Review of perfectoid fields and almost mathematics

Matthias Wulkau, University of Muenster

May 3, 2015

We follow closely [1, Chapter 2] and [2, Chapters 3,4].

Part I

Perfectoid fields

Let p be a prime.

1 Introduction

Definition. Let $(K, |\cdot|)$ be a valued field, complete with respect to a non-archimedean absolute value $|\cdot|: K \to \mathbb{R}_{\geq 0}$. It is a perfectoid field if

- $|K^{\times}| \subset \mathbb{R}_{>0}$ is non-discrete,
- $char(K^{\circ}/\mathfrak{m}) = p$, where K° resp. \mathfrak{m} are the valuation ring resp. the valuation ideal of K with respect to $|\cdot|$,
- the Frobenius $\Phi: K^{\circ}/(p) \to K^{\circ}/(p)$, $x \mapsto x^p$ is surjective.

Remark. Examples include

- in characteristic 0: the p-adic completions of \mathbb{Q}_p^{alg} , $\mathbb{Q}_p(p^{p^{-\infty}}) := \bigcup_{n\geq 1} \mathbb{Q}_p(p^{1/p^n})$ and $\mathbb{Q}_p(\mu_{p^{\infty}}) := \bigcup_{n\geq 1} \mathbb{Q}_p(\mu_{p^n})$;
- in characteristic p: the t-adic completions of $\mathbb{F}_p((t))^{sep}$ and $\mathbb{F}_p((t))(t^{p^{-\infty}})$ for a variable t.

Non-examples are p-adic completions of algebraic unramified extensions of \mathbb{Q}_p (the value group is discrete).

- **Observation.** 1. If K is perfected of characteristic 0 and $p \in \mathfrak{m}$, then it naturally contains \mathbb{Q}_p .
 - 2. K is perfectoid of characteristic p if and only if K is a perfect complete nonarchimedean field of characteristic p.

2 The tilting construction for perfectoid fields

Definition. Let A be a unital commutative ring, which is annihilated by p, pA = 0. Then $A \to A, a \mapsto a^p$ is a ring homomorphism. Set $R(A) := \lim_{x \to a^p} A$, the perfection of A.

This yields a perfect ring (meaning that $x \mapsto x^p$ is bijective) with pR(A) = 0. Applying this construction to the valuation ring of a perfectoid field, we obtain the following interesting result.

Proposition. Let K be a perfectoid field and $\pi \in K^{\circ} \setminus \{0\}$ such that $|p| \le |\pi| < 1$. For $y \in K^{\circ}/(\pi)$, denote by \hat{y} a lift to K° .

1. The maps

$$R(K^{\circ}/(\pi)) \rightleftharpoons \varprojlim_{x \mapsto x^{p}} K^{\circ}$$

$$(x_{n})_{n \ge 0} \mapsto (\lim_{m \to \infty} \hat{x}_{n+m}^{p^{m}})_{n \ge 0}$$

$$(y^{(n)} + (\pi))_{n \ge 0} \leftrightarrow (y^{(n)})_{n \ge 0}$$

are mutually inverse and establish a well-defined and natural bijection between multiplicative monoids respecting the zero elements on both sides. In particular, the limits $\lim_{m\to\infty} \hat{x}_{n+m}^{p^m}$ exist and are independent of the choices of the lifts.

- 2. The ring $R(K^{\circ}/(\pi))$ is an integral domain, independent of the choice of π .
- 3. Denote by $-^{\sharp}$ the map

$$K^{\flat} \coloneqq Q(R(K^{\circ}/(\pi))) \stackrel{\cong}{\longrightarrow} \varprojlim_{x \mapsto x^p} K \stackrel{\theta_0}{\longrightarrow} K$$

where $\theta_0((y^{(n)})_n) := y^{(0)}$. Then

$$|x|_{K^{\flat}}\coloneqq \left|x^{\sharp}\right|_{K}$$

defines a non-archimedean absolute value

- which makes K^{\flat} into a perfectoid field of characteristic p and
- with respect to which $K^{\flat \circ} = R(K^{\circ}/(\pi))$.
- 4. If char (K) = p, then $K^{\flat} \cong K$.

Definition. K^{\flat} is called the tilt of K.

From the previous proposition, we see that, in particular, the tilt of a perfectoid field is again a perfectoid field (note that, for example, $\mathbb{Q}_p^{\flat} = \mathbb{F}_p$). The properties of the tilt of a perfectoid field are summarized in the following theorem:

Theorem. Let K be a perfectoid field with tilt K^{\flat} .

- 1. The map

 - is bijective.
- 2. Any finite extension of K is a perfectoid field.
- 3. The association -^{\flat} induces an equivalence of categories

finite extensions of
$$K \stackrel{\cong}{\longrightarrow}$$
 finite extensions of K^{\flat}
$$L \longmapsto L^{\flat}$$

with $[L:K] = [L^{\flat}:K^{\flat}]$. In particular, K is algebraically closed if K^{\flat} is algebraically closed.

Part II

Almost mathematics

3 Almost category theory

Fix a perfectoid field $(K, |\cdot|, K^{\circ}, \mathfrak{m})$, let $\operatorname{char}(K^{\circ}/\mathfrak{m}) = p$. Note that \mathfrak{m} is a flat K° -module (since torsionfree modules over valuation rings are flat) and that $\mathfrak{m}^2 = \mathfrak{m} \cong \mathfrak{m} \otimes_{K^{\circ}} \mathfrak{m}$.

Definition. Let M be a K° -module.

- An element $x \in M$ is almost zero if $\mathfrak{m}x = 0$. M is almost zero if $\mathfrak{m}M = 0$.
- A morphism $f \in Hom_{K^{\circ}}(M, N)$ is an almost isomorphism if ker(f) and coker(f) are almost zero.

Example. K°/\mathfrak{m} is almost zero, whereas $K^{\circ}/(p)$ is not.

Denote by $Ann(\mathfrak{m})$ the full subcategory of almost zero objects in K° -mod.

Lemma. The category $Ann(\mathfrak{m})$ is thick (i.e. closed under subobjects, quotients and extensions).

Proof. Let $M_1 \subset M$ and M/M_1 be almost zero. Then $\mathfrak{m}M \subseteq M_1$, hence $0 = \mathfrak{m}^2 M = \mathfrak{m}M$.

Therefore we can form the quotient category K° -mod / $\operatorname{Ann}(\mathfrak{m}) =: K^{\circ a}$ -mod. Denote the exact canonical functor K° -mod $\to K^{\circ a}$ -mod by $M \mapsto M^{a}$. The latter object is M, seen as an object of $K^{\circ a}$ -mod. We record the following facts about this abelian category:

- Let $f: M \to N$ be a morphism in K° -mod. f^{a} is an isomorphism if and only if f is an almost isomorphism. Hence, M lies in $Ann(\mathfrak{m}) \Leftrightarrow u: M \to 0$ is an almost isomorphism $\Leftrightarrow u^{a}: M^{a} \to 0$ is an isomorphism.
- For any two K° -modules M, N, there is an equality of Hom-sets

$$\operatorname{Hom}_{K^{\circ a}}(M^a, N^a) = \operatorname{Hom}_{K^{\circ}}(\mathfrak{m} \otimes_{K^{\circ}} M, N)$$

by which the left hand side obtains the natural structure of a K° -module.

• There is no non-zero \mathfrak{m} -torsion in $\operatorname{Hom}_{K^{\circ a}}(X,Y)$ for any two objects X,Y in $K^{\circ a}$ -mod (indeed, writing $X=M^a,Y=N^a$, then for $f\in \operatorname{Hom}_{K^{\circ}}(\mathfrak{m}\otimes_{K^{\circ}}M,N)$ with $\mathfrak{m}f=0$, one has $0=\mathfrak{m}f(\mathfrak{m}\otimes_{K^{\circ}}M)=f(\mathfrak{m}^2\otimes_{K^{\circ}}M)=f(\mathfrak{m}\otimes_{K^{\circ}}M)$.

Set al $\operatorname{Hom}_{K^{\circ a}}(X,Y) := \operatorname{Hom}_{K^{\circ a}}(X,Y)^a$.

Proposition. • The tensor product in K° -mod induces a bifunctor $-\otimes_{K^{\circ a}}$ - on $K^{\circ a}$ -mod, making it an abelian tensor category. There is a functorial isomorphism

$$Hom_{K^{\circ a}}(X \otimes_{K^{\circ a}} Y, Z) \cong Hom_{K^{\circ a}}(X, alHom_{K^{\circ a}}(Y, Z)).$$

• The functor $-^a$ has a right adjoint $-_*$ and a left adjoint $-_!$ with

$$(X_*)^a \cong X \cong (X_!)^a$$

and

$$(M^a)_* \cong Hom_{K^\circ}(\mathfrak{m}, M)$$
 resp. $(M^a)_! \cong \mathfrak{m} \otimes_{K^\circ} M$

for all objects X in $K^{\circ a}$ -mod and all objects M in K° -mod. Moreover, $-_*$ is left exact and $-_!$ is exact. Both are fully faithful.

In particular, the functors are defined as $X_* := \operatorname{Hom}_{K^{\circ a}}(K^{\circ a}, X)$ and $X_! := \mathfrak{m} \otimes_{K^{\circ}} X_*$. We have, for example, $(K^{\circ a})_! \cong \mathfrak{m}$.

4 Almost commutative algebra

Definition. A $K^{\circ a}$ -algebra A is a commutative unitary monoid object in $K^{\circ a}$ -mod (i.e. there are morphisms $\mu: A \otimes_{K^{\circ a}} A \to A$ and $\eta_A: K^{\circ a} \to A$ satisfying certain associativity and commutativity constraints). Denote the category of $K^{\circ a}$ -algebras by $K^{\circ a}$ -alg.

We collect several properties about almost algebras:

- $-^a$ restricts to an essentially surjective functor K° -alg $\to K^{\circ a}$ -alg.
- Let A be an object of $K^{\circ a}$ -alg. Then there is the notion of an Amodule, the category of which is denoted by A-mod. It is again an
 abelian tensor category.
- An A-algebra B is a $K^{\circ a}$ -algebra B together with a morphism of $K^{\circ a}$ -algebras $A \to B$.

Definition. Let $R^a = A$ be a $K^{\circ a}$ -algebra and X be an A-module. Then X is flat resp. almost projective if $X \otimes_{A^-}$ resp. alHom $_A(X, -)$ is an exact functor. The module $X = M^a$ is almost finitely presented if for all $\epsilon \in \mathfrak{m}$, there exists a finitely presented R-module M_{ϵ} and a homomorphism $f_{\epsilon}: M_{\epsilon} \to M$, such that $\epsilon \ker(f_{\epsilon}) = 0 = \epsilon \operatorname{coker}(f_{\epsilon})$.

Let B be an A-algebra. The morphism $A \to B$ is étale if the following two properties are satisfied:

- there exists $e \in (B \otimes_A B)_*$ such that e is idempotent, $\mu \circ e = \eta_B$ and $ker(\mu)_* \cdot e = 0$ (note: this is the definition of an unramified morphism);
- B is flat as an A-module.

The morphism is finite étale if it is étale and B is almost finitely presented as an A-module.

Denote by $A_{\text{f\'et}}$ the category of finite étale A-algebras. An intermediate step towards proving the main theorem about tilting, namely the equivalence of the categories $K_{\text{f\'et}}$ and $K_{\text{f\'et}}^{\flat}$, is the following.

Theorem. Let A be a $K^{\circ a}$ -algebra, which is flat over $K^{\circ a}$ and which is isomorphic with $\varprojlim_n A/(\pi)^n$. Then $B \mapsto B \otimes_A A/(\pi)$ induces an equivalence of categories $A_{f\acute{e}t} \cong (A/(\pi))_{f\acute{e}t}$.

References

- [1] OFER GABBER, LORENZO RAMERO. Almost Ring Theory. Lecture Notes in Mathematics 1800, Springer, 2003.
- [2] Peter Scholze. Perfectoid Spaces. Publ. math. de l'IHÉS 116 (2012), no. 1, 245-313.