
TALK FF IV: THE ALGEBRAIC FARGUES-FONTAINE CURVE

JOHANNES ANSCHÜTZ

1. Collection of previous results

These notes are a detailed exposition of a talk I have given at a workshop in
Neckarbischofsheim about the Galois group of Qp as a geometric fundamental group
https://www.mathi.uni-heidelberg.de/~gqpaspi1geom/.
We will, building on the work of previous talks, introduce the algebraic Fargues-
Fontaine curve XE,F . For its construction we have to choose two fields E and F .
We fix E/Qp a finite extension with residue field Fq and an algebraically closed
non-archimedean extension F/Fq. In particular, F is perfectoid. We also fix a
uniformizer π ∈ E.
Let

Y ad := Y ad
E,F := lim−→

I⊆]0,1[
Spa(BI)

be the adic space associated with E and F , which was constructed in talk FF II,
also see [Far, Definition 2.5.].

Fact 1.1 (talk FF II). Y ad has global sections H0(Y ad,OY ad) = B and B is an
integral domain. [Far, Definition 2.5.]

The Frobenius ϕ : F → F : x 7→ xq induces an automorphism

ϕ : Y ad → Y ad

such that ϕZ acts properly discontinously on Y ad. In fact, for $ ∈ F× with
|$|F < 1 there exists a continous map

δ : Y ad → [0,∞] : y 7→ log |π(ỹ)|
log |$(ỹ)|

satisfying δ(ϕ(y)) = δ(y)1/q for y ∈ Y ad, where ỹ denotes the maximal general-
ization of the point y in Y ad (compare with [Wei, Proposition 3.3.5.]). We can
conclude that the quotient space

Xad := Xad
E,F := Y ad/ϕZ

is naturally provided with a structure sheaf making Xad an adic space, the so-called
adic Fargues-Fontaine curve Xad = Xad

E,F . We denote by

pr : Y ad → Xad

the natural morphism of adic spaces.
It is a formal consequence of the properly discontinous action of ϕZ on Y ad that
the pullback pr∗ induces an equivalence of the category of OXad-modules with
the category of ϕ-modules over OY ad , i.e. OY ad-modules carrying a ϕZ-equivariant
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action. For example, the structure sheaf OXad corresponds to the ϕ-module OY ad

with its canonical isomorphism ϕO
Y ad

: ϕ∗OY ad
∼= OY ad . More generally, for d ∈ Z

we denote by OXad(d) or just O(d) the line bundle on Xad corresponding to the
ϕ-module OY ad(d) consisting of the sheaf OY ad with the twisted ϕ-action

ϕO
Y ad (d)(f) := π−dϕO

Y ad
(f)

for f ∈ OY ad . The global sections Pd := H0(Xad,OXad(d)) are thus given by

Pd = B
ϕO

Y ad (d)=1
= Bϕ=π

d

.

For example, P0 = E and Pd = 0 for d < 0 ([FFb, Corollary 1.15]).
Elements in P1 = Bϕ=π can be constructed explicitly. Namely, let G be the formal
group overOE associated to a Lubin-Tate law LT overOE . Then G comes equipped
with a logarithm logLT (−) ∈ T · E[[T ]] and a twisted Teichmüller lift

[−]Q : G(OF ) → G(WOE
(OF ))

ε 7→ lim
n→∞

[πn]LT ([εq
−n

]),

([FFb, Proposition 2.11]) where [π]LT (−) denotes multiplication with respect to
the Lubin-Tate law.

Fact 1.2. The map

G(OF ) = (mF ,+LT ) → P1 = Bϕ=π

ε 7→ logLT ([ε]Q)

is an isomorphism of E-vector spaces ([FFb, Theorem 4.6.]).

We will however just use the existence of the map G(OF )→ Bϕ=π. Up to conver-
gence issues (see [FFb, Remark 4.8]) its well-definedness can be deduced as follows

ϕ(logLT ([ε]Q)) = logLT ([εq]Q) = logLT ([π]LT ([ε]Q)) = π logLT ([ε]Q).

By definition, a point y ∈ Y ad is called classical, if its support

supp(y) := {f ∈ B | f(y) = 0} ⊆ B
is a maximal ideal. Similarly, define classical points in the open sets Spa(BI) ⊆ Y ad,
I ⊆]0, 1[ with extremities in |F×|F ⊆ R>0, as the points whose support is a maximal
ideal. Let Y ad

cl ⊆ Y ad be the subset of classical points of Y ad. By [FFb, Theorem
3.9.] Y ad

cl = lim
I⊆]0,1[

Spa(BI)cl. We want to point out, that for a classical point

y ∈ Y ad
cl the valuation on k(y) is of rank one, i.e. y is the only point in Y ad with

support supp(y). In fact, by [FFb, Theorem 4.3.] and [FFb, Corollary 3.11] each
closed maximal ideal of B is generated by a primitive element of degree 1. Then by
[FFb, Theorem 2.4.] the image of WOE

(OF ) ⊆ H0(Y ad,OY ad
+) in k(y) is already

a valuation ring of rank one, and hence Spa(k(y), k(y)+) = {y}. In particular, we
obtain a bijection

Y ad
cl

1:1−→ {m ⊆ B closed maximal ideal}.

Fact 1.3 (talks FF I, FF III). If y ∈ Y ad
cl is classical, then the residue field k(y) is

perfectoid with a canonical identification k(y)[ ∼= F of its tilt with the field F ([FFb,
Theorem 2.4.]). In particular, k(y) is algebraically closed. Moreover, the local ring
OY ad,y is a discrete valuation ring whose mY ad,y-adic completion is Fontaine’s ring

B+
dR,y associated to the perfectoid field k(y). ([FFb, Theorem 3.9.] and [FFb,

Definition 3.1])
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Let Div(Y ad) be the group of divisors on Y ad, i.e. locally finite sums of classical
points in Y ad.

Fact 1.4 (talk FF III). The map

{a ⊆ B non-zero closed ideal} → Div+(Y ad)
a 7→ V (a)

is an isomorphism ([FFb, Theorem 3.8.]).

The fact 1.4 was used to analyse the multiplicative structure of the graded E-algebra

P := PE,π :=

∞⊕
d=0

Pd =

∞⊕
d=0

Bϕ=π
d

.

Define the set of classical points in Xad as Xad
cl := pr(Y ad

cl ) ⊆ Xad and let Div(Xad)
be the group of divisors on Xad, i.e. locally finite sums of classical points on Xad. As
Xad is quasi-compact, being the image of the quasi-compact set Spa(BI) for some
compact interval I ⊆]0, 1[, divisors on Xad are actually finite sums of classical
points on Xad. By definition, divisors on Xad are in bijection with ϕ-invariant
divisors on Y ad

Div(Xad) ∼= Div(Y ad)ϕ=1

as pr−1(Xad
cl ) = Y ad

cl .

Fact 1.5 (talk FF III). The algebra P is graded factorial with irreducible elements
of degree 1, i.e. every non-zero homogenous element can be written uniquely (up
to the units E× = P×0 ) as the product of homogenous elements of degree 1. More
precisely, the divisor map

div : (
⋃
d≥0

Pd \ {0})/E× → Div+(Xad)

f 7→ div(f)

is an isomorphism ([FFb, Theorem 4.3]). In particular, there is a bijection

div : (P1 \ {0})/E×
1:1−→ Xad

cl .

2. The algebraic Fargues-Fontaine curve

We now define the algebraic Fargues-Fontaine curve.

Definition 2.1. The algebraic Fargues-Fontaine curve (for given E, F and π) is
defined as the E-scheme

X := XE,F = Proj(P ),

with P = PE,F,π =
∞⊕
d=0

Bϕ=π
d

. Note, the ring B depends on E and F , but not on

π.

The curve XE,F is independent of π in the sense that the choice of another uni-
formizer π′ yields a curve X ′ canonically isomorphic to X as the following lemma
shows. (see also [FFa, Section 7.1.4.])

Lemma 2.2. Let π1, π2 ∈ E be uniformizers with corresponding algebras

Pπi =
⊕
d≥0

Bϕ=π
d
i
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for i = 1, 2. Then

Proj(Pπ1
) ∼= Proj(Pπ2

),

canonically and Pπ1
∼= Pπ2 non-canonically.

Proof. The field F is algebraically closed, hence the closure L := Fq ⊆ OF lies in
F . As the ring WOE

(L) is henselian with algebraically closed residue field there
exists u ∈WOE

(L)× with
ϕ(u)

u
=
π1
π2
.

Note that WOE
(L) ⊆ B. In particular, the multiplications

Bϕ=π
d
2 → Bϕ=π

d
1

f 7→ udf

for d ∈ Z combine to an isomorphism αu : Pπ2
→ Pπ1

. The element u is unique
up to invertible elements v ∈ WOE

(L)ϕ=1 = OE . For v ∈ O×E the isomorphisms
α := αu and β := αvu satisfy

vdα(f) = β(f)

for f ∈ Pπ2,d homogenous of degree d. It is easy to see that two morphisms

α, β : A→ A′

between non-negatively graded algebras, satisfying the above equation for some
unit v ∈ A′×0 and every d ≥ 0 induce the same morphism on Proj. This proves the
lemma. �

We will see that X is indeed a “curve”, i.e. one-dimensional. In some respect, X
behaves like the curve P1

E over the field E although X is not of finite type over E.
As X is defined via the Proj construction there are natural line bundles on X
obtained by the shifted graded P -modules P [d] for d ∈ Z. Let

O(d) := OX(d) := P̃ [d].

Then the O(d) are line bundles on X as P is generated by P1. The global sections
of O(d) can be computed, using that P is graded factorial 1.5, as

Pd = H0(X,OX(d)).

In fact, Pd injects into H0(X,OX(d)) as P is an integral domain. Let conversly,
a ∈ H0(X,OX(d)) be a global section. For t ∈ P1 there exists dt ≥ 0 and gt ∈ Pd
with a|D+(t) = gt

tdt
. We may assume that gt is not divisible by t as P is graded

factorial. Choose some t′ /∈ E×t1. Then restricting to the intersection D+(t) ∩
D+(t′) = D+(t · t′) yields gt

tdt
= gt′

t′dt′
as P is an integral domain. As P is graded

factorial and t, t′ are relatively prime, we can conclude dt = dt′ = 0 and hence
g := gt = gt′ so that a is induced by the section g ∈ Pd as t was arbitrary.
For completeness we introduce a proof of the following lemma. To proof it we will
use the adjunction

Hom(Z,Spec(A)) ∼= Hom(A,Γ(Z,OZ))

for a ring A and an arbitrary locally ringed space Z ([GD71, Proposition 1.6.3])-

1If such a t′ does not exists, the claim is trivial, as then P = E[t]. But actually such a t′ exists:
by 3.1 the E-vector space P1 is infinite dimensional.
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Lemma 2.3. Let S = Spec(R) be an affine scheme and

A =
⊕
d≥0

Ad

be a graded R-algebra, generated by A1. Let h : Proj(A) → S be the canonical
morphism. Then for any locally ringed space g : Z → S the map

η : HomS(Z,Proj(A)) → {(L ∈ Pic(Z), γ : g∗Ã→
⊕

d≥0 L⊗d surjective}/∼=
f 7→ (f∗O(1), f∗(γcan))

is a bijection, where O(1) ∈ Proj(A) denotes the canonical line bundle O(1) = Ã[1]

and γcan : h∗(Ã)→
⊕
d≥0
O(d) the canonical surjection.

Proof. We first proof that the morphism γcan, which is induced by the canonical
morphism

A→ H0(Proj(A),
⊕
d≥0

O(d)),

is indeed surjective. As the open sets D+(t) for t ∈ A1 cover Proj(A) and the
question is local, we may restrict to D+(t) for some t ∈ A1. Then the morphism
γcan is given by the multiplication

A[1/t]0 ⊗R A→
⊕
d≥0

A[1/t]d,

which is easily seen to be surjective. We denote by F (Z) the target of η. Then
F is a sheaf with respect to local isomorphisms. We define for t ∈ A1 \ {0} the
subfunctor

Ft(Z) := {(L, γ) ∈ F (Z) | γ(t) generates L}
of F . The inclusion Ft → F is represented by open immersions. Indeed, for a
morphism (L, γ) : Z → F the fiber product Z ×F Ft is represented by the open
subset

D(γ(t)) := {z ∈ Z | γ(t) generates Lz}.
We claim that Ft is represented by the scheme Spec(A[1/t]0) by sending a morphism
f : Z → Spec(A[1/t]0) corresponding to the morphism f : A[1/t]0 → Γ(Z,OZ) to
the pair

(OZ , γ : Ã|Z →
⊕
d≥0

OZ)

where γ maps a local section represented by a ∈ Ad to f( a
td

) ∈ OZ . As γ(td) = 1
for d ≥ 0 the morphism γ is surjective. Let conversely, (L, γ) ∈ Ft(Z) be given.
Define f(a/td) ∈ Γ(Z,OZ) for a ∈ Ad by the formula

γ(a) = f(a/td)γ(t)d ∈ L⊗d(Z).

Then f : A[1/t]0 → Γ(Z,OZ) is well-defined and a homomorphism of rings. It can
be checked that these morphisms Spec(A[1/t]0) → Ft and Ft → Spec(A[1/t]0) are
mutually inverse. Moreover, the Ft for t ∈ A1 cover F as A is generated by A1 and

γ : g∗Ã1 → L surjective. We can conclude that η is an isomorphism of functors as
for every t ∈ A1 the pullback

Spec(A[1/t]0) = D+(t) = Proj(A)×F Ft → Ft

is an isomorphism. �
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As H0(Xad,
⊕
d≥0
O(d)) = P we obtain by 2.3 a morphism

α : Xad → X

of locally ringed spaces satisfying α∗(OX(d)) ∼= OXad(d). More precisely, it has to
be checked, that the open sets

D(t) := {x ∈ Xad| t generates OXad(1)}
for t ∈ P1 cover Xad. We first show that for t ∈ P1 \ {0} the vanishing locus

V (t) := {x ∈ Xad | t(x) = 0}
consists of classical points. This property can be checked on Y ad and because
Y ad = lim−→

I⊆]0,1[
Spa(BI), we may restrict to U := Spa(BI) ⊆ Y ad for some interval

I ⊆]0, 1[ whose extremities lie in |F×|. By [FFb, Theorem 3.9.] the ring BI is a
principal ideal domain. Assume y ∈ V (t) for t ∈ P1 ⊆ BI . If t 6= 0, then t does not
vanish at the generic point of U , and hence V (t) consists of points, whose support
is maximal. In other words, V (t) ⊆ Xad consists of classical points. By 1.5 there
is the bijection

div : (P1 \ {0})/E×
1:1−→ Xad

cl .

For t, t′ ∈ P1 \ {0} with t′ /∈ E×t (such t, t′ exist as P1 is infinite-dimensional over
E, see 3.1) we therefore get

V (t) ∩ V (t′) = ∅,
which was our claim.

3. The fundamental exact sequence

In order to understand X we need the fundamental exact sequence. Fix an effective
divisor

D =

n∑
i=1

aiyi ∈ Div+(Y ad)

of degree d :=
n∑
i=1

ai. Assume that yi /∈ {yj}ϕ
Z

for i 6= j and let xi := pr(yi) ∈ Xad
cl .

By 1.5 we know that {xi} = V (ti) for some ti ∈ P1 \ {0} = H0(Xad,OXad(1)),

which is unique up to multiplication by E× = P×0 . Let t :=
n∏
i=1

taii . Then the

divisor of t ∈ H0(Xad,OXad(d)) is precisly
n∑
i=1

aixi.

Theorem 3.1 (Fundamental exact sequence). For r ≥ 0 the sequence

0 // H0(Xad,O(r))

∼=

��

t // H0(Xad,O(d+ r)) //

∼=

��

n∏
i=1

OXad,xi
/mai

Xad,xi

//

∼=
��

0

0 // Pr
t // Pd+r

u //
n∏
i=1

B+
dR,yi

/mai
Y ad,yi

B+
dR,yi

// 0

is exact, where u is the canonical evaluation morphism

Pd+r ⊆ B = H0(Y ad,OY ad)→ OY ad,yi/m
ai
Y ad,yi

∼= B+
dR,yi

/mai
Y ad,yi

B+
dR,yi

.
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Proof. We first show ker(u) = tPr. Let f ∈ Pd+r be an element with u(f) = 0. We
consider f as a function on Y ad and look at its divisor div(f) ∈ Div+(Y ad). As
u(f) = 0 we get

div(f) ≥
n∑
i=1

aiyi.

But div(f) is ϕ-invariant because ϕ(f) = πdf , and hence

div(f) ≥
n∑
i=1

ai
∑
n∈Z

ϕ(yi) = div(t)

where t is considered as a function on Y ad. Hence, by fact 1.4

f = gt

for some g ∈ B. We get ϕ(g)πdt = πd+rgt and thus g ∈ Pr as B is an integral
domain.

Factoring t = t1 · t′ and considering for r ≥ 0 the diagram

Pr
t1 //

=

��

Pr+1

t′

��
Pr

t // Pr+d

reduces the proof for surjectivity to the case d = 1 and t = t1. Furthermore, we
may assume r = 0. In fact, if a ∈ C := k(y1) and u(t) = a1/r+1 for some t ∈ P1,
then u(tr+1) = a. We thus have to show that the map

u : Bϕ=π → C = k(y)

is surjective. By 1.3 C is perfectoid and algebraically closed with tilt F . In particu-
lar, OC/π ∼= OF /π[ for some π[ ∈ F with |π[|F = |π|C . We will use the description
G(OF ) ∼= Bϕ=π from fact 1.2. We get the sequence of maps

lim←−
[π]LT

G(OC)→ lim←−
[π]LT

G(OC/π) ∼= lim←−
ϕ

G(OF /π[) ∼= lim←−
ϕ

G(OF ) = G(OF ).

We used that F is perfectoid to conclude

lim←−
ϕ

G(OF /π[) ∼= lim←−
ϕ

G(OF ) ∼= G(OF ).

Putting things together we get the map

Ψ : lim←−
[π]LT

G(OC) → C

(zn)n 7→ logLT (z0)

More precisely, take (zn)n ∈ lim←−
[π]LT

G(OC/π) with reduction (zn)n ∈ lim←−
[π]LT

G(OC/π)

and ε ∈ G(OF ) with ε1/q
n

= zn ∈ OF /π[ = OC/π for all n. Then

[ε]Q = lim
n→∞

[πn]LT ([ε1/q
n

]) = lim
n→∞

[πn]LT (zn) = z0,

showing that

Ψ((zn)n) = logLT ([ε]Q) = logLT (z0).
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The map Ψ is surjective as C is algebraically closed and we can conclude. Indeed,
the formula

logLT ([π]LT (x)) = π logLT (x)

for x ∈ G(OC) and the surjectivity of [π]LT : mC → mC (C is algebraically closed)
shows that the image of logLT : mC → C contains elements of arbitrary large
absolute value. But then the logarithm logLT has to be surjective as it has the
Artin-Hasse-exponential as a local inverse near 0. �

Theorem 4.1 yields the following corollary.

Corollary 3.2. Let t ∈ P1 \ {0} with vanishing locus V (t) = {x} ⊆ Xad
cl and

y ∈ Y ad
cl a classical point over x. Then for C := k(y) the map

θ : P/tP → {g ∈ C[T ] | g(0) ∈ E}∑
d≥0

fd 7→
∑
d≥0

fd(y)T d

is an isomorphism of graded algebras. In particular, Proj(P/tP ) = {(0)} has one
element.

Proof. It is clear that θ is a morphism of graded algebras. Moreover, it is an
isomorphism in degrees d ≥ 1 by 3.1 and trivially for d = 0. Finally, let p 6= 0 be
an homogenous prime ideal of the right hand side {g ∈ C[T ] | g(0) ∈ E}. Then
cT d ∈ p for some d ≥ 1 and c ∈ C×. Multiplying by c−1T yields T d+1 ∈ p such
that p = (T ), a contradiction. �

4. Properties of the algebraic Fargues-Fontaine curve

Now we are ready to prove the main theorem of this talk.

Theorem 4.1. The scheme X is noetherian, integral and regular of Krull dimen-
sion one. More precisely, for t ∈ P1 \ {0}

• D+(t) = Spec(Bt) with Bt := P [1/t]0 = B[1/t]ϕ=1 a principal ideal do-
main.

• V +(t) = {∞t} with ∞t ∈ X the closed point given by the homogenous
prime ideal generated by t, so ∞t = (t) ⊆ P .

The map

div : (P1 \ {0})/E× → |X| := {x ∈ X closed}
t 7→ ∞t

is bijective2.

Proof. As B is an integral domain, the curve X is integral. Pick t ∈ P1 \{0}. Then

V +(t) ∼= Proj(P/tP ) = {tP}

by 3.2, showing one claim. The description of Bt is clear and we can conclude that
Bt is factorial as P is graded factorial. Moreover, the irreducible elements in Bt
are exactly the fractions t′/t with t′ ∈ P1 not lying in E×t. We now want to prove
that the ideal (t′/t) ⊆ Bt is maximal. For this we use the exact sequence

0→ t′ · Pr → Pr+1
θ→ k(x′)→ 0

2as for P1
E
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coming from 3.1. Here, x′ ∈ Xad
cl denotes the unique point on Xad

cl with t′(x′) = 0
(1.5). As θ(t) 6= 0, by 3.1, the morphism θ factors over

P1[1/t]→ k(x′)

showing that Bt/(t
′/t) → k(x′) is surjective. Assume f ∈ Bt satisfies θ(f) =

f(x′) = 0. Then there exists d ≥ 1 with

f =
g

td

for some g ∈ Pd and g automatically satisfies g(x′) = 0. Hence g ∈ t′Pd−1 by the
fundamental exact sequence 3.1 showing

Bt/(t
′/t) ∼= k(x′).

We can conclude that Bt is a principal ideal domain as it is factorial with every
irreducible element generating a maximal ideal. Covering X by two sets of the form
D+(t) with t ∈ P1 shows that X is noetherian and regular of Krull dimension one.

Because t generates the ideal ker(P
eval−→ k(∞t)[T ]) ⊆ P by 3.1 resp. 3.2 and P has

units E× the map

div : (P1 \ {0})/E× → |X| := {x ∈ X closed}
t 7→ ∞t

is injective. But for some t ∈ P1 \{0} every irreducible element in Bt is of the form
t′/t for some t′ ∈ P1 and hence div is surjective as Bt is a PID. �

For x ∈ |X| we define

deg : Div(X)→ Z :
∑
x∈|X|

nxx 7→
∑
x∈|X|

nx.

In other words, deg(x) := 1 for x ∈ |X|. Then for every f ∈ k(X)× in the function
field k(X) of X we have

deg(div(f)) = 0,

which can be reinterpreted as the statement that the curve X is “complete”. Indeed,
as P is graded factorial the case for general f ∈ k(X)× is reduced to the case f = t/t′

with t, t′ ∈ P1 \ {0}, where it follows from 4.1, namely div(f) = ∞t −∞t′ . All in
all, we can conclude, as X \ {∞t} = Spec(Bt) with Bt a principal ideal domain,
that similar to the case for P1

E the degree map yields an isomorphism

Pic(X) ∼= Cl(X)
deg−→ Z

sending the line bundle OX(d) to d ∈ Z.
But not everything for X is similar to the projective line P1

E . For example, if
x ∈ |X| is a closed point, then the sequence

0→ O(−1)→ O → k(x)→ 0

is exact showing that the non-zero E-vector space k(x)/E embeds into the space
H1(X,O(−1)), which is therefore in particular not zero contrary to the case for
P1
E . But still H1(X,OX(d)) = 0 for d ≥ 0 (see [FFb, Proposition 6.5.]).

We can now compare the algebraic curve X with the adic curve Xad. Recall that
by 2.3 the identity P = H0(Xad,

⊕
d≥0
OXad(d)) corresponds to a morphism

α : Xad → X.
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of locally ringed spaces such that α∗(OX(d)) ∼= OXad(d).

Theorem 4.2. The morphism α : Xad → X induces bijections

α : Xad
cl

∼=→ |X|
α : ÔX,x

∼=→ ̂OXad,xad

for xad ∈ Xad
cl with x := α(xad) ∈ X. In particular, for x ∈ |X| the residue field

k(x) is algebraically closed and perfectoid with tilt k(x)[ ∼= F canonically up to a
power of the Frobenius ϕ : F → F .

Proof. By 1.5 and 4.1 sendig a section t ∈ P1 = H0(X,OX(1)) = H0(Xad,OXad)
to its vanishing set V (t) ⊆ X resp. V (t) ⊆ Xad

cl induces bijections of |X| resp. Xad
cl

with the set (P1 \ {0})/E×. In the proof of 4.1 we have seen that α induces an
isomorphism

α : k(x)→ k(xad)

for xad ∈ Xad
cl . Moreover, if {x} = V (t) with t ∈ P1, then t is a uniformizer in OX,x

and OXad,xad showing that the completions

ÔX,x ∼= ̂OXad,xad

are isomorphic. �
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