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Setup. We recall the setup of the previous talks. E is a finite extension of Q, with residue
field I, and uniformizer 7. F is an algebraically closed extension of I’y which is complete
for some nontrivial valuation v. We use the rings B, B*, B®, B>t B, Wp »(OF) introduced
in the talk FF-I. Y2¢ denotes the adic curve introduced in talk FF-II.

Define |Y| to be th set of ideals of B generated by primitive irreducible elements. We view
|Y| as a subset of the maximal spectrum Spm(B). For m € |Y], let

L.=B / m, Om:B—— L the canonical projection,

Wi : Ly —— R U {c0} the unique valuation such that wy, (6w ([a])) = v(a) for a € Op,

[lm]| = q_w'"(”), ord,,: B—— IN U {o0} the normalized m-adic valuation.

Note that every m can be written as m = ([a] — ) for some a € OF and that for such an a

we have ||m|| = q_v(a).

1 Newton polygons

We include a short reminder about Newton polygons. For details on all this, see [FF13, §5.3].

Definition 1: For

X = Z [xq]z" € B>T,

n>=>-—oo

let the Newton polygon Newt(f) be the convex decreasing hull of the points (n, v(x,)) for
alln e Z.
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Example 2: For a € OF, the Newton polygon of [a] — 7 looks like this:

Convention: We define the slopes of a piecewise linear map R —— R U {0} to be the neg-
ative of the slopes as defined usually. This means that the Newton polygon from Example 2
has one non-zero non-infinite slope which is v(a).

Since elements of B can not always be written in the above form, this definition cannot be
used to define their Newton polygon. One uses instead the Legendre transform to define
the Newton polygon of a b € B as the inverse Legendre transform of r —— w,(b).

For two convex decreasing functions ¢1, ¢2: R —— R U {co}, put
@1 % @a(x) = inf{p1(a) + p2(b) :a+ b =x} forxeR.

One can check that if ¢; and @2 are polygons, then ¢; * ¢ is also a polygon, and its slopes
are obtained by “concatenating” (and reordering) the slopes of ¢; and .

Lemma 3: Forx,y € B, one has

Newt(xy) = Newt(x) * Newt(y).

2 Zeros of elements in B
Proposition 4: Let f € B and A # 0, 00 a slope of Newt(f). Then there is an m € |Y| with
femand A = wy(n).

Sketch of proof: For my, my € |Y| and xeOp,,, such that 0y, (mg) = Or,, x, put
(i, ) = g~ ),

One can show that d defines a metric on |Y| and that for each p € (0, 1) the set {m € |Y] :
[lm|| > p} is complete. We sketch the prove only for f € Wy, (OF), the general case follows
by an approximation argument. Write

f= ) lxaln"

n>0
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and put ford > 0

d

fa= Z[xnbz”’ Xg={me|Y|:fs € mand wy(r) = A}.
n=0

For d > 0, the multiplicity of the slope A in Newt(f') equals the multiplicity of A in Newt(fy).
Hence, the cardinality of X is bounded by this multiplicity for d > 0. Further we may
without loss of generality assume that xo # 0, since multiplication by & just moves the
Newton polygon. Hence we can write f; = [a4]gq with some a; € OF and g4 € Wo . (OF)
primitive. Then g4 has an irreducible primitive divisor such that the ideal m generated by
this divisor lies in Xy, since Newt(f;) = Newt([aq]) *Newt(g,), and thus X; # @ ford > 0.

Now, given an m € Xy for some d > 0, by looking at wy, (6 (fg+1)) and doing some
calculations one can see that there exists an m” € X 1 such that

d(m,m’) < g~ (d+DA=v(x0))/#Xa,

This gives a Cauchy sequence in |Y]|, and the limit of this sequence has the required prop-
erties.

For details, see [FF13, Thm. 6.49] or [FF14, Thm. 3.3]. |

Corollary 5: The slopes different from 0, co of the Newton polygon of some f € B are the
w (1) where m runs through all m € |Y| such that f € m, with multiplicity ord,,(f).

Proof: All that remains to note is that if f lies in some m, then its Newton polygon has
a slope wy, (). If we write m = ([a] — 7) with some a € Op and f = g([a] — ), then
Newt(f) = Newt(g) * Newt([a] — ), hence the claim follows from Example 2. ]

Corollary 6: Forf € B\ {0}, we have
feB*  Ymel|Y|:f¢m.

Proof: This follows with the previous results from the characterization of B* via Newton
polygons from talk FF-I. O

3 Factorization of elements of B

Given f € B,if Ay, ..., A, are some non-zero non-infinite slopes of Newt(f'), one can write

fzg-g(l—[cjr—'J) (1)

with a g € Band a; € O such that v(a;) = A;, as we see from the previous results.

It is easy to see that if (a;) ;e is a sequence in mp tending to 0, then the infinite product
[ee)
a;
[](1-)
i=1 T

converges in B*.
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Theorem 7: For each f € B there exists a sequence (a;);e in Mg tending toO and ag € B

such that -
f=g9: l_l (1 - %) .
i=1

One can choose g such that Newt(g)|(—co 4] = o0 for some A € R. Iff € B* then one can
choose g € B>+,

Idea of proof: Use the above identity for infinitely many slopes and write

Fea ()

i=1

for each n. Then do some calculations to see that the sequence of the g, converges and that
the limit has the claimed properties (one uses the characterization of the various subrings
of B by Newton polygons from the talk FF-I). For details, see [FF13, Thm. 6.50]. ]

4 Divisors on |Y|

We define

am € Ny, for each compact interval I € (0, 1)
Divt(Y) = Z aw[m] : the set {m € |Y| : an # Oand ||m| € I} is
me|Y| finite

and further

div(f) = > ord,(f)[m], forf €B,

me|Y|

a_p = {f € B:div(f) > D}, for D € Div*(Y).

One can check that the function ord,, is upper semi-continuous and therefore the ideals
a_p are closed.
Theorem 8: LetI C (0, 1) be a nonempty compact subinterval.
(a) If1 = {p} for somep ¢ |FX| then By is a field.
(b) If not, By is a principal ideal domain with maximal ideals the Bym where m runs through
them € |Y| such that ||m|| € I.

Sketch of proof: One can define a “restricted Newton polygon” Newt;(f) for f € By: for
f € B, one defines Newt,(f) just as Newt(f) but without the slopes A such that g=* ¢ I,
and for a general f € By by approximation. Analogously to Corollary 5, one can show that
the slopes different from 0, co of Newt;(f) are the wy, () for the m € |Y| such that f € m
and ||m|| € I, with multiplicity ord,, (f). Similarly to (1), we obtain then a factorization

fzg'ﬁfi (2)
i=1
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with the &; irreducible primitive and such that ||(§l)|| € I, and with g € By such that
Newt;(g) is the empty polygon. Finally, it is not difficult to see that if one has Newt;(g) = @
for some g € B; then g € Bf.

Now (a) follows since p ¢ |F x |, because then all Newton polygons are empty. For (b), it
suffices to see that prime ideals are principal. If p is a prime ideal and f € p, we factor f as
in (2) and see that &; € p for an i. But then p = (&;) because the ideal generated by ¢; is
maximal.

For details, see [FF14, Thm. 3.8]. |
We draw consequences of this theorem. They all can be seen similarly by using

B =1imB;, a = lim Bja for closed ideals a C B
T T

and the above theorem.
« div(f) is well-defined,
« if D = div(f) then a_p = (f),
« the map D —— a_p induces an isomorphism of monoids between Div' (Y) and the
monoid of closed nonzero ideals of B,and D < D’ < a_p- C a_p,

« for f,g € B\ {0}, wehaveg | f < div(f) > div(g); in particular, the map
div: B\ {0}/B* — Div'(Y) is an injection of monoids,

« |Y] is the set of closed maximal ideals of B.

5 Divisors on Y24 /%

Motivation. Suppose we want to classify ¢p-modules over B, i.e. free B-modules equipped
with a ¢-semilinear automorphism (which is usually also denoted by ¢). These should cor-
respond to vector bundles on Y*¢/pZ. We have a bijection

7, — {isomorphism classes of rank 1 ¢-modules},

d —— B-module with basis e and ¢(e) = n%.
Hence we should have an isomorphism
7 — Pic(Y*/9?), d+— L3¢
where £ is a line bundle such that
HO(Yad/(pZ, £®d) _ B(p:”d.
This leads us to studying the scheme
Proj (@ B"’:”d).
d>0

In the next talk (FF-IV) we will see that this scheme is in fact an algebraic version of the
Fontaine-Fargues curve. See [FF14, §4.1] for a more detailed version of this motivation.
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Definition: Ford > 0, let P; = B~ 74 and
P~
Note that Py = E, hence P is a graded E-algebra. Further put

Divt(Y/¢?%) = Divt(Y)?=4 = {D € DivT (Y) : ¢*D = D}.

Lemma 9: The map

|Y|/(pZ*> Div" (Y/(p mhF—— Z(p

is well-defined and injective and makes Div" (Y /¢?) a free abelian monoid over |Y| /p%.

Sketch of proof: For an interval [p1, p2] € (0, 1), ¢ maps By, ,,] — Bj,a ,4), hence the
map is well-defined. The rest is easy. m]

Theorem 10: The map
div: (Udzo Pg\ {0})/E>< —— Divt(Y/p?%)

is an isomorphism of graded monoids.

Sketch of proof: For the injectivity, let x € Py, y € Py such that div(x) = div(y), and
assume without loss of generalty that d” > d. Then (x) = a_giv(x) = A_dgiv(y) = (),
so there is a u € BX = (B")* such that x = uy. A calculation then shows that u €
(Bb)¢:”d7d,. The latter is 0 if d # d’ and E else, as was explained in talk FF-L

For the surjectivity, let x € W, (OF) be primitive of degree d and D = div(x). We want to
construct an f € Py \ {0} such that

div(f) = > ¢"(D

Without loss of generality we can assume that x € 7¢ 4+ Wo,(m), and one can show that

then
o"(

n>0

div(ITT (x Z o"(

n>0

[ e

n<0

converges, and obviously

The problem is that the product
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does not converge. If it would converge, it would have the property ¢(II7 (x)) = xII7 (x).
However, using Kummer and Artin-Schreier equations, one can prove that for each primi-
tive z € Wo,(OF) there exists a I~ (z) € B> \ {0} which is unique up to an E*-multiple,
and such that ¢(I17(z)) = 2117 (2).

For IT™ (x), we then have

@(div(II™ (x))) = div(xII" (x)) = D + div(II™ (x)),

which by applying ¢! yields div(II~(x)) = ¢~ 1(D) + ¢(div(II~(x))). By repeatedly ap-
plying this, we see that

div(IT™(x)) = >_ ¢"(D).

n<0
Hence f = I (x)II" (x) does the job!
For details, see [FF14, Thm. 4.3, Prop. 4.5] or [FF13, Thm. 9.7 (3)]. m]

Corollary 11: P is a graded factorial algebra with irreducible elements of degree 1.
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