TALK FF IV: THE ALGEBRAIC FARGUES-FONTAINE CURVE

JOHANNES ANSCHÜTZ

1. Collection of previous results

These notes are a detailed exposition of a talk I have given at a workshop in Neckarbischofsheim about the Galois group of \mathbb{Q}_{p} as a geometric fundamental group https://www.mathi.uni-heidelberg.de/~gqpaspi1geom/.
We will, building on the work of previous talks, introduce the algebraic FarguesFontaine curve $X_{E, F}$. For its construction we have to choose two fields E and F. We fix E / \mathbb{Q}_{p} a finite extension with residue field \mathbb{F}_{q} and an algebraically closed non-archimedean extension F / \mathbb{F}_{q}. In particular, F is perfectoid. We also fix a uniformizer $\pi \in E$.
Let

$$
Y^{\mathrm{ad}}:=Y_{E, F}^{\mathrm{ad}}:=\underset{I \subseteq] 0,1[}{\lim } \operatorname{Spa}\left(B_{I}\right)
$$

be the adic space associated with E and F, which was constructed in talk FF II, also see [Far, Definition 2.5.].

Fact 1.1 (talk FF II). $Y^{\text {ad }}$ has global sections $H^{0}\left(Y^{\text {ad }}, \mathcal{O}_{Y^{\text {ad }}}\right)=B$ and B is an integral domain. [Far, Definition 2.5.]

The Frobenius $\varphi: F \rightarrow F: x \mapsto x^{q}$ induces an automorphism

$$
\varphi: Y^{\mathrm{ad}} \rightarrow Y^{\mathrm{ad}}
$$

such that $\varphi^{\mathbb{Z}}$ acts properly discontinously on $Y^{\text {ad }}$. In fact, for $\varpi \in F^{\times}$with $|\varpi|_{F}<1$ there exists a continous map

$$
\delta: Y^{\mathrm{ad}} \rightarrow[0, \infty]: y \mapsto \frac{\log |\pi(\widetilde{y})|}{\log |\varpi(\widetilde{y})|}
$$

satisfying $\delta(\varphi(y))=\delta(y)^{1 / q}$ for $y \in Y^{\text {ad }}$, where \widetilde{y} denotes the maximal generalization of the point y in $Y^{\text {ad }}$ (compare with Wei, Proposition 3.3.5.]). We can conclude that the quotient space

$$
X^{\mathrm{ad}}:=X_{E, F}^{\mathrm{ad}}:=Y^{\mathrm{ad}} / \varphi^{\mathbb{Z}}
$$

is naturally provided with a structure sheaf making $X^{\text {ad }}$ an adic space, the so-called adic Fargues-Fontaine curve $X^{\text {ad }}=X_{E, F}^{\text {ad }}$. We denote by

$$
\mathrm{pr}: Y^{\mathrm{ad}} \rightarrow X^{\mathrm{ad}}
$$

the natural morphism of adic spaces.
It is a formal consequence of the properly discontinous action of $\varphi^{\mathbb{Z}}$ on $Y^{\text {ad }}$ that the pullback pr^{*} induces an equivalence of the category of $\mathcal{O}_{X^{\text {ad }}}$-modules with the category of φ-modules over $\mathcal{O}_{Y^{\text {ad }}}$, i.e. $\mathcal{O}_{Y^{\text {ad }}}$-modules carrying a $\varphi^{\mathbb{Z}}$-equivariant

[^0]action. For example, the structure sheaf $\mathcal{O}_{X^{\text {ad }}}$ corresponds to the φ-module $\mathcal{O}_{Y^{\text {ad }}}$ with its canonical isomorphism $\varphi_{\mathcal{O}_{Y^{\text {ad }}}}: \varphi^{*} \mathcal{O}_{Y^{\text {ad }}} \cong \mathcal{O}_{Y^{\text {ad }}}$. More generally, for $d \in \mathbb{Z}$ we denote by $\mathcal{O}_{X^{\text {ad }}}(d)$ or just $\mathcal{O}(d)$ the line bundle on $X^{\text {ad }}$ corresponding to the φ-module $\mathcal{O}_{Y^{\text {ad }}}(d)$ consisting of the sheaf $\mathcal{O}_{Y^{\text {ad }}}$ with the twisted φ-action
$$
\varphi_{\mathcal{O}_{Y^{\mathrm{ad}}(d)}}(f):=\pi^{-d} \varphi_{\mathcal{O}_{Y^{\mathrm{ad}}}}(f)
$$
for $f \in \mathcal{O}_{Y^{\text {ad }}}$. The global sections $P_{d}:=H^{0}\left(X^{\text {ad }}, \mathcal{O}_{X^{\text {ad }}}(d)\right)$ are thus given by
$$
P_{d}=B^{\varphi_{Y^{\mathrm{ad}}(d)}=1}=B^{\varphi=\pi^{d}}
$$

For example, $P_{0}=E$ and $P_{d}=0$ for $d<0$ ([FFb, Corollary 1.15]).
Elements in $P_{1}=B^{\varphi=\pi}$ can be constructed explicitly. Namely, let \mathcal{G} be the formal group over \mathcal{O}_{E} associated to a Lubin-Tate law $\mathcal{L T}$ over \mathcal{O}_{E}. Then \mathcal{G} comes equipped with a $\operatorname{logarithm} \log _{\mathcal{L} \mathcal{T}}(-) \in T \cdot E[[T]]$ and a twisted Teichmüller lift

$$
\begin{array}{ccc}
{[-]_{Q}: \mathcal{G}\left(\mathcal{O}_{F}\right)} & \rightarrow & \mathcal{G}\left(W_{\mathcal{O}_{E}}\left(\mathcal{O}_{F}\right)\right) \\
\varepsilon & \mapsto & \lim _{n \rightarrow \infty}\left[\pi^{n}\right]_{\mathcal{L} \mathcal{T}}\left(\left[\varepsilon^{q^{-n}}\right]\right),
\end{array}
$$

([FFb, Proposition 2.11]) where $[\pi]_{\mathcal{L} \mathcal{T}}(-)$ denotes multiplication with respect to the Lubin-Tate law.

Fact 1.2. The map

$$
\begin{array}{rlll}
\mathcal{G}\left(\mathcal{O}_{F}\right)=\left(\mathfrak{m}_{F},+\mathcal{L T}\right) & \rightarrow & P_{1}=B^{\varphi=\pi} \\
\varepsilon & \mapsto & \log _{\mathcal{L} \mathcal{T}}\left([\varepsilon]_{Q}\right)
\end{array}
$$

is an isomorphism of E-vector spaces ([FFb, Theorem 4.6.]).
We will however just use the existence of the $\operatorname{map} \mathcal{G}\left(\mathcal{O}_{F}\right) \rightarrow B^{\varphi=\pi}$. Up to convergence issues (see [FFb, Remark 4.8]) its well-definedness can be deduced as follows

$$
\varphi\left(\log _{\mathcal{L T}}\left([\varepsilon]_{Q}\right)\right)=\log _{\mathcal{L T}}\left(\left[\varepsilon^{q}\right]_{Q}\right)=\log _{\mathcal{L} \mathcal{T}}\left([\pi]_{\mathcal{L T}}\left([\varepsilon]_{Q}\right)\right)=\pi \log _{\mathcal{L T}}\left([\varepsilon]_{Q}\right) .
$$

By definition, a point $y \in Y^{\text {ad }}$ is called classical, if its support

$$
\operatorname{supp}(y):=\{f \in B \mid f(y)=0\} \subseteq B
$$

is a maximal ideal. Similarly, define classical points in the open sets $\operatorname{Spa}\left(B_{I}\right) \subseteq Y^{\text {ad }}$, $I \subseteq] 0,1$ [with extremities in $\left|F^{\times}\right|_{F} \subseteq \mathbb{R}_{>0}$, as the points whose support is a maximal ideal. Let $Y_{\mathrm{cl}}^{\mathrm{ad}} \subseteq Y^{\mathrm{ad}}$ be the subset of classical points of Y^{ad}. By [FFb, Theorem 3.9.] $Y_{\mathrm{cl}}^{\text {ad }}=\lim _{I \subseteq] 0,1[} \operatorname{Spa}\left(B_{I}\right)_{\mathrm{cl}}$. We want to point out, that for a classical point $y \in Y_{\mathrm{cl}}^{\text {ad }}$ the valuation on $k(y)$ is of rank one, i.e. y is the only point in $Y^{\text {ad }}$ with support $\operatorname{supp}(y)$. In fact, by [FFb, Theorem 4.3.] and [FFb, Corollary 3.11] each closed maximal ideal of B is generated by a primitive element of degree 1 . Then by [FFb, Theorem 2.4.] the image of $W_{\mathcal{O}_{E}}\left(\mathcal{O}_{F}\right) \subseteq H^{0}\left(Y^{\mathrm{ad}}, \mathcal{O}_{Y^{\text {ad }}}{ }^{+}\right)$in $k(y)$ is already a valuation ring of rank one, and hence $\operatorname{Spa}\left(k(y), k(y)^{+}\right)=\{y\}$. In particular, we obtain a bijection

$$
Y_{\mathrm{cl}}^{\mathrm{ad}} \xrightarrow{1: 1}\{\mathfrak{m} \subseteq B \text { closed maximal ideal }\} .
$$

Fact 1.3 (talks FF I, FF III). If $y \in Y_{\mathrm{cl}}^{\mathrm{ad}}$ is classical, then the residue field $k(y)$ is perfectoid with a canonical identification $k(y)^{b} \cong F$ of its tilt with the field F (FFb , Theorem 2.4.]). In particular, $k(y)$ is algebraically closed. Moreover, the local ring $\mathcal{O}_{Y^{\mathrm{ad}}, y}$ is a discrete valuation ring whose $\mathfrak{m}_{Y^{\mathrm{ad}}, y^{-}}$-adic completion is Fontaine's ring $B_{\mathrm{dR}, y}^{+}$associated to the perfectoid field $k(y)$. ([FFb, Theorem 3.9.] and [FFb, Definition 3.1])

Let $\operatorname{Div}\left(Y^{\text {ad }}\right)$ be the group of divisors on $Y^{\text {ad }}$, i.e. locally finite sums of classical points in $Y^{\text {ad }}$.

Fact 1.4 (talk FF III). The map

$$
\begin{array}{ccc}
\{\mathfrak{a} \subseteq B \text { non-zero closed ideal }\} & \rightarrow & \operatorname{Div}^{+}\left(Y^{\mathrm{ad}}\right) \\
\mathfrak{a} & \mapsto & V(\mathfrak{a})
\end{array}
$$

is an isomorphism ([FFb, Theorem 3.8.]).
The fact 1.4 was used to analyse the multiplicative structure of the graded E-algebra

$$
P:=P_{E, \pi}:=\bigoplus_{d=0}^{\infty} P_{d}=\bigoplus_{d=0}^{\infty} B^{\varphi=\pi^{d}} .
$$

Define the set of classical points in $X^{\text {ad }}$ as $X_{\mathrm{cl}}^{\text {ad }}:=\operatorname{pr}\left(Y_{\mathrm{cl}}^{\mathrm{ad}}\right) \subseteq X^{\text {ad }}$ and let $\operatorname{Div}\left(X^{\text {ad }}\right)$ be the group of divisors on $X^{\text {ad }}$, i.e. locally finite sums of classical points on $X^{\text {ad }}$. As $X^{\text {ad }}$ is quasi-compact, being the image of the quasi-compact set $\mathrm{Spa}\left(B_{I}\right)$ for some compact interval $I \subseteq] 0,1\left[\right.$, divisors on $X^{\text {ad }}$ are actually finite sums of classical points on $X^{\text {ad }}$. By definition, divisors on $X^{\text {ad }}$ are in bijection with φ-invariant divisors on $Y^{\text {ad }}$

$$
\operatorname{Div}\left(X^{\mathrm{ad}}\right) \cong \operatorname{Div}\left(Y^{\mathrm{ad}}\right)^{\varphi=1}
$$

as $\operatorname{pr}^{-1}\left(X_{\mathrm{cl}}^{\mathrm{ad}}\right)=Y_{\mathrm{cl}}^{\mathrm{ad}}$.
Fact 1.5 (talk FF III). The algebra P is graded factorial with irreducible elements of degree 1, i.e. every non-zero homogenous element can be written uniquely (up to the units $E^{\times}=P_{0}^{\times}$) as the product of homogenous elements of degree 1. More precisely, the divisor map

$$
\begin{array}{ccc}
\operatorname{div}:\left(\bigcup_{d \geq 0} P_{d} \backslash\{0\}\right) / E^{\times} & \rightarrow & \operatorname{Div}^{+}\left(X^{\mathrm{ad}}\right) \\
f & \mapsto & \operatorname{div}(f)
\end{array}
$$

is an isomorphism ([FFb, Theorem 4.3]). In particular, there is a bijection

$$
\operatorname{div}:\left(P_{1} \backslash\{0\}\right) / E^{\times} \xrightarrow{1: 1} X_{\mathrm{cl}}^{\mathrm{ad}} .
$$

2. The algebraic Fargues-Fontaine curve

We now define the algebraic Fargues-Fontaine curve.
Definition 2.1. The algebraic Fargues-Fontaine curve (for given E, F and π) is defined as the E-scheme

$$
X:=X_{E, F}=\operatorname{Proj}(P)
$$

with $P=P_{E, F, \pi}=\bigoplus_{d=0}^{\infty} B^{\varphi=\pi^{d}}$. Note, the ring B depends on E and F, but not on π.

The curve $X_{E, F}$ is independent of π in the sense that the choice of another uniformizer π^{\prime} yields a curve X^{\prime} canonically isomorphic to X as the following lemma shows. (see also [FFa, Section 7.1.4.])

Lemma 2.2. Let $\pi_{1}, \pi_{2} \in E$ be uniformizers with corresponding algebras

$$
P_{\pi_{i}}=\bigoplus_{d \geq 0} B^{\varphi=\pi_{i}^{d}}
$$

for $i=1,2$. Then

$$
\operatorname{Proj}\left(P_{\pi_{1}}\right) \cong \operatorname{Proj}\left(P_{\pi_{2}}\right),
$$

canonically and $P_{\pi_{1}} \cong P_{\pi_{2}}$ non-canonically.
Proof. The field F is algebraically closed, hence the closure $L:=\overline{\mathbb{F}}_{q} \subseteq \mathcal{O}_{F}$ lies in F. As the ring $W_{\mathcal{O}_{E}}(L)$ is henselian with algebraically closed residue field there exists $u \in W_{\mathcal{O}_{E}}(L)^{\times}$with

$$
\frac{\varphi(u)}{u}=\frac{\pi_{1}}{\pi_{2}} .
$$

Note that $W_{\mathcal{O}_{E}}(L) \subseteq B$. In particular, the multiplications

$$
\begin{array}{clc}
B^{\varphi=\pi_{2}^{d}} & \rightarrow & B^{\varphi=\pi_{1}^{d}} \\
f & \mapsto & u^{d} f
\end{array}
$$

for $d \in \mathbb{Z}$ combine to an isomorphism $\alpha_{u}: P_{\pi_{2}} \rightarrow P_{\pi_{1}}$. The element u is unique up to invertible elements $v \in W_{\mathcal{O}_{E}}(L)^{\varphi=1}=\mathcal{O}_{E}$. For $v \in \mathcal{O}_{E}^{\times}$the isomorphisms $\alpha:=\alpha_{u}$ and $\beta:=\alpha_{v u}$ satisfy

$$
v^{d} \alpha(f)=\beta(f)
$$

for $f \in P_{\pi_{2}, d}$ homogenous of degree d. It is easy to see that two morphisms

$$
\alpha, \beta: A \rightarrow A^{\prime}
$$

between non-negatively graded algebras, satisfying the above equation for some unit $v \in A_{0}^{\prime \times}$ and every $d \geq 0$ induce the same morphism on Proj. This proves the lemma.

We will see that X is indeed a "curve", i.e. one-dimensional. In some respect, X behaves like the curve \mathbb{P}_{E}^{1} over the field E although X is not of finite type over E. As X is defined via the Proj construction there are natural line bundles on X obtained by the shifted graded P-modules $P[d]$ for $d \in \mathbb{Z}$. Let

$$
\mathcal{O}(d):=\mathcal{O}_{X}(d):=\widetilde{P[d]}
$$

Then the $\mathcal{O}(d)$ are line bundles on X as P is generated by P_{1}. The global sections of $\mathcal{O}(d)$ can be computed, using that P is graded factorial 1.5 , as

$$
P_{d}=H^{0}\left(X, \mathcal{O}_{X}(d)\right)
$$

In fact, P_{d} injects into $H^{0}\left(X, \mathcal{O}_{X}(d)\right)$ as P is an integral domain. Let conversly, $a \in H^{0}\left(X, \mathcal{O}_{X}(d)\right)$ be a global section. For $t \in P_{1}$ there exists $d_{t} \geq 0$ and $g_{t} \in P_{d}$ with $a_{\mid D^{+}(t)}=\frac{g_{t}}{t^{d_{t}}}$. We may assume that g_{t} is not divisible by t as P is graded factorial. Choose some $t^{\prime} \notin E^{\times} 1$. Then restricting to the intersection $D^{+}(t) \cap$ $D^{+}\left(t^{\prime}\right)=D^{+}\left(t \cdot t^{\prime}\right)$ yields $\frac{g_{t}}{t^{d_{t}}}=\frac{g_{t^{\prime}}}{t^{\prime t^{\prime}}}$ as P is an integral domain. As P is graded factorial and t, t^{\prime} are relatively prime, we can conclude $d_{t}=d_{t^{\prime}}=0$ and hence $g:=g_{t}=g_{t^{\prime}}$ so that a is induced by the section $g \in P_{d}$ as t was arbitrary.
For completeness we introduce a proof of the following lemma. To proof it we will use the adjunction

$$
\operatorname{Hom}(Z, \operatorname{Spec}(A)) \cong \operatorname{Hom}\left(A, \Gamma\left(Z, \mathcal{O}_{Z}\right)\right)
$$

for a ring A and an arbitrary locally ringed space Z ([GD71, Proposition 1.6.3])-

[^1]Lemma 2.3. Let $S=\operatorname{Spec}(R)$ be an affine scheme and

$$
A=\bigoplus_{d \geq 0} A_{d}
$$

be a graded R-algebra, generated by A_{1}. Let $h: \operatorname{Proj}(A) \rightarrow S$ be the canonical morphism. Then for any locally ringed space $g: Z \rightarrow S$ the map

$$
\begin{array}{clcc}
\eta: \operatorname{Hom}_{S}(Z, \operatorname{Proj}(A)) & \rightarrow & \left\{\left(\mathcal{L} \in \operatorname{Pic}(Z), \gamma: g^{*} \widetilde{A} \rightarrow \bigoplus_{d \geq 0} \mathcal{L}^{\otimes d} \text { surjective }\right\} / \cong\right. \\
f & \mapsto & \left(f^{*} \mathcal{O}(1), f^{*}\left(\gamma_{\text {can }}\right)\right)
\end{array}
$$

is a bijection, where $\mathcal{O}(1) \in \operatorname{Proj}(\mathcal{A})$ denotes the canonical line bundle $\mathcal{O}(1)=\widetilde{A[1]}$ and $\gamma_{\mathrm{can}}: h^{*}(\widetilde{A}) \rightarrow \bigoplus_{d \geq 0} \mathcal{O}(d)$ the canonical surjection.
Proof. We first proof that the morphism $\gamma_{\text {can }}$, which is induced by the canonical morphism

$$
A \rightarrow H^{0}\left(\operatorname{Proj}(A), \bigoplus_{d \geq 0} \mathcal{O}(d)\right),
$$

is indeed surjective. As the open sets $D^{+}(t)$ for $t \in A_{1} \operatorname{cover} \operatorname{Proj}(A)$ and the question is local, we may restrict to $D^{+}(t)$ for some $t \in A_{1}$. Then the morphism $\gamma_{\text {can }}$ is given by the multiplication

$$
A[1 / t]_{0} \otimes_{R} A \rightarrow \bigoplus_{d \geq 0} A[1 / t]_{d}
$$

which is easily seen to be surjective. We denote by $F(Z)$ the target of η. Then F is a sheaf with respect to local isomorphisms. We define for $t \in A_{1} \backslash\{0\}$ the subfunctor

$$
F_{t}(Z):=\{(\mathcal{L}, \gamma) \in F(Z) \mid \gamma(t) \text { generates } \mathcal{L}\}
$$

of F. The inclusion $F_{t} \rightarrow F$ is represented by open immersions. Indeed, for a morphism $(\mathcal{L}, \gamma): Z \rightarrow F$ the fiber product $Z \times{ }_{F} F_{t}$ is represented by the open subset

$$
D(\gamma(t)):=\left\{z \in Z \mid \gamma(t) \text { generates } \mathcal{L}_{z}\right\} .
$$

We claim that F_{t} is represented by the scheme $\operatorname{Spec}\left(A[1 / t]_{0}\right)$ by sending a morphism $f: Z \rightarrow \operatorname{Spec}\left(A[1 / t]_{0}\right)$ corresponding to the morphism $f: A[1 / t]_{0} \rightarrow \Gamma\left(Z, \mathcal{O}_{Z}\right)$ to the pair

$$
\left(\mathcal{O}_{Z}, \gamma: \widetilde{A}_{\mid Z} \rightarrow \bigoplus_{d \geq 0} \mathcal{O}_{Z}\right)
$$

where γ maps a local section represented by $a \in A_{d}$ to $f\left(\frac{a}{t^{d}}\right) \in \mathcal{O}_{Z}$. As $\gamma\left(t^{d}\right)=1$ for $d \geq 0$ the morphism γ is surjective. Let conversely, $(\mathcal{L}, \gamma) \in F_{t}(Z)$ be given. Define $f\left(a / t^{d}\right) \in \Gamma\left(Z, \mathcal{O}_{Z}\right)$ for $a \in A_{d}$ by the formula

$$
\gamma(a)=f\left(a / t^{d}\right) \gamma(t)^{d} \in \mathcal{L}^{\otimes d}(Z)
$$

Then $f: A[1 / t]_{0} \rightarrow \Gamma\left(Z, \mathcal{O}_{Z}\right)$ is well-defined and a homomorphism of rings. It can be checked that these morphisms $\operatorname{Spec}\left(A[1 / t]_{0}\right) \rightarrow F_{t}$ and $F_{t} \rightarrow \operatorname{Spec}\left(A[1 / t]_{0}\right)$ are mutually inverse. Moreover, the F_{t} for $t \in A_{1}$ cover F as A is generated by A_{1} and $\gamma: g^{*} \widetilde{A_{1}} \rightarrow \mathcal{L}$ surjective. We can conclude that η is an isomorphism of functors as for every $t \in A_{1}$ the pullback

$$
\operatorname{Spec}\left(A[1 / t]_{0}\right)=D^{+}(t)=\operatorname{Proj}(A) \times_{F} F_{t} \rightarrow F_{t}
$$

is an isomorphism.

As $H^{0}\left(X^{\text {ad }}, \bigoplus_{d \geq 0} \mathcal{O}(d)\right)=P$ we obtain by 2.3 a morphism

$$
\alpha: X^{\mathrm{ad}} \rightarrow X
$$

of locally ringed spaces satisfying $\alpha^{*}\left(\mathcal{O}_{X}(d)\right) \cong \mathcal{O}_{X^{\text {ad }}}(d)$. More precisely, it has to be checked, that the open sets

$$
D(t):=\left\{x \in X^{\text {ad }} \mid t \text { generates } \mathcal{O}_{X^{\text {ad }}}(1)\right\}
$$

for $t \in P_{1}$ cover $X^{\text {ad }}$. We first show that for $t \in P_{1} \backslash\{0\}$ the vanishing locus

$$
V(t):=\left\{x \in X^{\text {ad }} \mid t(x)=0\right\}
$$

consists of classical points. This property can be checked on $Y^{\text {ad }}$ and because $Y^{\text {ad }}=\underset{\longrightarrow}{\lim } \operatorname{Spa}\left(B_{I}\right)$, we may restrict to $U:=\operatorname{Spa}\left(B_{I}\right) \subseteq Y^{\text {ad }}$ for some interval $I \subseteq] 0,1[$
$I \subseteq] 0,1$ [whose extremities lie in $\left|F^{\times}\right|$. By FFb, Theorem 3.9.] the ring B_{I} is a principal ideal domain. Assume $y \in V(t)$ for $t \in P_{1} \subseteq B_{I}$. If $t \neq 0$, then t does not vanish at the generic point of U, and hence $V(t)$ consists of points, whose support is maximal. In other words, $V(t) \subseteq X^{\text {ad }}$ consists of classical points. By 1.5 there is the bijection

$$
\operatorname{div}:\left(P_{1} \backslash\{0\}\right) / E^{\times} \xrightarrow{1: 1} X_{\mathrm{cl}}^{\mathrm{ad}} .
$$

For $t, t^{\prime} \in P_{1} \backslash\{0\}$ with $t^{\prime} \notin E^{\times} t$ (such t, t^{\prime} exist as P_{1} is infinite-dimensional over E, see 3.1 we therefore get

$$
V(t) \cap V\left(t^{\prime}\right)=\emptyset
$$

which was our claim.

3. The fundamental exact sequence

In order to understand X we need the fundamental exact sequence. Fix an effective divisor

$$
D=\sum_{i=1}^{n} a_{i} y_{i} \in \operatorname{Div}^{+}\left(Y^{\mathrm{ad}}\right)
$$

of degree $d:=\sum_{i=1}^{n} a_{i}$. Assume that $y_{i} \notin\left\{y_{j}\right\}^{\varphi^{Z}}$ for $i \neq j$ and let $x_{i}:=\operatorname{pr}\left(y_{i}\right) \in X_{\mathrm{cl}}^{\text {ad }}$. By 1.5 we know that $\left\{x_{i}\right\}=V\left(t_{i}\right)$ for some $t_{i} \in P_{1} \backslash\{0\}=H^{0}\left(X^{\text {ad }}, \mathcal{O}_{X^{\text {ad }}}(1)\right)$, which is unique up to multiplication by $E^{\times}=P_{0}^{\times}$. Let $t:=\prod_{i=1}^{n} t_{i}^{a_{i}}$. Then the divisor of $t \in H^{0}\left(X^{\text {ad }}, \mathcal{O}_{X^{\text {ad }}}(d)\right)$ is precisly $\sum_{i=1}^{n} a_{i} x_{i}$.
Theorem 3.1 (Fundamental exact sequence). For $r \geq 0$ the sequence

is exact, where u is the canonical evaluation morphism

$$
P_{d+r} \subseteq B=H^{0}\left(Y^{\mathrm{ad}}, \mathcal{O}_{Y^{\mathrm{ad}}}\right) \rightarrow \mathcal{O}_{Y^{\mathrm{ad}}, y_{i}} / \mathfrak{m}_{Y^{\mathrm{ad}}, y_{i}}^{a_{i}} \cong B_{\mathrm{dR}, y_{i}}^{+} / \mathfrak{m}_{Y^{\mathrm{ad}}, y_{i}}^{a_{i}} B_{\mathrm{dR}, y_{i}}^{+}
$$

Proof. We first show $\operatorname{ker}(u)=t P_{r}$. Let $f \in P_{d+r}$ be an element with $u(f)=0$. We consider f as a function on $Y^{\text {ad }}$ and look at its $\operatorname{divisor} \operatorname{div}(f) \in \operatorname{Div}^{+}\left(Y^{\text {ad }}\right)$. As $u(f)=0$ we get

$$
\operatorname{div}(f) \geq \sum_{i=1}^{n} a_{i} y_{i}
$$

But $\operatorname{div}(f)$ is φ-invariant because $\varphi(f)=\pi^{d} f$, and hence

$$
\operatorname{div}(f) \geq \sum_{i=1}^{n} a_{i} \sum_{n \in \mathbb{Z}} \varphi\left(y_{i}\right)=\operatorname{div}(t)
$$

where t is considered as a function on $Y^{\text {ad }}$. Hence, by fact 1.4

$$
f=g t
$$

for some $g \in B$. We get $\varphi(g) \pi^{d} t=\pi^{d+r} g t$ and thus $g \in P_{r}$ as B is an integral domain.

Factoring $t=t_{1} \cdot t^{\prime}$ and considering for $r \geq 0$ the diagram

reduces the proof for surjectivity to the case $d=1$ and $t=t_{1}$. Furthermore, we may assume $r=0$. In fact, if $a \in C:=k\left(y_{1}\right)$ and $u(t)=a^{1 / r+1}$ for some $t \in P_{1}$, then $u\left(t^{r+1}\right)=a$. We thus have to show that the map

$$
u: B^{\varphi=\pi} \rightarrow C=k(y)
$$

is surjective. By $1.3 C$ is perfectoid and algebraically closed with tilt F. In particular, $\mathcal{O}_{C} / \pi \cong \mathcal{O}_{F} / \pi^{b}$ for some $\pi^{b} \in F$ with $\left|\pi^{b}\right|_{F}=|\pi|_{C}$. We will use the description $\mathcal{G}\left(\mathcal{O}_{F}\right) \cong B^{\varphi=\pi}$ from fact 1.2 . We get the sequence of maps

We used that F is perfectoid to conclude

$$
{\underset{\zeta}{\lim }}_{\stackrel{ }{ }} \mathcal{G}\left(\mathcal{O}_{F} / \pi^{b}\right) \cong \underset{\varphi}{\lim _{\varphi}} \mathcal{G}\left(\mathcal{O}_{F}\right) \cong \mathcal{G}\left(\mathcal{O}_{F}\right)
$$

Putting things together we get the map

$$
\begin{array}{clc}
\Psi:{\underset{l i m}{[\pi]_{\mathcal{L} \mathcal{T}}} \mathcal{G}\left(\mathcal{O}_{C}\right)}^{\left(z_{n}\right)_{n}} & \rightarrow & C \\
& \mapsto & \log _{\mathcal{L} \mathcal{T}}\left(z_{0}\right)
\end{array}
$$

More precisely, take $\left(z_{n}\right)_{n} \in \lim _{[\pi]_{\mathcal{L} \mathcal{T}}} \mathcal{G}\left(\mathcal{O}_{C} / \pi\right)$ with reduction $\left(\bar{z}_{n}\right)_{n} \in \lim _{[\pi]_{\mathcal{L} \mathcal{T}}} \mathcal{G}\left(\mathcal{O}_{C} / \pi\right)$ and $\varepsilon \in \mathcal{G}\left(\mathcal{O}_{F}\right)$ with $\varepsilon^{1 / q^{n}}=\bar{z}_{n} \in \mathcal{O}_{F} / \pi^{b}=\mathcal{O}_{C} / \pi$ for all n. Then

$$
[\varepsilon]_{Q}=\lim _{n \rightarrow \infty}\left[\pi^{n}\right]_{\mathcal{L} \mathcal{T}}\left(\left[\varepsilon^{1 / q^{n}}\right]\right)=\lim _{n \rightarrow \infty}\left[\pi^{n}\right]_{\mathcal{L T}}\left(z_{n}\right)=z_{0}
$$

showing that

$$
\Psi\left(\left(z_{n}\right)_{n}\right)=\log _{\mathcal{L T}}\left([\varepsilon]_{Q}\right)=\log _{\mathcal{L T}}\left(z_{0}\right)
$$

The map Ψ is surjective as C is algebraically closed and we can conclude. Indeed, the formula

$$
\log _{\mathcal{L T}}\left([\pi]_{\mathcal{L T}}(x)\right)=\pi \log _{\mathcal{L T}}(x)
$$

for $x \in \mathcal{G}\left(\mathcal{O}_{C}\right)$ and the surjectivity of $[\pi]_{\mathcal{L} \mathcal{T}}: \mathfrak{m}_{C} \rightarrow \mathfrak{m}_{C}(C$ is algebraically closed $)$ shows that the image of $\log _{\mathcal{L} \mathcal{T}}: \mathfrak{m}_{C} \rightarrow C$ contains elements of arbitrary large absolute value. But then the $\operatorname{logarithm} \log _{\mathcal{L} \mathcal{T}}$ has to be surjective as it has the Artin-Hasse-exponential as a local inverse near 0.

Theorem 4.1 yields the following corollary.
Corollary 3.2. Let $t \in P_{1} \backslash\{0\}$ with vanishing locus $V(t)=\{x\} \subseteq X_{\mathrm{cl}}^{\mathrm{ad}}$ and $y \in Y_{\mathrm{cl}}^{\mathrm{ad}}$ a classical point over x. Then for $C:=k(y)$ the map

$$
\begin{array}{rlr}
\theta: P / t P & \rightarrow & \{g \in C[T] \mid g(0) \in E\} \\
\sum_{d \geq 0} f_{d} & \mapsto & \sum_{d \geq 0} f_{d}(y) T^{d}
\end{array}
$$

is an isomorphism of graded algebras. In particular, $\operatorname{Proj}(P / t P)=\{(0)\}$ has one element.

Proof. It is clear that θ is a morphism of graded algebras. Moreover, it is an isomorphism in degrees $d \geq 1$ by 3.1 and trivially for $d=0$. Finally, let $\mathfrak{p} \neq 0$ be an homogenous prime ideal of the right hand side $\{g \in C[T] \mid g(0) \in E\}$. Then $c T^{d} \in \mathfrak{p}$ for some $d \geq 1$ and $c \in C^{\times}$. Multiplying by $c^{-1} T$ yields $T^{d+1} \in \mathfrak{p}$ such that $\mathfrak{p}=(T)$, a contradiction.

4. Properties of the algebraic Fargues-Fontaine curve

Now we are ready to prove the main theorem of this talk.
Theorem 4.1. The scheme X is noetherian, integral and regular of Krull dimension one. More precisely, for $t \in P_{1} \backslash\{0\}$

- $D^{+}(t)=\operatorname{Spec}\left(B_{t}\right)$ with $B_{t}:=P[1 / t]_{0}=B[1 / t]^{\varphi=1}$ a principal ideal domain.
- $V^{+}(t)=\left\{\infty_{t}\right\}$ with $\infty_{t} \in X$ the closed point given by the homogenous prime ideal generated by t, so $\infty_{t}=(t) \subseteq P$.
The map

$$
\begin{aligned}
\operatorname{div}:\left(P_{1} \backslash\{0\}\right) / E^{\times} & \rightarrow \quad|X|:=\{x \in X \text { closed }\} \\
t & \mapsto
\end{aligned}
$$

is bijective ${ }^{2}$.
Proof. As B is an integral domain, the curve X is integral. Pick $t \in P_{1} \backslash\{0\}$. Then

$$
V^{+}(t) \cong \operatorname{Proj}(P / t P)=\{t P\}
$$

by 3.2 , showing one claim. The description of B_{t} is clear and we can conclude that B_{t} is factorial as P is graded factorial. Moreover, the irreducible elements in B_{t} are exactly the fractions t^{\prime} / t with $t^{\prime} \in P_{1}$ not lying in $E^{\times} t$. We now want to prove that the ideal $\left(t^{\prime} / t\right) \subseteq B_{t}$ is maximal. For this we use the exact sequence

$$
0 \rightarrow t^{\prime} \cdot P_{r} \rightarrow P_{r+1} \xrightarrow{\theta} k\left(x^{\prime}\right) \rightarrow 0
$$

[^2]coming from 3.1. Here, $x^{\prime} \in X_{\mathrm{cl}}^{\text {ad }}$ denotes the unique point on $X_{\mathrm{cl}}^{\mathrm{ad}}$ with $t^{\prime}\left(x^{\prime}\right)=0$ 1.5. As $\theta(t) \neq 0$, by 3.1 the morphism θ factors over
$$
P_{1}[1 / t] \rightarrow k\left(x^{\prime}\right)
$$
showing that $B_{t} /\left(t^{\prime} / t\right) \rightarrow k\left(x^{\prime}\right)$ is surjective. Assume $f \in B_{t}$ satisfies $\theta(f)=$ $f\left(x^{\prime}\right)=0$. Then there exists $d \geq 1$ with
$$
f=\frac{g}{t^{d}}
$$
for some $g \in P_{d}$ and g automatically satisfies $g\left(x^{\prime}\right)=0$. Hence $g \in t^{\prime} P_{d-1}$ by the fundamental exact sequence 3.1 showing
$$
B_{t} /\left(t^{\prime} / t\right) \cong k\left(x^{\prime}\right)
$$

We can conclude that B_{t} is a principal ideal domain as it is factorial with every irreducible element generating a maximal ideal. Covering X by two sets of the form $D^{+}(t)$ with $t \in P_{1}$ shows that X is noetherian and regular of Krull dimension one. Because t generates the ideal $\operatorname{ker}\left(P \xrightarrow{\text { eval }} k\left(\infty_{t}\right)[T]\right) \subseteq P$ by 3.1 resp. 3.2 and P has units E^{\times}the map

$$
\begin{array}{ccc}
\operatorname{div}:\left(P_{1} \backslash\{0\}\right) / E^{\times} & \rightarrow & |X|:=\{x \in X \text { closed }\} \\
t & \mapsto & \infty_{t}
\end{array}
$$

is injective. But for some $t \in P_{1} \backslash\{0\}$ every irreducible element in B_{t} is of the form t^{\prime} / t for some $t^{\prime} \in P_{1}$ and hence div is surjective as B_{t} is a PID.

For $x \in|X|$ we define

$$
\operatorname{deg}: \operatorname{Div}(X) \rightarrow \mathbb{Z}: \sum_{x \in|X|} n_{x} x \mapsto \sum_{x \in|X|} n_{x}
$$

In other words, $\operatorname{deg}(x):=1$ for $x \in|X|$. Then for every $f \in k(X)^{\times}$in the function field $k(X)$ of X we have

$$
\operatorname{deg}(\operatorname{div}(f))=0
$$

which can be reinterpreted as the statement that the curve X is "complete". Indeed, as P is graded factorial the case for general $f \in k(X)^{\times}$is reduced to the case $f=t / t^{\prime}$ with $t, t^{\prime} \in P_{1} \backslash\{0\}$, where it follows from 4.1, namely $\operatorname{div}(f)=\infty_{t}-\infty_{t^{\prime}}$. All in all, we can conclude, as $X \backslash\left\{\infty_{t}\right\}=\operatorname{Spec}\left(B_{t}\right)$ with B_{t} a principal ideal domain, that similar to the case for \mathbb{P}_{E}^{1} the degree map yields an isomorphism

$$
\operatorname{Pic}(X) \cong \mathrm{Cl}(X) \xrightarrow{\text { deg }} \mathbb{Z}
$$

sending the line bundle $\mathcal{O}_{X}(d)$ to $d \in \mathbb{Z}$.
But not everything for X is similar to the projective line \mathbb{P}_{E}^{1}. For example, if $x \in|X|$ is a closed point, then the sequence

$$
0 \rightarrow \mathcal{O}(-1) \rightarrow \mathcal{O} \rightarrow k(x) \rightarrow 0
$$

is exact showing that the non-zero E-vector space $k(x) / E$ embeds into the space $H^{1}(X, \mathcal{O}(-1))$, which is therefore in particular not zero contrary to the case for \mathbb{P}_{E}^{1}. But still $H^{1}\left(X, \mathcal{O}_{X}(d)\right)=0$ for $d \geq 0$ (see [FFb, Proposition 6.5.]).
We can now compare the algebraic curve X with the adic curve $X^{\text {ad }}$. Recall that by 2.3 the identity $P=H^{0}\left(X^{\text {ad }}, \underset{d \geq 0}{\bigoplus} \mathcal{O}_{X^{\text {ad }}}(d)\right)$ corresponds to a morphism

$$
\alpha: X^{\mathrm{ad}} \rightarrow X
$$

of locally ringed spaces such that $\alpha^{*}\left(\mathcal{O}_{X}(d)\right) \cong \mathcal{O}_{X^{\text {ad }}}(d)$.
Theorem 4.2. The morphism $\alpha: X^{\text {ad }} \rightarrow X$ induces bijections

$$
\alpha: X_{\mathrm{cl}}^{\mathrm{ad}} \stackrel{\stackrel{|X|}{\cong}}{\alpha: \widehat{\mathcal{O}_{X, x}}} \stackrel{|X|}{\leftrightarrows} \mathcal{O}_{X^{\mathrm{ad}}, x^{\mathrm{ad}}}
$$

for $x^{a d} \in X_{\mathrm{cl}}^{\mathrm{ad}}$ with $x:=\alpha\left(x^{a d}\right) \in X$. In particular, for $x \in|X|$ the residue field $k(x)$ is algebraically closed and perfectoid with tilt $k(x)^{b} \cong F$ canonically up to a power of the Frobenius $\varphi: F \rightarrow F$.
Proof. By 1.5 and 4.1 sendig a section $t \in P_{1}=H^{0}\left(X, \mathcal{O}_{X}(1)\right)=H^{0}\left(X^{\text {ad }}, \mathcal{O}_{X^{\text {ad }}}\right)$ to its vanishing set $V(t) \subseteq X$ resp. $V(t) \subseteq X_{\mathrm{cl}}^{\text {ad }}$ induces bijections of $|X|$ resp. $X_{\mathrm{cl}}^{\text {ad }}$ with the set $\left(P_{1} \backslash\{0\}\right) / E^{\times}$. In the proof of 4.1 we have seen that α induces an isomorphism

$$
\alpha: k(x) \rightarrow k\left(x^{\mathrm{ad}}\right)
$$

for $x^{\text {ad }} \in X_{\mathrm{cl}}^{\text {ad }}$. Moreover, if $\{x\}=V(t)$ with $t \in P_{1}$, then t is a uniformizer in $\mathcal{O}_{X, x}$ and $\mathcal{O}_{X^{\text {ad }}, x^{\text {ad }}}$ showing that the completions

$$
\widehat{\mathcal{O}_{X, x}} \cong \widehat{\mathcal{O}_{X^{\text {ad }}, x^{\text {ad }}}}
$$

are isomorphic.

References

[Far] L. Fargues, Quelques resultats et conjectures concernant la courbes, http://webusers. imj-prg.fr/~laurent.fargues/AuDela.pdf
[FFa] L. Fargues and J.-M. Fontaine, Courbe et fibres vectoriels en theorie de Hodge p-adique, http://webusers.imj-prg.fr/~laurent.fargues/Prepublications.html
[FFb] , Vector bundles on curves and p-adic Hodge theory, A paratre aux Proceedings du Symposium ESPRC "Automorphic forms and Galois representations" ayant eu lieu Durham en juillet 2011, available at http://webusers.imj-prg.fr/~laurent.fargues/ Durham.pdf
[GD71] A. Grothendieck and J. A. Dieudonné, Eléments de géométrie algébrique. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 166, Springer-Verlag, Berlin, 1971. MR 3075000
[Wei] J. Weinstein, Peter Scholze's Lectures on p-adic geometry, Fall 2014, http://math. berkeley.edu/~jared/Math274/ScholzeLectures.pdf

[^0]: Date: 06.05.2015.

[^1]: ${ }^{1}$ If such a t^{\prime} does not exists, the claim is trivial, as then $P=E[t]$. But actually such a t^{\prime} exists: by 3.1 the E-vector space P_{1} is infinite dimensional.

[^2]: $2_{\text {as for }} \mathbb{P}_{E}^{1}$

