic completion of $R^{\circ}[(\frac{f_i}{g})^{1/p^{\infty}\sharp}] \subseteq R[\frac{1}{g^{\sharp}}]$. Then A^a is a perfectoid $K^{\circ a}$ -algebra.
- (ii) $\mathcal{O}_X(U^{\sharp})$ is a perfectoid K-algebra and $\mathcal{O}_X(U^{\sharp})^{\circ a} = A^a$.
- (iii) $\mathcal{O}_{X^{\flat}}(U)$ is the tilt of $\mathcal{O}_X(U^{\sharp})$.

Proof. (i) in characteristic p: If K is of characteristic p we may identify K with K^{\flat} and R with R^{\flat} . Thus, we may leave out the superscripts \sharp and \flat . By definition, A is ϖ -adically complete and ϖ -torsion free.

We have a surjective homomorphism $\varphi: R^{\circ}[T_i^{1/p^{\infty}}] \to R^{\circ}[(\frac{f_i}{g})^{1/p^{\infty}}]$. Its kernel contains the ideal I generated by the elements $T_i^{1/p^m}g^{1/p^m}-f_i^{1/p^m}$. Hence we obtain a surjective homomorphism $\overline{\varphi}: R^{\circ}[T_i^{1/p^{\infty}}]/I \to R^{\circ}[(\frac{f_i}{g})^{1/p^{\infty}}]$. We claim that this is an almost isomorphism. The exact sequence

$$0 \to \ker(\overline{\varphi}) \to R^{\circ}[T_i^{1/p^{\infty}}]/I \to R^{\circ}[(\frac{f_i}{q})^{1/p^{\infty}}] \to 0$$

induces the exact sequence

$$0 \to \ker(\overline{\varphi}) \otimes_{K^{\circ}} K \to R[T_i^{1/p^{\infty}}]/\langle I \rangle \to R[(\frac{f_i}{g})^{1/p^{\infty}}] \to 0.$$

But in $R[T_i^{1/p^{\infty}}]/\langle I \rangle$ we have $gT_n = \varpi^N$. Hence, g is invertible, $T_i = \frac{f_i}{g}$ and the right map is an isomorphism. This implies that $\ker(\overline{\varphi}) \otimes_{K^{\circ}} K = 0$ which means that for each $f \in \ker(\overline{\varphi})$ there exists some k such that $\varpi^k f = 0$. Then $(\varpi^{k/p^m} f)^{p^m} = 0$ for

each $m \ge 1$ and because I is closed under taking p-power roots, we have $\varpi^{k/p^m} f = 0$. This shows that $\mathfrak{m} f = 0$ and hence $\overline{\varphi}$ is almost injective and consequently an almost isomorphism. This implies that the horizontal maps in the commutative diagram

$$\begin{array}{cccc} R^{\circ}[T_i^{1/p^{\infty}}]/\langle I,\varpi\rangle & \longrightarrow & R^{\circ}[(\frac{f_i}{g})^{1/p^{\infty}}]/\varpi \\ & \uparrow & & \uparrow \\ R^{\circ}[T_i^{1/p^{\infty}}]/\langle I,\varpi^{1/p}\rangle & \longrightarrow & R^{\circ}[(\frac{f_i}{q})^{1/p^{\infty}}]/\varpi^{1/p} \end{array}$$

are almost isomorphisms. The left Frobenius map is an isomorphism by definition of I and hence the right Frobenius map is an almost isomorphism. This concludes the proof of (i) in characteristic p.

We will now show that (i) implies (ii) for K of arbitrary characteristic. We have inclusions

 $R^{\circ}\left[\left(\frac{f_i}{g}\right)^{\sharp}\right] \subseteq R^{\circ}\left[\left(\frac{f_i}{g}\right)^{1/p^{\infty}\sharp}\right] \subseteq \varpi^{-nN}R^{\circ}\left[\left(\frac{f_i}{g}\right)^{\sharp}\right].$

The first inclusion is obvious. To see the second one note that $\frac{1}{g^{\sharp}} = \varpi^{-N} \frac{f_n^{\sharp}}{g^{\sharp}} \in \varpi^{-N} R^{\circ}[(\frac{f_i}{g})^{\sharp}]$. But every element of $R^{\circ}[(\frac{f_i}{g})^{1/p^{\circ}\sharp}]$ is a linear combination with coefficients in $(\frac{1}{g^{\sharp}})^n R^{\circ}$ by terms contained in $R^{\circ}[(\frac{f_i}{g})^{\sharp}]$.

Because the quotient of $R^{\circ}[(\frac{f_i}{g})^{1/p^{\infty}\sharp}]$ by $R^{\circ}[(\frac{f_i}{g})^{\sharp}]$ is killed by a finite power of ϖ , we still have inclusions after ϖ -adic completion and we get

$$R^{\circ}\langle (\frac{f_i}{q})^{\sharp}\rangle \subseteq R^{\circ}\langle (\frac{f_i}{q})^{1/p^{\circ \sharp}}\rangle \subseteq R\langle (\frac{f_i}{q})^{\sharp}\rangle = \mathcal{O}_X(U^{\sharp}).$$

Thus, $\mathcal{O}_x(U^{\sharp}) = (A^a)_*[\varpi^{-1}]$ is perfected by part (i) and [Sch12][Theorem 5.2].

Finally, we will show (i) and (iii) for general K. As before A is flat and ϖ -adically complete. We still have a surjective ring homomorphism $R^{\circ}[T_i^{1/p^{\infty}}] \to A$ and its kernel contains the ideal I generated by all $T_i^{1/p^m}g^{1/p^m\sharp} - f_i^{1/p^m\sharp}$. Now we see from part (ii) in characteristic p that $(\mathcal{O}_{x^{\flat}}(U), \mathcal{O}_{X^{\flat}}^+(U))$ is a perfectoid affinoid K^{\flat} -algebra. Let (S, S^+) be its untilt. The map $\operatorname{Spa}(S, S^+) \to X$ induced by the untilt of $(R^{\flat}, R^{\flat+}) \to (\mathcal{O}_X(U), \mathcal{O}_X^+(U))$ factors over U^{\sharp} and the universal property of the structure presheaf yields a homomorphism $(\mathcal{O}_X(U^{\sharp}), \mathcal{O}_X^+(U^{\sharp})) \to (S, S^+)$. The composite

$$R^{\circ}\langle T_i^{1/p^{\infty}}\rangle^a \to R^{\circ}\langle (\frac{f_i}{g})^{1/p^{\infty}\sharp}\rangle^a \to \mathcal{O}_X(U^{\sharp})^{\circ a} \to S^{\circ a}$$

is the untilt of the morphism

$$R^{\flat \circ} \langle T_i^{1/p^{\infty}} \rangle^a \to \mathcal{O}_{X^{\flat}}(U)^{\circ a}.$$

If I^{\flat} is the ideal of $R^{\flat \circ}[T_i^{1/p^{\infty}}]$ defined analogously to I this implies that

$$R^{\circ}\langle T_i^{1/p^{\infty}}\rangle/\langle I,\varpi\rangle^a \to A^a/\varpi \to S^{\circ a}/\varpi$$
 (1)

is the untilt of

$$R^{\flat \circ} \langle T_i^{1/p^\infty} \rangle / \langle I^\flat, \varpi^\flat \rangle^a \xrightarrow{\cong} \mathcal{O}_{X^\flat}^{\circ a}(U) / \varpi^\flat$$

which is an isomorphism by the proof of (i) for characteristic p. Hence the composite (1) is an isomorphism and as the first morphism is induced by a surjective map, both individual morphisms are isomorphisms. In particular $A^a/\varpi \cong S^{\circ a}/\varpi$ which implies that A^a is perfectoid and $S \cong (A^a)_*[\varpi^{-1}] = \mathcal{O}_X(U^{\sharp})$ is a perfectoid K-algebra. \square

For the surjectivity of $X \to X^{\flat}$ we need a technical approximation lemma which makes up for the fact that \sharp is not surjective.

Lemma 6. Let (R, R^+) be a perfectoid affinoid K-algebra with tilt $(R^{\flat}, R^{\flat+})$, $X = \operatorname{Spa}(R, R^+)$ and $X^{\flat} = \operatorname{Spa}(R^{\flat}, R^{\flat+})$. Then for any $f \in R$, $c \geq 0$ and $\epsilon > 0$ there exists $g_{c,\epsilon} \in R^{\flat}$ such that for all $x \in X$

$$|f(x) - g_{c,\epsilon}^{\sharp}(x)| \le |\varpi|^{1-\epsilon} \max(|f(x)|, |\varpi|^c).$$

If $\epsilon < 1$ we have

$$\max(|f(x)|, |\varpi|^c) = \max(|g_{c,\epsilon}^{\sharp}(x)|, |\varpi|^c).$$

Proof. See Lemma 6.5 and Corollary 6.6 (i) in [Sch12].

Corollary 7. Let (R, R^+) be a perfectoid affinoid K-algebra with tilt $(R^{\flat}, R^{\flat+})$, $X = \operatorname{Spa}(R, R^+)$ and $X^{\flat} = \operatorname{Spa}(R^{\flat}, R^{\flat+})$.

- (i) For any $x \in X$, the completed residue field $\widehat{K(x)}$ is a perfectoid field.
- (ii) The morphism $X \to X^{\flat}$ is a homeomorphism identifying rational subsets.

Proof. (i) for char(K) = p: From Lemma 5 (ii) we know that $\mathcal{O}_X(U)^{\circ a}$ is perfected for any rational subset U. This implies that the ϖ -adic completion of $\mathcal{O}_{X,x}^{\circ a} = \underline{\lim} \mathcal{O}_X(U)^{\circ a}$ is a perfected $K^{\circ a}$ -algebra. By [Sch12][Prop. 2.25] we have

$$\widehat{K(x)} = \widehat{K(x)^{\circ}}[\varpi^{-1}] = \widehat{\mathcal{O}_{X,x}^{\circ}}[\varpi^{-1}] = (\widehat{\mathcal{O}_{X,x}^{\circ}}^a)_*[\varpi^{-1}] = (\widehat{\mathcal{O}_{X,x}^{\circ a}})_*[\varpi^{-1}]$$

and thus $\widehat{K(x)}$ is perfectoid. As it is also a nonarchimedean field, it is a perfectoid field.

(ii): Let $U = U(\frac{f_1,\dots,f_n}{g}) \subseteq X$ be a rational subset with $f_n = \varpi^N$ and let $\epsilon < 1$. By Lemma 6 we can find $f_i^{\flat}, g^{\flat} \in R^{\flat}$ such that

$$|f_i(x) - f_i^{\flat\sharp}(x)| \le |\varpi|^{1-\epsilon} \max(|f_i(x)|, |\varpi|^{N+1})$$

and similarly for g. A calculation shows that $U = U(\frac{f_1^{\flat\sharp}, \dots f_n^{\flat\sharp}}{g^{\flat\sharp}})$. Hence, every rational subset is the preimage of a rational subset and we have shown that $X \to X^{\flat}$ identifies rational subsets.

As X is T_0 , this implies injectivity: If two points in X would be mapped to the same point of $x \in X^{\flat}$, the preimage of each rational subset containing x would contain all points mapped to x so the two points which are mapped to x could not be separated by a rational subset.

Now any $x \in X^{\flat}$ factors as $R^{\flat} \to \widehat{K(x)} \to \Gamma \cup \{0\}$ and we can untilt $R^{\flat} \to \widehat{K(x)}$ and each valuation of the perfectoid field $\widehat{K(x)}$ by [Sch12][Prop. 3.6]. This shows that $X \mapsto X^{\flat}$ is surjective. Using this we can copy the proof of part (i) for general K.

The previous corollary shows part (i) of Theorem 4. Let us now prove part (ii): By Corollary 7 (ii) and Lemma 5 (ii) $(\mathcal{O}_X(U), \mathcal{O}_X^+(U))$ is perfected affinoid. It is characterized among the perfected affinoid K-algebras by its universal property: It is the unique perfected affinoid K-algebra such that for any $\varphi: (R, R^+) \to (S, S^+)$ into a perfected affinoid K-algebra (S, S^+) for which the image of $\operatorname{Spa}(\varphi)$ is contained in U there exists a unique morphism of perfected affinoid K-algebras $(\mathcal{O}_X(U), \mathcal{O}_X^+(U)) \to (S, S^+)$ which makes the obvious diagram commutative. Tilting this diagram shows that its tilt has the universal property characterizing $(\mathcal{O}_{X^\flat}(U^\flat), \mathcal{O}_{X^\flat}^+(U^\flat))$ in the category of perfected affinoid K^\flat -algebras.

References

[Sch12] Peter Scholze. Perfectoid spaces. Publications mathématiques de l'IHÉS, 116(1):245–313, 2012.