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Abstract.
This is a short introduction to adic spaces for the participants of the Workshop

“GalQp as a geometric fundamental group” in Neckarbischofsheim organized by Sujahta
Ramdorai, Peter Schneider, and Otmar Venjakob. No originality is claimed and no
proofs are given! As a reference we refer to [Hu1], [Hu2], [Hu3], [Hu4], [Co], [Wd], and
[CW].

Notation

All rings are commutative with 1. Complete (uniform) spaces are always Hausdorff by
definition. If R and S are subsets of a ring A, we denote by R ·S the additive subgroup
of A generated by { rs ; r ∈ R, s ∈ S }.

All complete spaces are by definition Hausdorff.

1 Huber pairs

Definition 1.1 (Huber rings). Let A be a topological ring.
(1) A is called adic if there exists ideal I ⊆ A such that (In)n is a basis of neighborhoods

of 0 in A. Such an ideal I is called an ideal of definition.
Example: Zp, I = (p).

(2) A is called Huber ring1 if there exists an open adic subring A0 ⊆ A (called ring
of definition of A) with finitely generated ideal of definition I (called also ideal of
definition of A by abuse of language).

Example: A = Qp, A0 = Zp or A = A0 = Zp.
(3) A subset S ⊆ A is bounded if for every neighborhood U of 0 in A there exists

a neighborhood V of 0 with { vs ; v ∈ V, s ∈ S } ⊆ U . An element a ∈ A is
power bounded (resp. topological nilpotent) if { an ; n ≥ 1 } is bounded (resp. if
limn→∞ a

n = 0). Set

A◦ := { a ∈ A ; a power bounded},
A◦◦ := { a ∈ A ; a is topologically nilpotent}.

1Huber calls such rings f -adic which might lead to confusion as there is no f . Moreover this notion
is neither a generalization nor a specializiation of the notion of an adic ring. This may be a good reason
to introduce this new terminology following Scholze.
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(4) A is called Tate ring if A is a Huber ring and has a topologically nilpotent unit.
Example: A = Qp with topological nilpotent unit p.

Note that every open subgroup of A (and in particular every open subring of A) is
also closed in A.

Example 1.2. Let A be a ring endowed with a seminorm | · | : A→ R≥0 (i.e., |0| = 0,
|a− b| ≤ |a|+ |b|, |ab| ≤ |a||b| for all a, b ∈ A). Then there exists a unique topology on
A making A into a topological ring such that ({ a ∈ A ; |a| < r })r>0 is a fundamental
system of neighborhoods of 0. Then S ⊆ A is bounded if and only if { |a| ; a ∈ S } is
bounded in R.

Suppose that | · | is power-multiplicative (|an| = |a|n for all a ∈ A, n ∈ N). Then

A◦ = { a ∈ A ; |a| ≤ 1 }, A◦◦ = { a ∈ A ; |a| < 1 }.

For instance the supremum seminorm on a k-affinoid algebra (see Example 1.5 be-
low) is non-archimedean and power-multiplicative.

Remark 1.3. Let A be a Huber ring.
(1) Every ring of definition of A is bounded and A◦ is the filtered union of all rings of

definition of A. It is an integrally closed open subring of A and A◦◦ is an ideal of
A◦, equal to its radical.

(2) Let A be a Tate ring, A0 a ring of definition, $ a topologically nilpotent unit of
A. Then there exists n ≥ 1 with $n ∈ A0, A0 is $n-adic, and A = A0[$

−n].
Moreover, a subset S ⊆ A is bounded iff S ⊆ $−mA0 for some m ≥ 1.

In general, A◦ is not a ring of definition: Every ring of definition is clearly bounded
but for A = Qp[T ]/(T 2) one has A◦ = Zp ⊕QpT which is not bounded.

Definition 1.4 (Huber pairs). A Huber pair2 is a pair (A,A+), where A is a Huber
ring and A+ ⊆ A◦ is an open subring of A that is integrally closed in A (such a ring is
called a ring of integral elements of A).

A morphism of Huber pairs (A,A+)→ (B,B+) is a continuous ring homomorphism
ϕ : A→ B such that ϕ(A+) ⊆ B+.

It is called adic if there exist ring of definitions A0 ⊆ A and B0 ⊆ B and an ideal of
definition I ⊆ A0 such that ϕ(A0) ⊆ B0 and such that ϕ(I)B0 is an ideal of definition
of B0.

We will very often consider the case that A+ = A◦ but for some natural constructions
it is necessary to have the added flexibility to consider other rings A+.

Example 1.5. (1) Let A be an adic ring with finitely generated ideal of definition I.
Then A is Huber with A = A0 and ideal of definition I. Every subset of A is
bounded and A◦ = A. Hence (A,A) is a Huber pair.

A special case is a ring A endowed with the discrete topology, i.e. I = 0. Then
for every subring A+ of A that is integrally closed in A, (A,A+) is a Huber pair.

2Huber uses the notion of an affinoid ring which might be confused with affinoid algebras from rigid
geometry. Moreover we are speaking here really of a pair of rings.
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(2) Let k be a non-archimedean field (i.e., k is a topological field whose topology is
given by a nontrivial non-archimedean norm | · | : k → R≥0). Then Ok := { a ∈
k ; |a| ≤ 1 } = k◦ and (k,Ok) is a Huber pair. Every element 0 6= $ ∈ k with
|$| < 1 is a topologically nilpotent unit.

(3) More generally, let (A, || · ||) be any k-Banach algebra with power-multiplicative
norm. Then A is a Tate ring with topologically nilpotent unit $. As a ring of
definition one can take A0 = A◦ = { a ∈ A ; ||a|| ≤ 1 } which is an Ok-algebra.

(4) Suppose that k is complete. An example for a k-Banach algebra is the Tate algebra

Tn,k := {
∑
ν

aνt
ν ∈ k[[t1, . . . , tn]] ; aν → 0 for

∑
i

νi →∞}

with its Gauß norm

||
∑
ν

aνt
ν || := max

ν
|aν |.

This is a multiplicative norm (||ab|| = ||a||||b||). Then T ◦n,k = Ok〈t1, . . . , tn〉.
Every quotient π : Tn,k → A := Tn,k/a is a k-Banach algebra (Tn,k can be shown

to be noetherian, therefore every ideal a of Tn,k is closed and hence A is complete
because Tn,k is metrizable) with norm

||a||π := inf{ ||f || ; f ∈ Tn,k with π(f) = a}.

Topological k-algebras of this form are called k-affinoid algebras. The equivalence
class of || · ||π does not depend on the presentation of A as quotient of a Tate algebra.
The norm || · ||π is in general not power-multiplicative.

But k-affinoid algebras A carry also a non-archimedean power-multiplicative
semi-norm defined by

||f ||sup := sup
x∈Max(A)

|f(x)|,

where |f(x)| denotes the absolute value of the image of f in the finite extension
A/mx of k for a maximal ideal x = mx of A. The pair (A,A◦) is a Huber pair. If
A = Tn,k, then || · ||sup is the Gauß norm.

Note that for non-reduced k-affinoid algebras this seminorm yields a coarser
topology than the standard Banach space topology but that the sets of power
bounded and of topologically nilpotent elements are the same for both topologies.

2 Construction with Huber pairs

Completion

Let A = (A,A+) be a Huber pair. Let Â be the I-adic completion with respect to
some ideal of definition (completion of A as additive topological group). Then the
ring multiplication of A extends to Â making Â into a topological ring. Moreover
Â is complete with respect to the Ī-adic topology (this is nontrivial because A has
not necessarily a noetherian ring of definition; here it is important that I is finitely
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generated). Let Â+ be the integral closure of the closure of A+ in Â. Then Â = (Â, Â+)
is a Huber pair, called the completion of (A,A+).

The canonical morphism A → Â of Huber pairs is universal with respect to mor-
phisms to complete Huber pairs B (a Huber pair (B,B+) is called complete if B is
complete; then B+ (as a closed subspace of B) is also complete).

Quotients

Let A = (A,A+) be a Huber pair, let a ⊆ A be an ideal, and endow A/a with the
quotient topology. Then the canonical map A → A/a is surjective, continuous, and
open. Let (A/a)+ be the integral closure of A+/(A+ ∩ a) in A/a. Then A/a :=
(A/a, (A/a)+) is a Huber pair: If A0 ⊆ A is a ring of definition, its image in A/a is a
ring of definition in A/a.

If A is a complete Huber pair and a ⊆ A is a closed ideal, then the Huber pair A/a
is complete (note that the topology of any Hausdorff Huber ring is metrizable).

A morphism ϕ : A → B of Huber pairs factors through the Huber pair morphism
A→ A/a if and only if ϕ(f) = 0 for all f ∈ a.

Restricted Power Series

Let A = (A,A+) be a Huber pair, let T1, . . . , Tn be finite subsets of A such that Ti ·A
is open in A for all i (equivalently, T ν := T ν11 · · · · ·T νnn ·U is an open neighborhood of 0
for every open subgroup U and for all ν = (ν1, . . . , νn) ∈ Nn0 ). Define a subring of the
ring of formal power series Â[[X]] := Â[[X1, . . . , Xn]] as follows

A〈X〉T :=
{∑

ν

aνX
ν ∈ Â[[X]] ;

aν ∈ T ν · U for all open subgroups

U of Â and for almost all ν

}
.

We endow A〈X〉T with the (unique) structure of a topological ring such that the sub-
groups (for U open subgroup in A)

U〈X〉 := {
∑
ν

aνX
ν ∈ Â〈X〉T ; aν ∈ T ν · U for all ν ∈ Nn0 }

form a fundamental system of neighborhoods of 0 in A〈X〉T . We also write simply
A〈X〉 = A〈X1, . . . , Xn〉 if Ti = {1} for all i ∈ 1, . . . , n.

Then A〈X〉T is a complete Huber ring such that tXi is power bounded for all
t ∈ Ti. The canonical morphism ι : A→ A〈X〉T has the follwing universal property. If
ϕ : A→ B is a morphism of Huber pairs with B complete and if (xi)1≤i≤n is a family of
elements in B such that ϕ(t)xi ∈ B◦ for all i = 1, . . . , n and t ∈ Ti, then there exists a
unique continuous ring homomorphism ψ : A〈X〉T → B with ψ ◦ ι = ϕ and ψ(Xi) = xi.

Let us now define a ring of integral element for A〈X〉T depending on A+:

{
∑
ν∈Nn

0

aνX
ν ∈ A〈X〉T ; aν ∈ T ν · (̂A+) for all ν ∈ Nn0}
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is a subring of A〈X〉T . Its integral closure in A〈X〉T is a ring of integral elements of
A〈X〉T denoted by A〈X〉+T , and

A〈X1, . . . , Xn〉T1,...,Tn := A〈X〉T := (A〈X〉T , A〈X〉+T )

is a complete Huber pair.
The canonical morphism ι : (A,A+) → (A〈X〉T , A〈X〉+T ) of Huber pairs has the

following universal property. If ϕ : (A,A+) → (B,B+) is a morphism of Huber pairs
with B complete and if (xi)1≤i≤n is a family of elements in B such that ϕ(t)xi ∈ B+

for all i = 1, . . . , n and t ∈ Ti, then there exists a unique morphism of Huber pairs
ψ : (A〈X〉T , A〈X〉+T )→ (B,B+) with ψ ◦ ι = ϕ and ψ(Xi) = xi.

Example 2.1. Let (k, | · |) be a complete non-archimedean field. Then k〈X1, . . . , Xn〉 =
Tn,k is the Tate algebra.

More generally, fix r1, . . . , rn ∈ Z, set ρi := |π−ri |, Ti := {πri} ⊆ k ⊆ A for
i = 1, . . . , n. As usual, write ρν := ρν11 · · · ρνnn for (ν1, . . . , νn) ∈ Nn0 . Then

k〈X〉T = {
∑
ν

aνX
ν ∈ k[[X]] ; lim∑

νi→∞
|aν |ρν = 0 }

is a k-affinoid algebra whose k-Banach algebra structure is given by the norm

||
∑
ν

aνX
ν ||ρ := max

ν
|aν |ρν .

It is the algebra of power series f ∈ k[[X]] which converge on the polydisc

Pρ := {x ∈ kn ; |xi| ≤ ρi for i = 1, . . . , n}.

Localization

Let A be a Huber ring, s ∈ A, ∅ 6= T = {t1, . . . , tn} ⊆ A finite such that ideal
of A generated by T is open in A. Choose (A0, I) a pair of definition. Let D :=
A0[

t1
s , . . . ,

tn
s ] ⊆ As = A[s−1] and define a topology on As by choosing (In ·D)n≥1 as

fundamental system of neighborhoods of 0. Denote this topological ring by A(Ts ). It
is a Huber ring with (D, ID) as pair of definition such that t

s is power bounded for all
t ∈ T . Let A〈Ts 〉 be its completion (again a Huber ring).

The canonical ring homomorphism A→ A(Ts ) (resp. A→ A〈Ts 〉) is continuous and
it is universal with respect to all continuous homomorphisms ϕ : A→ B to Huber rings
(resp. to complete Huber rings) with ϕ(s) ∈ B× and such that ϕ(t)/ϕ(s) is power
bounded for all t ∈ T .

Now let A = (A,A+) be a Huber pair. Let A(Ts )+ be the integral closure of
A+[ t1s , . . . ,

tn
s ] in A(Ts ). Then A(Ts ) := (A(Ts ), A(Ts )+) is a Huber pair. Let A〈Ts 〉 :=

(A〈Ts 〉, A〈
T
s 〉

+) be its completion. The morphism of Huber pairs (A,A+)→ (A〈Ts 〉, A〈
T
s 〉

+)
is universal for morphism of Huber pairs ϕ : A → B with B complete, ϕ(s) ∈ B× and
ϕ(t)
ϕ(s) ∈ B

+.

One has an isomorphism of Huber pairs A〈Ts 〉 ∼= A〈X〉T /(1− sX) because both
rings satisfy the same universal property with respect to morphisms to complete Huber
pairs.
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3 The adic spectrum of a Huber pair

Definition 3.1. Let A be a topological ring. A valuation of A is a map |·| : A→ Γ∪{0},
where Γ is a totally ordered abelian group (written multiplicatively) such that

|0| = 0, |1| = 1, |ab| = |a||b|, |a+ b| ≤ max{|a|, |b|}

for all a, b ∈ A. It is called continuous if { a ∈ A ; |a| < γ } is open in A for all γ ∈ Γ.
For every valuation | · | its support supp(| · |) := { a ∈ A ; |a| = 0 } is a prime ideal

of A. A continuous valuation is called analytic if supp(| · |) is not an open prime ideal
in A.

Two such valuations | · | and | · |′ are called equivalent if for all a, b ∈ A one has
|a| ≥ |b| ⇔ |a|′ ≥ |b|′.

We can now define the underlying topological space of the adic spectrum. Let A be
a Huber ring and let Σ ⊆ A◦ be any subset. Define

Spa(A,Σ) := {equivalence classes of

continuous valuations | · | on A ; |f | ≤ 1 for all f ∈ Σ}

as a set. For x ∈ Spa(A,Σ) and f ∈ A we write |f(x)| instead of x(f). We endow
Spa(A,Σ) with the topology generated by the subsets

{x ∈ Spa(A,Σ) ; |f(x)| ≤ |g(x)| 6= 0 }

with f, g ∈ A.
For a subset Σ ⊆ A◦ let A+ be the integral closure of the subring of A generated

by Σ and A◦◦. Then Spa(A,Σ) = Spa(A,A+). Moreover, if A is a Huber ring, then
(A,A+) is a Huber pair.

Theorem 3.2. Let (A,A+) be a Huber pair. Then X := Spa(A,A+) is a spectral space
(i.e., X ∼= Spec(R) for some ring R, equivalently, X is the limit of finite T0-spaces).

A basis of the topology consisting of open quasi-compact subspaces is given by ratio-
nal subsets, i.e. by subsets of the form

X(
T

s
) := {x ∈ X ; ∀ t ∈ T : |t(x)| ≤ |s(x)| 6= 0 },

where s ∈ A and ∅ 6= T ⊆ A a finite subset such that TA is an open ideal of A. Finite
intersections of rational subsets are again rational.

Remark 3.3. Let ϕ : (A,A+) → (B,B+) be a morphism of Huber pairs. Then γ 7→
γ ◦ ϕ is a well defined continuous map Spa(ϕ) : X := Spa(B,B+)→ Y := Spa(B,B+).

If ϕ : A → B is adic, then the inverse image of a rational subset of Y is a rational
subset of X.

Example 3.4. Let A = (A,A+) be a Huber pair, let a ⊆ A be an ideal, and let
π : A → A/a be the canonical morphism of Hubert pairs. Then Spa(π) : SpaA/a →
SpaA is a homeomorphism of SpaA/a onto the closed subset of points x ∈ SpaA with
supp(x) ⊇ a.
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Proposition 3.5. Let (A,A+) be a Huber pair. The canonical map Spa(Â, Â+) →
Spa(A,A+) is a homeomorphism respecting analytic points and rational subsets in both
directions.

4 Structure (Pre)Sheaf on Spa(A,A+)

Lemma 4.1. The map Spa(A〈Ts 〉, A〈
T
s 〉

+) → X := Spa(A,A+) is an open embedding
with image X(Ts ). Via this map rational subsets of Spa(A〈Ts 〉, A〈

T
s 〉

+) correspond to
rational subsets in X that are contained in X(Ts ).

For U = X(Ts ) we define OX(U) := A〈Ts 〉 and O+
X(U) := A〈Ts 〉

+. One shows that
one obtains well defined presheaves OX and O+

X defined on the basis of rational subsets
of X. Note that

(OX(X),O+
X(X)) = (Â, Â+).

For every rational subset U of X one has

(*) O+
X(U) = { f ∈ OX(U) ; |f(x)| ≤ 1 for all x ∈ U}.

If OX is a sheaf on the basis of rational subsets with values in the category of complete
topological rings, it extends uniquely to a sheaf on X by setting for every open subset
V of X

OX(V ) = lim
U ⊆ V rational

OX(U).

This is a sheaf with values in the category of complete topological rings. Then O+
X is

also a sheaf with values in the category of complete topological rings by (*). Moreover
(*) holds for every open subset U of X.

Theorem 4.2. Let (A,A+) be a Huber pair, X := Spa(A,A+). Then OX is a sheaf
(in which case we call (A,A+) sheafy) and its higher cohomology vanishes on rational
subsets in each of the following situations.
(1) Â has a noetherian ring of definition.
(2) A is a Tate ring and A〈X1, . . . , Xn〉 is noetherian for all n.
(3) A is a Tate ring and for all rational subsets U ⊆ X := Spa(A,A+) the ring OX(U)◦

is bounded.
(4) Â has the discrete topology.

In general OX is not a sheaf. For a nice list of counterexamples see [BV] §4. But
the conditions of Theorem 4.2 ensure that we do not run into this problem when
considering the following categories as full subcategories of the category of adic spaces
(see Definition 4.3 below): Condition (1) will ensure that one can consider every locally
noetherian formal scheme as adic space, Condition (2) will ensure that one can consider
every rigid analytic space as adic space, Condition (3) (proved in [BV]) will ensure that
perfectoid spaces are adic spaces.

Let (A,A+) be a Huber pair, x ∈ X := Spa(A,A+). Let

OX,x := colim
U 3 x open

OX(U) = colim
U 3 x rational

OX(U)
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be the stalk (colimit in the category of rings, hence OX,x is not endowed with a topol-
ogy). For every rational neighborhood U of x the valuation x : A → Γx ∪ {0} extends
uniquely to a valuation vU : OX(U)→ Γx ∪ {0} by Lemma 4.1. Passing to the colimit
we obtain a valuation vx : OX,x → Γx ∪ {0}. One shows that for U 3 x rational and
f ∈ OX(U) with |f(x)| 6= 0 the image of f in OX,x is a unit and deduces that OX,x is
a local ring whose maximal ideal is the support of vx.

Hence if (A,A+) is a sheafy Huber pair, then X := Spa(A,A+) = (X,OX , (vx)x∈X)
is an element of the category V whose objects consist of
(a) a topological space X,
(b) a sheaf OX of complete topological rings on X such that the stalk OX,x is a local

ring,
(c) and for all x ∈ X an equivalence class vx of valuations on OX,x whose support is

the maximal ideal of OX,x.
We have the obvious notion of a morphism in the category V. For every object
(X,OX , (vx)x∈X) we set

O+
X(U) := { f ∈ OX(U) ; |f(x)| ≤ 1 for all x ∈ U}, U ⊆ X open.

Definition 4.3. An adic space is an object of V that is locally isomorphic to Spa(A,A+)
for some sheafy Huber pair (A,A+). The category of adic spaces is the full subcategory
of V whose objects are the adic spaces. An adic space is called affinoid, if it is isomorphic
to Spa(A,A+) for some sheafy Huber pair (A,A+).

We obtain a functor (A,A+) 7→ Spa(A,A+) from the category of sheafy Huber pairs
to the category of adic spaces. The canonical morphism of adic spaces Spa(Â, Â+) →
Spa(A,A+) is an isomorphism of adic spaces. The functor (A,A+) 7→ Spa(A,A+) from
the category of sheafy complete Huber pairs to the category of adic spaces is fully
faithful. More precisely one has for every adic space Y and every sheafy Huber pair
(A,A+) a bijection

Hom(Y,Spa(A,A+))
∼→ Hom((A,A+), (OX(X),O+

X(X)),

where the right hand side denotes continuous ring homomorphisms ϕ : A → OX(X)
such that ϕ(A+) ⊆ O+

X(X).

Example 4.4. (1) Let k be a non-archimedean field. Then Spa(k, k◦) consists of a
single point x, the equivalence class of the valuation | · | : k → R≥0 defining the
topology of k. One has κ(x) = k̂.

(2) Let A be a valuation ring of height 1. Then Spa(A,A) consists of an open point η
and a closed point s with κ(η) = Frac(A) =: k and κ(s) = A/mA. The canonical
morphism S0 = Spa(k,A)→ S is an open immersion onto the open point.

Example 4.5. Endow Z and Z[t] with the discrete topology. Then Spa(Z,Z) is the
final object in the category of adic spaces and for every adic space X we find

Hom(X,Spa(Z[t],Z)) = OX(X),

Hom(X,Spa(Z[t],Z[t])) = O+
X(X).
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Endow Z[[t]] with the t-adic topology and set D0 := Spa(Z[[t]],Z[[t]]). Then for every
affinoid adic space X = SpaA one has

Hom(X,D0) = OX(X)◦◦ = Â◦◦.

Indeed, first note that every integrally closed open subring of Â contains Â◦◦. In
particular (Â+)◦◦ = Â◦◦. Every continuous homomorphism ϕ : Z[[t]] → O+

X(X) = Â+

is determined by the image a of t. As t is topologically nilpotent, a is topologically
nilpotent. Conversely, let a ∈ O+

X(X) be topologically nilpotent. As O+
X(X) is complete

and 0 has a fundamental system of neighborhood consisting of additive subgroups, a
series

∑
n λna

n converges if and only if limn λna
n = 0. But this is the case if λn ∈ ϕ(Z)

because ϕ(Z) is automatically bounded (as ϕ(Z) is contained in every ring of definition
of A) and a is topologically nilpotent.

We view D0 as the “formal open unit disc”.

Proposition and Definition 4.6. Let X be an adic space. A point x ∈ X is called
analytic if the following equivalent conditions are satisfied.
(i) There exists an open neighborhood U of x such that OX(U) contains a topologically

nilpotent unit.
(ii) For every open affinoid neighborhood U = SpaA of x, the point suppx ⊂ A is not

open in A (i.e., x ∈ SpaA is analytic as in Definition 3.1.)

5 Morphisms locally of finite type and fiber products

Definition 5.1. A morphism ϕ : A → B of Huber pairs with B complete is called
topologically of finite type if there exists an isomorphism of Huber pairs

B ∼= A〈X1, . . . , Xn〉T1,...,Tn/a

for some n ∈ N0, finite subsets T1, . . . , Tn of A with Ti · A open in A, and a ⊆ A〈X〉T
a closed ideal.

Every morphism topologically of finite type is adic.

Example 5.2. Let k be a complete discretely valued field. Let A be a k-affinoid algebra.
Then there is a unique ring of integral elements A+ of A such that (k, k◦) → (A,A+)
is topologically of finite type, namely A+ = A◦.

Definition 5.3. Let f : X → Y be a morphism of adic spaces. Then f is called locally
of finite type if for every x ∈ X there exists an open affinoid neighborhood U = SpaB
of x in X and an open affinoid subspace V = SpaA of Y with f(U) ⊆ V such that the
induced homomorphism of complete Huber pairs (A,A+) → (B,B+) is topologically
of finite type.

Proposition 5.4. Let f : X → S and g : Y → S be morphisms of adic spaces. Then
the fiber product of f and g exists in the category of adic spaces if f or g is locally of
finite type.
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The explicit construction in [Hu4] 1.2.2 shows that even if S, X, and Y are affinoid,
X ×S Y is not necessarily affinoid. Here we give only the following example.

Example 5.5. Let Ok be a complete discrete valuation ring, k its field of fractions and
let π ∈ k× be a uniformizing element. Then k◦ = Ok and

Ok〈
π

π
〉 = Ok〈X〉{π}/(1− πX) = k.

Hence the open immersion η := Spa(k,Ok) → S := Spa(Ok,Ok) is locally of finite
type. (In fact the open immersion of any rational subset is locally of finite type.)

Let X := Spa(A,A+)→ S be a morphism of adic spaces with (A,A+) complete and
let ϕ : Ok → A be the corresponding homomorphism of Huber pairs. Then the fiber
product Xη is constructed as follows. Choose a finite set L of generators of an ideal of

definition of A and let Bm := A〈{ϕ(π)}∪L
m

ϕ(π) 〉, where Lm = { `1 · · · `m ; `i ∈ L }. Then

Xη = colim
m

Spa(Bm, B
+
m).

Below we will describe the generic fiber of Spa(Zp[[t]],Zp[[t]]), the formal open p-adic
unit disc, and see that it is the (adic space associated to the) rigid analytic open unit
disc over Qp, which is not an affinoid space.

6 Formal Schemes and Rigid Spaces as Adic Spaces

Formal Schemes as Adic Spaces

For every complete noetherian adic ring A denote Spf(A) its formal spectrum. Then the
functor Spf(A) 7→ Spa(A,A) form noetherian affine formal schemes to the category of
adic spaces can be globalized to a fully faithful functor t : X 7→ Xad from the category
of locally noetherian formal schemes to the category of adic spaces. More precisely
for every locally noetherian formal scheme X there exists an adic space Xad and a
morphism of locally and topologically ringed spaces π : (Xad,O+

Xad) → (X,OX) satis-
fying the following universal property. For every adic space Z and for every morphism
f : (Z,O+

Z ) → (X,OX) of locally and topologically ringed spaces there exists a unique
morphism of adic spaces g : Z → Xad making the following diagram commutative

(Z,O+
Z )

f //

g+ &&

(X,OX)

(Xad,O+
Xad).

π

OO

For X = Spf(A) for a complete noetherian adic ring A, the underlying continuous map
of π is given by

Xad = Spa(A,A) 3 x 7→ { f ∈ A ; |f(x)| < 1 },

which is an open prime ideal of A.
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Rigid Spaces as Adic Spaces

Let k be a complete non-archimedean field. For every k-affinoid algebra A let Sp(A) be
the attached rigid analytic k-space. Then the functor Sp(A) 7→ Spa(A,A◦) from affinoid
rigid k-spaces to adic spaces can be globalized to a fully faithful functor rk : X 7→ Xad

from the category of rigid analytic k-spaces to the category of adic spaces preserving
open immersions and intersections of open immersions. Moreover, a family (Ui)i of
admissible open subspaces of X is an admissible cover of X if and only if (rk(Ui))i is
an open covering of Xad. These properties characterize the functor rk. The morphism
of sites

Xad −→ X, rk(U) 7−→ U

induces an equivalence of toposes (Xad)∼
∼→ X∼.

For a point x of a rigid analytic space X let i : Spκ(x)→ X be the canonical mor-
phism (recall that κ(x) is a finite extension of k by the rigid analytic Nullstellensatz).
Let e(x) ∈ Xad the image point of the morphism rk(i) : Spa(κ(x), κ(x)◦)→ Xad. This
defines a bijective map

e : X → {x ∈ Xad ; κ(x) is finite over k}

and one considers X as a subset (but not a subspace) of Xad. The map U 7→ rk(U)
yields an injective map from the set of admissible open subsets of X to the set of all
open subsets of Xad. This is almost never a bijection. If X is quasi-separated then this
map restricts to a bijection{

quasi-compact admissible
open subsets of X

}
↔
{

quasi-compact
open subsets of Xad

}
If f : X → Y is a morphism of rigid analytic spaces, then fad := rk(f) : Xad → Y ad is
locally of finite type.

The Generic Fiber of a Formal Scheme

Let V be a complete discrete valuation ring with uniformizing element π and field of
fractions k. The adic space S := Spa(V, V ) attached to Spf V consists of an open
point η and a closed point s with κ(η) = k and κ(s) = V/mV . The canonical morphism
S0 = Spa(k, V )→ S is an open immersion onto the open point. Clearly it is a morphism
of adic spaces locally of finite type.

Let Fff be the category of formal schemes X locally of formally finite type over
V (i.e., X is locally of the form Spf A such that there exists a surjective continuous
open ring homomorphism V [[T1, . . . , Tn]]〈X1, . . . , Xn〉 → A, where V [[T1, . . . , Tn]] is the
noetherian adic ring whose ideal of definition is (π, T1, . . . , Tn)). Then Berthelot has
extended Raynaud’s generic fiber functor to a functor rig from Fff to the category of
rigid analytic spaces over k. If X → Spf V is an object in Fff we obtain an associated
morphism of adic spaces Xad → S and we can form the fiber product Xad ×S S0

(Proposition 5.4). Then Berthelot’s generic fiber functor and the functor X 7→ Xad×S
S0 are isomorphic (see [Ka] §4).
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The generic fiber of Spf Ok[[t]]

As an example let Ok be a complete discrete valuation ring with uniformizing element
π, field of fractions k, and absolute value | · |. Let η := Spa(k,Ok), S := Spa(Ok,Ok)
and η → S be the canonical morphism identifying η with a rational subset of S. Let
X = Spa(O[[t]],O[[t]]) be the adic space attached to the formal scheme Spf(O[[t]]). We
visualize X as the open formal Ok-adic unit disc (cf. Example 4.5). Then Example 5.5
(with L = {π, t}) shows that the generic fiber is

Xη = colim
m≥1

SpaBm.

Here Bm is the Huber pair over (k,Ok) such that for every other Tate ring C over (k,Ok)
the set of continuous homomorphisms ϕ : Bm → C correspond to topologically nilpotent
elements c = ϕ(t) ∈ C such that the elements πm−1, πm−2c, . . . , cm−1, c

m

π ∈ C
+. But if

c is topologically nilpotent, then πm−1, πm−2c, . . . , cm−1 are topologically nilpotent and
in particular in C+. We conclude that continuous homomorphisms Bm → C correspond
to elements cm ∈ πC+ (such elements are automatically topologically nilpotent). Hence
SpaBm is the closed disc of radius |π|1/m and Xη is the open unit disc, (the adic
space associated to) a non-affinoid rigid analytic space. We write more suggestively
Bm = Spa k〈Xm

π 〉.
For a very detailed description of the closed disc Spa(k〈X〉,Ok〈X〉) we refer to

[Co] Lecture 11.
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