Caps of order $3q^2$ in affine 4-space in characteristic 2

Yves Edel Mathematisches Institut der Universität Im Neuenheimer Feld 288 69120 Heidelberg (Germany)

Jürgen Bierbrauer Department of Mathematical Sciences Michigan Technological University Houghton, Michigan 49931 (USA)

Abstract

We prove that a class of q-ary dual BCH-codes in characteristic 2 produce caps in AG(4,q). This is the first family of caps of order $3q^2$ in PG(4,q). It is proved that our caps are complete in PG(4,q). We determine the weight distribution of the codes generated by the caps, via a close link to the binary Kloosterman codes, the dual Mélas codes.

1 Introduction

A **cap** in projective geometry PG(n,q) is a set of points no three of which are collinear.

Theorem 1. Let $q = 2^f$, where f is odd, and $F = \mathbb{F}_{q^4}$. Identify the points in AG(4,q) with the points (1,x), $x \in F$. The points (1,x) where x = 0 or x is a $3(q^2+1)$ -th root of unity form a $(3q^2+4)$ -cap $\mathcal{K}_q \subset AG(4,q)$.

The construction of large caps in PG(4,q) or AG(4,q) appears to be a difficult problem. The best known asymptotic result is a family of caps of order $2.5q^2$ in PG(4,q) in odd characteristic (see [3, 10]). Here we speak of order cq^2 if the number of points is a polynomial in q with cq^2 as leading term. In characteristic 2 it had hitherto not been possible to construct families of caps in PG(4,q) of order more than $2q^2$. This asymptotic value is trivial to reach (the union of two ovoids in hyperplanes is a $(2q^2 + 2)$ -cap in PG(4,q)). A survey of the problem is in [2], and [7] is a more general survey concerning related questions.

Theorem 1 shows that caps of order $3q^2$ can be constructed in characteristic 2, more precisely in AG(4,q), where $q = 2^f$, f odd.

Moreover the cap \mathcal{K}_q constructed in Theorem 1 essentially is a cyclic code. Clearly \mathcal{K}_q admits the cyclic group of order $3(q^2 + 1)$ as a group of automorphisms, with (1,0) as fixed point and with regular action on the remaining points of \mathcal{K}_q . In the language of the theory of cyclic codes we can describe $\mathcal{K}_q \setminus \{(1,0)\}$ as the dual of the q-ary BCH-code of length $3(q^2+1)$ and defining set $A = \{0,1\}$ of exponents (see [1, 8]). The claim that $\mathcal{K}_q \setminus \{(1,0)\}$ is a cap is equivalent to the statement that the BCH-code has minimum distance 4. This will be proved in Section 2. In Section 3 we prove that \mathcal{K}_q is complete in PG(4,q). The maximum hyperplane section, equivalently the minimum distance of the code C_q generated by \mathcal{K}_q , will be determined in Section 4.

Theorem 2. The cap \mathcal{K}_q is complete in PG(4, q). All intersection sizes of \mathcal{K}_q with hyperplanes of PG(4, q) are multiples of 4. Let ι_q be the maximum hyperplane intersection size of \mathcal{K}_q . Then $\iota_2 = 8$, $\iota_8 = 32$, $\iota_{32} = 120$ and, for q > 32, $\iota_q = 3(q + 1 + t)$, where t is the largest integer smaller than $2\sqrt{q}$, which is congruent to 3 mod 4.

Let C_q be a $[3q^2 + 4, 5]_q$ -code whose generator matrix has as columns representatives of the points of \mathcal{K}_q (the extended dual BCH-code). We exhibit a close link between the weight distribution of C_q and the weight distribution of the 2f-dimensional binary Kloosterman code, the dual Mélas code. As the weight distribution of the Kloosterman codes is known by [9] we determine the weight distribution of C_q .

The theory of sequences with low crosscorrelation motivated the study of binary cyclic codes with minimum distance 5, see [5] for the link to coding theory and [6] for a survey. Theorem 1 shows that interesting caps may be constructed as duals of BCH-codes. This raises the question to determine which cyclic codes have minimum distance ≥ 4 . Another family of cyclic caps was recently constructed in [4].

2 Proof of Theorem 1

Let us fix notation. We have $q = 2^f$, f odd, $F = \mathbb{F}_{q^4}$, $K = \mathbb{F}_{q^2}$. Denote by $Tr_{a,b}$ the trace : $\mathbb{F}_a \longrightarrow \mathbb{F}_b$ and by $N : F \longrightarrow K$ the norm. Let $W \subset F$ be the group of $(q^2 + 1)$ -st roots of unity $(w \in W \iff N(w) = 1)$. Denote the points of \mathcal{K}_q as P(0) = (1,0) and P(a,w) = (1,aw), where $0 \neq a \in \mathbb{F}_4$ and $w \in W$.

Lemma 1. The numbers 3, q-1 and q^2+1 are pairwise coprime.

The trivial Lemma 1 implies that the points P(0) and P(a, w) are pairwise different. Moreover, if $(a_1, w_1) \neq (a_2, w_2)$ $(0 \neq a_i \in \mathbb{F}_4, w_i \in W)$, then $\frac{a_1w_1}{a_2w_2} \notin \mathbb{F}_q$. It follows that P(0) is not collinear with two of the remaining points of \mathcal{K}_q . It suffices to show that the P(a, w) form a cap.

Lemma 2. Let $0 \neq \alpha \in K$. The following are equivalent:

- There exists $w \in W$ such that $Tr_{q^4,q^2}(w) = \alpha$
- $Tr_{q^2,4}(1/\alpha) \in \mathbb{F}_4 \setminus \mathbb{F}_2$.
- $Tr_{q^2,2}(1/\alpha) = 1.$

Proof. It is clear that the second and third condition are equivalent, and $Tr_{q^4,q^2}(w) = w + 1/w = \alpha$ is equivalent with $(w/\alpha)^2 + (w/\alpha) + 1/\alpha^2 = 0$. Clearly, w = 1 is not a solution. Let $Tr_{q^2,2}(1/\alpha) = 0$. Then the solutions of $x^2 + x + 1/\alpha^2 = 0$ are in K. It follows $w \in K$, contradiction. This shows that there is no solution in this case. As there are $q^2/2$ elements $\alpha \in K$ such that $Tr_{q^2,2}(1/\alpha) = 1$ and each contributes at most two solutions $1 \neq w \in W$, we must have equality.

Lemma 3. $Tr_{q^2,2}(\mathbb{F}_q) = 0$. We have $\mathbb{F}_q = \mathbb{F}_q^{\perp}$ with respect to the bilinear form defined by $Tr_{q^2,2}$ on K.

Lemma 3 is obvious as $\lambda^q = \lambda$ for $\lambda \in \mathbb{F}_q$.

Let $P(a_1, w_1)$, $P(a_2, w_2)$, $P(a_3, w_3)$ be different points of \mathcal{K}_q , which are collinear. Let the coefficients of an affine linear combination be $1, \lambda, \lambda + 1$, where $\lambda \in \mathbb{F}_q \setminus \mathbb{F}_2$. This yields the equation

$$(\lambda+1)a_1w_1 = a_2w_2 + \lambda a_3w_3.$$

Assume at first $a_i = a_j$ for some $i \neq j$. Using the automorphism group we can assume $a_2 = a_3 = 1$ and $w_3 = 1$. The equation is

$$(\lambda + 1)a_1w_1 = w_2 + \lambda.$$

As the second and third point are different, it follows $w_2 \neq 1$. Application of the norm $(N(x) = x^{q^2+1})$ to both sides yields $(\lambda^2 + 1)a_1^2 = \lambda^2 + 1 + \lambda \alpha$, where $\alpha = Tr_{q^4,q^2}(w_2)$. We have $\alpha \neq 0$ as $w_2 \neq 1$. It follows $a_1 \neq 1$. The equation

$$\frac{1}{\alpha}(a_1^2 + 1) = \frac{\lambda}{\lambda^2 + 1} = \frac{1}{\lambda + 1} + \frac{1}{(\lambda + 1)^2}$$

shows $(a_1^2 + 1)Tr_{q^2,4}(1/\alpha) = Tr_{q^2,4}(\frac{1}{\lambda+1} + \frac{1}{(\lambda+1)^2}) = Tr_{q^2,2}(\frac{1}{\lambda+1}) = 0$ (see Lemma 3). It follows $Tr_{q^2,4}(1/\alpha) = 0$, contradicting Lemma 2.

Assume now the a_i are pairwise different (and nonzero) elements of \mathbb{F}_4 . We can choose notation such that

$$(\lambda + 1)w_1 = \omega w_2 + \lambda \overline{\omega}.$$

Here ω and $\overline{\omega} = \omega^2$ are the primitive elements of \mathbb{F}_4 . Application of N yields $\lambda^2 + 1 = \overline{\omega} + \lambda^2 \omega + \lambda \alpha$, where $\alpha = Tr_{q^4,q^2}(w_2)$. We have $\alpha \neq 0$ as otherwise $\lambda \in \mathbb{F}_4$, which is impossible as $\mathbb{F}_q \cap \mathbb{F}_4 = \mathbb{F}_2$. An equivalent form of the equation is $\lambda^2 \overline{\omega} + \lambda \alpha + \omega = 0$. Multiplication by $\overline{\omega}/\alpha^2$ yields $x^2 + x + 1/\alpha^2 = 0$, where $x = \lambda \overline{\omega}/\alpha$. This yields $Tr_{q^2,2}(1/\alpha) = 0$, contradicting Lemma 2.

3 Completeness

In this section we prove that $\mathcal{K}_q \subset PG(4,q)$ is a complete cap.

Proposition 1. Each point in the hyperplane avoided by \mathcal{K}_q is collinear with two points of \mathcal{K}_q .

Proof. Consider point (0, x). We want to find $0 \neq \lambda \in \mathbb{F}_q, 0 \neq a \in \mathbb{F}_4$ and $w_1, w_2 \in W$ such that $(0, x) = \lambda(1, aw_1) + \lambda(1, aw_2)$, equivalently $x = \lambda a(w_1 + w_2)$. Applying the norm we obtain $N(x) = \lambda^2 a^2 T r_{q^4, q^2}(w)$, where $w = w_1/w_2 \neq 1$. Assume this equation is satisfied. Then x and $\lambda a(w_1 + w_2)$ have the same norm. As the elements of W are precisely those of norm 1, we can find $w' \in W$ such that $x = \lambda a(w_1w' + w_2w')$ and are done. We have seen that it suffices to find λ, a, w such that $N(x) = \lambda^2 a^2 T r_{q^4, q^2}(w)$. We have $Tr_{q^4, q^2}(w) \neq 0$ as $w \neq 1$. Let $\alpha = N(x)/(\lambda^2 a^2)$. By Lemma 2 we need to find α, a such that $Tr_{q^2, 2}(1/\alpha) = 1$, where

$$\frac{1}{\alpha} = \frac{\lambda^2 a^2}{N(x)}$$

If $Tr_{q^2,4}(\lambda^2/N(x)) \neq 0$ we can choose $a \in \mathbb{F}_4$ appropriately and are done. Assume $Tr_{q^2,4}(\lambda^2/N(x)) = 0$ for all $\lambda \in \mathbb{F}_q$. Then $Tr_{q^2,2}(\lambda^2/N(x)) = 0$, and 1/N(x) is in the dual of \mathbb{F}_q in the trace form defined by $Tr_{q^2,2}$ on K. By Lemma 3 this dual is precisely \mathbb{F}_q . It follows $N(x) \in \mathbb{F}_q$. Choose $\lambda^2 = N(x)$. Then $Tr_{q^2,4}(\lambda^2/N(x)) = Tr_{q^2,4}(1) \neq 0$, contradiction.

Proposition 2. Each point $(1, x) \notin \mathcal{K}_q$, where $y = N(x) = x^{q^2+1}$ either is in \mathbb{F}_4 or is not a (q+1)-st root of unity, is collinear with two points of \mathcal{K}_q .

Proof. Consider points (1, x). Projection from P(0) shows that we are done if the order of x divides $3(q-1)(q^2+1)$. From now on we assume the order of y does not divide 3(q-1). In particular $y \notin \mathbb{F}_q, y \notin \mathbb{F}_4$ and $y^{q+1} \neq 1$.

We want to find $\lambda, \mu \in \mathbb{F}_q, a_i \in \mathbb{F}_4^*, w_i \in W$ such that

$$(1, x) = \lambda(1, a_1 w_1) + \mu(1, a_2 w_2),$$

equivalently $x = \lambda a_1 w_1 + (\lambda + 1) a_2 w_2$. Applying the norm we obtain the equivalent condition

$$y = \lambda^2 a_1^2 + (\lambda^2 + 1)a_2^2 + \lambda(\lambda + 1)a_1 a_2 T r_{q^4, q^2}(w)$$
(1)

for some $w \in W$. Let $Tr_{q^4,q^2}(w) = \alpha$. Choose $a_1 = a_2 = a$. We have $\alpha \neq 0$ as otherwise $y \in \mathbb{F}_4$. By Lemma 2 we need to find constants such that $Tr_{q^2,2}(1/\alpha) = 1$, where

$$\frac{1}{\alpha} = \frac{(\lambda^2 + \lambda)a^2}{y + a^2}$$

Assume $Tr_{q^2,2}(1/\alpha) = 0$ for all $\lambda \in \mathbb{F}_q$. Repeated application yields

$$Tr_{q^2,2}(\lambda a^2/(y+a^2)) = Tr_{q^2,2}(\lambda^2 a^2/(y+a^2)) = \dots = Tr_{q^2,2}(\lambda^{2^{f-1}}a^2/(y+a^2)).$$

As we have an odd number of terms it follows

$$Tr_{q^2,2}(\lambda a^2/(y+a^2)) = Tr_{q^2,2}(la^2/(y+a^2)) = l \cdot Tr_{q^2,2}(a^2/(y+a^2))$$
(2)

where $l = Tr_{q,2}(\lambda)$.

Assume $Tr_{q^2,2}(a^2/(y+a^2)) = 0$. By equation 2, $Tr_{q^2,2}(\lambda a^2/(y+a^2)) = 0$ for all $\lambda \in \mathbb{F}_q$. Because of Lemma 3 this implies $a^2/(y+a^2) \in \mathbb{F}_q$. We obtain $y/a^2 \in \mathbb{F}_q$. It follows that the order of x divides $3(q-1)(q^2+1)$. This case has been taken care of already.

We can assume $Tr_{q^2,2}(a^2/(y+a^2)) = 1$. Equation 2 says

$$Tr_{q^2,2}(\lambda a^2/(y+a^2)) = Tr_{q,2}(\lambda).$$

Factoring $Tr_{q^2,2}$ over $Tr_{q,2}$ we obtain

$$Tr_{q,2}(\lambda(\frac{a^2}{y+a^2}+\frac{a}{y^q+a}+1))=0$$

for all $\lambda \in \mathbb{F}_q$. The second factor under the trace must vanish. This simplifies to $y^{q+1} = 1$.

¿From now on we assume $y^{q+1} = 1$, $y \notin \mathbb{F}_4$ and we need to choose $a_1 \neq a_2$. The choice $a_1 = \omega, a_2 = \overline{\omega}$ in equation 1 yields

$$\frac{1}{\alpha} = \frac{\lambda^2 + \lambda}{y + \lambda^2 + \omega}$$

In case $a_1 = \overline{\omega}, a_2 = \omega$ an equivalent expression results, obtained by the substitution $\lambda \mapsto \lambda + 1$. Cases $\{a_1, a_2\} = \{1, \omega\}$ and $\{a_1, a_2\} = \{1, \overline{\omega}\}$ lead to similar expressions, where in the denominator y is replaced by ωy or $\overline{\omega} y$. The choice $\lambda = 0$ or $\lambda = 1$ leads to $y \in \mathbb{F}_4$, a case we have excluded. We can assume $\lambda \notin \mathbb{F}_2$. This implies that the expressions above make sense as $y \neq \lambda^2 + \omega$. In fact, assume $y = \lambda^2 + \omega$. Then $1 = y^{q+1} = (\lambda^2 + \omega)(\lambda^2 + \overline{\omega})$, hence $\lambda^2(\lambda^2 + 1) = 0$. We sum up:

Lemma 4. The cap $\mathcal{K}_q \subset PG(4,q)$ is complete if and only if for every $y \in K$ such that $y^{q+1} = 1$, $y \notin \mathbb{F}_4$ we can find $\lambda \in \mathbb{F}_q \setminus \mathbb{F}_2$ and $0 \neq a \in \mathbb{F}_4$ such that

$$Tr_{q^2,2}(\frac{\lambda^2+\lambda}{ay+\omega+\lambda^2})=1.$$

Lemma 4 is a motivation to study the rational function $\rho(X) = \sum_{\lambda \in \mathbb{F}_q} \frac{\lambda^2 + \lambda}{X + \lambda^2}$ in the variable X. The common denominator is $\prod_{\lambda} (X + \lambda) = X^q + X$. The numerator

$$\sum_{\lambda} (\lambda^2 + \lambda) \prod_{\mu \neq \lambda^2} (X + \mu)$$

is a polynomial of degree $\leq q-1$, which maps $\lambda^2 \mapsto (\lambda^2 + \lambda)$, for all $\lambda \in \mathbb{F}_q$. The polynomial $X^{q/2} + X$ affords the same mapping. Because of the unicity of the interpolating polynomial our numerator is $X^{q/2} + X$. We have seen

$$\rho(X) = \frac{X^{q/2} + X}{X^q + X}.$$

In view of Lemma 4 and replacing y by y^2 (in order to avoid square roots in the formulas) the following is obtained:

Lemma 5. Let $\rho(X) = (X^{q/2} + X)/(X^q + X)$. In order to prove the completeness of \mathcal{K}_q it is sufficient to show that for every (q+1)-st root of unity $y \in K \setminus \mathbb{F}_4$ we have

$$Tr_{q^2,q}(\sum_{0\neq a\in\mathbb{F}_4}\rho(ay^2+\omega))=1.$$

Proof. In fact, in the contrary case we would have in particular $Tr_{q^2,2}(\rho(ay^2 + \omega)) = 0$ for all $0 \neq a \in \mathbb{F}_4$ and therefore also $Tr_{q^2,2}(\sum_{0 \neq a \in \mathbb{F}_4} \rho(ay^2 + \omega)) = 0$, which is incompatible with the expression in the statement of the lemma. \Box

We have

$$\rho(ay^2 + \omega) = \frac{ay^2 + ay^q}{1 + ay^2 + a^2y^{2q}} = \frac{ay^2 + a/y}{1 + ay^2 + a^2/y^2}$$

and

$$Tr_{q^2,q}(\rho(ay^2+\omega)) = \frac{ay^2 + a/y + a^2/y^2 + a^2y}{1 + ay^2 + a^2/y^2} = 1 + \frac{1 + a/y + a^2y}{1 + ay^2 + a^2/y^2} = 1 + \frac{1}{1 + a^2y + a/y}.$$

Observe that these expressions make sense as the denominator does not vanish. If it vanished, ay^2 would satisfy a quadratic equation with coefficients in \mathbb{F}_2 , resulting in the contradiction $y \in \mathbb{F}_4$. We have seen

$$Tr_{q^2,q}(\rho(ay^2 + \omega)) = 1 + \frac{1}{1 + Tr_{q^2,q}(a^2y)}$$

Summing up over all a we obtain $1 + \sum_{a} \frac{1}{1+Tr_{q^2,q}(a^2y)}$. It suffices to show that the last sum vanishes. Writing it with the obvious common denominator the numerator is

$$(1+y+\frac{1}{y})(1+\omega y+\overline{\omega}/y) + (1+y+\frac{1}{y})(1+\overline{\omega}y+\omega/y) + (1+\omega y+\overline{\omega}/y)(1+\overline{\omega}y+\omega/y)$$

which simplifies to 0. This completes the proof of completeness, by Lemma 5.

4 Hyperplane sections and codes

In this section we determine ι_q . Moreover we show how to determine the weight distribution of C_q .

Write the points of AG(4, q) as (1, x), $x \in F$. Let $\tau = Tr_{q^4,q} : F \longrightarrow \mathbb{F}_q$ be the trace. The hyperplanes of PG(4, q) aside of the hyperplane described by the first coordinate are coordinatized by pairs (u, c), where $0 \neq u \in F, c \in \mathbb{F}_q$. Point (1, x) belongs to hyperplane $H = H_{u,c}$ if and only if $\tau(ux) = c$. In particular $P(0) \in H$ if and only if c = 0, and $P(a, w) \in H$ if and only if $\tau(uaw) = c$. Observe that $H_{u,c} = H_{\lambda u,\lambda c}$ for every $0 \neq \lambda \in \mathbb{F}_q$.

A family of 2-weight codes

The following lemma will be used in the proof of Theorem 3 below.

Lemma 6. Each $0 \neq z \in K$ can be written in the form $z = \lambda z_2$, where $\lambda \in \mathbb{F}_q$, $z_2^{q+1} = 1$, in a unique way, and $z^{q-1} = 1/z_2^2$.

Let a (q+1)-st root of unity z_2 be given. If $z_2 \neq 1$, there are q/2 elements $\lambda \in \mathbb{F}_q$ such that $Tr_{q^2,2}(\lambda z_2) = 1$. If $z_2 = 1$ there is no such λ .

Proof. The first statements follow from the fact that the multiplicative group of K is the direct product of the multiplicative group of \mathbb{F}_q and of the cyclic subgroup of order q + 1. Let $z_2 \neq 1$. Assume $Tr_{q^2,2}(\lambda z_2) = 0$ for all $\lambda \in \mathbb{F}_q$. By Lemma 3, $z_2 \in \mathbb{F}_q^{\perp} = \mathbb{F}_q$, which is a contradiction. **Theorem 3.** Let A be a set of (q + 1)-st roots of unity in K, |A| = d. Let D(A) be the 4-dimensional q-ary code of length $d(q^2 + 1)$ defined by its generator matrix whose columns are the points $Q(a, w), a \in A, w^{q^2+1} = 1$, where Q(a, w) is the point in PG(3, q) generated by $aw \in F$. Then D(A) is a 2-weight code with weights $dq^2 - (d-1)q$ and $d(q^2-q)$. There are $d(q-1)(q^2+1)$ words of weight $dq^2 - (d-1)q$ and $(q+1-d)(q-1)(q^2+1)$ words of weight $d(q^2-q)$.

Proof. Consider intersections with hyperplane $H' = H'_{\langle u \rangle}$ of PG(3,q), where $Q(a,w) \in H'$ if and only if $\tau(uaw) = 0$. The number of points $Q(a,w) \in H'$ remains unchanged if we multiply u by an element of W. It can therefore be assumed that $u \in K$. Factorize the trace:

$$\tau(uaw) = Tr_{q^2,q}(ua\alpha) = ua\alpha + u^q a^q \alpha^q = 0,$$

where $\alpha = Tr_{q^4,q^2}(w)$. If $\alpha = 0$, then w = 1 and $0 \neq a \in A$ arbitrary. This gives us d points on H'. Let now $\alpha \neq 0$. We have to count solutions of the equation

$$(1/\alpha)^{q-1} = a^{q-1}v = v/a^2,$$

where $v = u^{q-1}$ and $Tr_{q^2,2}(1/\alpha) = 1$ (see Lemma 2). Observe $v^{q+1} = a^{q+1} = 1$. We distinguish two cases. Assume at first $v = a_0^2$ for $a_0 \in A$. The choice $a = a_0$ gives no solution α such that $Tr_{q^2,2}(1/\alpha) = 1$. In each of the remaining d-1 choices for a we obtain q/2 solutions for α (see Lemma 6), each of which contributes 2 solutions for w. The hyperplane intersection size is $d+0+(d-1)\cdot 2\cdot q/2 = (d-1)q+d$ in this case.

Assume $v \notin A^2$. This time each of the *d* choices for *a* yields q/2 choices for $\alpha \neq 0$ and therefore *q* solutions for *w*. The size of the hyperplane intersection is d + dq in this case.

Corollary 1. Let D_q be the q-ary cyclic code of length $3(q^2+1)$ with defining set {1}. Then D_q is the shortened code of C_q with respect to the coordinate indexed by P(0) (the 4-dimensional subcode of C_q consisting of all codewords of C_q which vanish in that coordinate, with this coordinate removed).

Further $D_q, q > 2$ is a 2-weight code with weights $3q^2 - 3q$ and $3q^2 - 2q$. In particular D_q is a $[3(q^2 + 1), 4, 3q(q - 1)]_q$ -code.

In case q = 2 the second case in the proof of Theorem 3 does not occur. It follows that D_2 is a constant-weight code. Clearly D_2 is the Simplex code $[15, 4, 8]_2$. Factorize τ over $K : \tau(x) = Tr_{q^2,q}(Tr_{q^4,q^2}(x))$. As in the proof of Theorem 3 we can assume $u \in K$, and $Tr_{q^4,q^2}(uaw) = uaw + ua/w = ua\alpha$, where $\alpha = Tr_{q^4,q^2}(w) = w + 1/w$.

We wish to count the number of points of \mathcal{K}_q on hyperplanes $H = H_{u,c}$, where $P(a, w) \in H$ if and only if $\tau(uaw) = c$. Case c = 0 is covered by Corollary 1. Let $c \neq 0$. Upon multiplying u by a suitable factor from \mathbb{F}_q we can assume c = 1.

Lemma 7. Let $x \in K$. Then the following are equivalent:

Tr_{q²,q}(x) = 1,
x = 1/(z+1), where z ≠ 1, z^{q+1} = 1.

Lemma 7 follows from a direct calculation. It implies that $P(a, w) \in H$ if and only if $ua\alpha = 1/(z+1)$, where $z^{q+1} = 1$ and $Tr_{q^2,2}(1/\alpha) = Tr_{q^2,2}(u(z+1)\alpha) = 1$. For given $1 \neq z, z^{q+1} = 1$ the number of solutions a is either 0 or 2. It is 0 if $u(z+1) \in \mathbb{F}_4^{\perp}$ with respect to the bilinear form defined by $Tr_{q^2,2}$ on K, it is 2 otherwise. Each value of α contributes precisely two solutions w. We see that each z contributes either 0 or 4 to the intersection with hyperplane H. The contribution is 4 if and only if $u(z+1) \notin \mathbb{F}_4^{\perp}$ (with respect to $Tr_{q^2,2}$). In particular all of these hyperplane section sizes are multiples of 4 and at most 4q. Let $|\mathcal{K}_q \cap H| = 4s$.

Lemma 8. Let $l \in K$. Then l is orthogonal to \mathbb{F}_4 with respect to the trace form defined by $Tr_{q^2,2}$ if and only if $Tr_{q^2,4}(l) = 0$.

Proof. Orthogonality means $Tr_{q^2,2}(l) = Tr_{q^2,2}(\omega l) = 0$. Assume $Tr_{q^2,2}(l) = 0$. Then $Tr_{q^2,2}(\omega l) = \omega Tr_{q^2,4}(l) + \overline{\omega} Tr_{q^2,4}(l) = Tr_{q^2,4}(l)$.

By Lemma 8, z contributes to the hyperplane section size if and only if $Tr_{q^2,4}(u(z+1)) \neq 0$. It follows that s equals the number of z, $z^{q+1} = 1$ such that $Tr_{q^2,4}(u(z+1)) \neq 0$. Equivalently q+1-s is the number of such z satisfying $Tr_{q^2,4}(u(z+1)) = 0$.

Let $u(z + 1) = c_1 \omega + c_2$. Here $c_1, c_2 \in \mathbb{F}_q$ are uniquely determined as $1, \omega$ form a basis of K over \mathbb{F}_q . The last trace condition is equivalent with $Tr_{q,2}(c_1) = Tr_{q,2}(c_2) = 0$. We count such c_1, c_2 satisfying

$$(\frac{c_1\omega + c_2}{u} + 1)^{q+1} = 1.$$

This is equivalent with

$$c_1^2 + c_1c_2 + c_2^2 + u^q(c_1\omega + c_2) + u(c_1\overline{\omega} + c_2) = 0.$$

With $u = u_1 \omega + u_2$ this becomes

$$c_1^2 + c_1c_2 + c_2^2 + c_1u_2 + c_2u_1 = 0.$$

Let $x = c_1 + u_1, y = c_2 + u_2$. The main condition is

$$x^{2} + xy + y^{2} + (u_{1}^{2} + u_{1}u_{2} + u_{2}^{2}) = 0,$$

the side conditions are $Tr_{q,2}(x) = Tr_{q,2}(u_1)$, $Tr_{q,2}(y) = Tr_{q,2}(u_2)$. Let $v^2 = u_1^2 + u_1u_2 + u_2^2 \neq 0$.

4.1 Kloosterman and Mélas codes

In the sequel the trace $Tr_{q,2}$ will often be used. We abbreviate it by tr_0 .

Definition 1. For $0 \neq v \in \mathbb{F}_q$ let p_v be the number of $0 \neq x \in \mathbb{F}_q$ such that

$$tr_0(x) = tr_0(v/x) = 1.$$

Also let m_i be the number of v such that $p_v = i$.

The curve with affine equation

$$y^2 + y = x + \frac{v}{x}$$

defined over \mathbb{F}_q is elliptic and has $4p_v$ rational points. The Hasse inequality implies

$$\frac{q+1-2\sqrt{q}}{4} < p_v < \frac{q+1+2\sqrt{q}}{4}.$$

The Kloosterman code L_q or dual Mélas code is a binary code of length q-1 and dimension 2f. Codeword c(a, b), where $a, b \in \mathbb{F}_q$, has entry

$$tr_0(ax+b/x).$$

Clearly wt(c(a, b)) = wt(c(1, ab)) for $ab \neq 0$, and

$$wt(c(1,v)) = q - 2p_v$$

A detailed analysis is in [9], where the weight distribution of L_q is determined. In particular $m_i > 0$ for every integer *i* contained in the interval. Knowledge of the weight distribution of L_q is equivalent with knowledge of the numbers m_i in Definition 1.

In order to avoid confusion let us sum up. Consider the hyperplane $H = H_{u,1}$, where $u = u_1\omega + u_2 \in K$, $v^2 = u_1^2 + u_1u_2 + u_2^2$. The parameters $u_1, u_2 \in \mathbb{F}_q$ and their absolute traces $tr_0(u_1)$, $tr_0(u_2)$ are given, as well as $0 \neq v \in \mathbb{F}_q$. The intersection size $|\mathcal{K}_q \cap H| = 4s$ is determined by the number of pairs $x, y \in \mathbb{F}_q$ which satisfy $tr_0(x) = tr_0(u_1)$, $tr_0(y) = tr_0(u_2)$ and the quadratic equation

$$x^2 + xy + y^2 = v^2. (3)$$

The number of such pairs x, y is q + 1 - s.

Let $tr_0(u_2) = 1$. We have to choose y (automatically $\neq 0$) such that $tr_0(y) = 1$. Dividing equation 3 by y^2 yields the equivalent equation

$$(x/y)^{2} + (x/y) + 1 + (v/y)^{2} = 0.$$

This has solutions if and only if $tr_0(v/y) = 1$. If this is satisfied there are two solutions x, which have different absolute traces. Exactly one will satisfy $tr_0(x) = tr_0(u_1)$. We conclude $q + 1 - s = p_v$, or

$$s = q + 1 - p_v.$$

By symmetry the same is true when $tr_0(u_1) = 1$. It remains to consider the cases when $tr_0(u_1) = tr_0(u_2) = 0$. Let r be the number of pairs (x, y) such that $tr_0(x) = 0$ and equation 3 is satisfied. The only solution for x = 0 has y = v. In all other cases we must have $tr_0(v/x) = 1, tr_0(x) = 0$, and in each such case we count two choices for y. This yields $r = 1 + 2(\frac{q}{2} - p_v) = q + 1 - 2p_v$. The number of pairs (x, y) satisfying $tr_0(x) = 0, tr_0(y) = 1$ and equation 3 is p_v . We obtain

$$s = 3p_v$$
.

In case $s = q + 1 - p_v$ we have

$$4s \le 4(q+1) - (q+1) + 2\sqrt{q}.$$

This is smaller than in the second case, where $s = 3p_v$ and therefore

$$s \le 3(q+1+t).$$

Here t is as in Theorem 2.

4.2 The weight distribution of C_q

Consider the hyperplane $H = H_{u,1}$, where $u = u_1\omega + u_2 \in K$, $v^2 = u_1^2 + u_1u_2 + u_2^2$. Let $p_v = i$. We have seen that $|\mathcal{K}_q \cap H| = 4s$ and 4s = 4(q + 1 - i) if $(tr_0(u_1), tr_0(u_2)) \neq (0, 0)$, whereas 4s = 12i if $(tr_0(u_1), tr_0(u_2)) = (0, 0)$. For fixed v the number of (u_1, u_2) such that $v^2 = u_1^2 + u_1u_2 + u_2^2$ and $(tr_0(u_1), tr_0(u_2)) \neq (0, 0)$ is $3p_v = 3i$, and consequently the number of (u_1, u_2) such that $v^2 = u_1^2 + u_1u_2 + u_2^2$ and $(tr_0(u_1), tr_0(u_2)) \neq (0, 0)$ is $3p_v = 3i$, and consequently the number of (u_1, u_2) such that $v^2 = u_1^2 + u_1u_2 + u_2^2$ and $(tr_0(u_1), tr_0(u_2)) = (0, 0)$ is q + 1 - 3i.

It follows that each of the m_i elements $v \in \mathbb{F}_q$ such that $p_v = i$ contributes $3im_i$ hyperplanes $H_{u,1}$ with intersection size 4(q+1-i) and $(q+1-3i)m_i$ such hyperplanes with intersection size 12*i*. Recall that by [9] we have $m_i > 0$ for all *i* in the Hasse interval. In particular $\iota_q \leq 3(q+1+t)$ with equality if and only if t < (q+1)/3. This is satisfied for q > 32.

In case q = 32 we have t = 11. Clearly $\iota_{32} = 3(q+1+7) = 120$. For q = 8 we have $i \in \{1, 2, 3\}$ and $\iota_8 = 4(9-1) = 32$.

Multiplication by $(q-1)(q^2+1)$ yields the weight distribution of C'_q , the subset of codewords of C_q , which do not belong to D_q or to $\langle 1 \rangle$.

Theorem 4. Let $n = 3q^2 + 4$ and $A_w(C'_q)$ the number of codewords of C'_q of weight w. Then

$$A_w(C'_q) = (q-1)(q^2+1)(q+1-(n-w)/4)\{3m_{q+1-(n-w)/4} + m_{(n-w)/12}\}$$

with the proviso that $m_i = 0$ if i is not a positive integer.

As the m_i have been determined in [9] we know the weight distribution of C'_q . As all elements of $C_q \setminus C'_q$ belong either to $\langle 1 \rangle$ or to the 2-weight code D_q (see Corollary 1) this determines the weight distribution of C_q .

5 An example: C_8

As $\iota_8 = 32$, code C_8 is a $[196, 5, 164]_8$ -code. Represent \mathbb{F}_8 as $\mathbb{F}_2(\epsilon)$ where $\epsilon^3 + \epsilon^2 + 1 = 0$. The numbers p_v from Definition 1 are

$$p_1 = 1, \ p_{\epsilon} = p_{\epsilon^2} = p_{\epsilon^4} = 3, \ p_{\epsilon^3} = p_{\epsilon^5} = p_{\epsilon^6} = 2,$$

hence

$$m_1 = 1, \ m_2 = 3, \ m_3 = 3.$$

By Subsection 4.2 this yields 3 hyperplanes $H_{u,1}, u \in K$ of intersection size 32, 18 such hyperplanes of intersection size 28, 27 of intersection size 24, 6 of

intersection size 12, 9 more of intersection size 24 and finally 0 hyperplanes of intersection size 36. The weight distribution of C'_8 is therefore

$$A_{184}(C'_8) = 2730, \ A_{172}(C'_8) = 16380, \ A_{168}(C'_8) = 8190, \ A_{164}(C'_8) = 1365.$$

Together with the repetition code $\langle 1 \rangle$ and the weights of the 2-weight subcode D_8 this leads to the following weight distribution for C_8 :

$$A_0 = 1, \ A_{164} = 1365, \ A_{168} = 10920, \ A_{172} = 16380,$$

 $A_{176} = 1365, \ A_{184} = 2730, \ A_{196} = 7.$

In particular $C_8 \supset D_8$ form a chain of codes with parameters $[196, 5, 164]_8 \supset [196, 4, 168]_8$. Application of construction X from coding theory (see [8]) with $[4, 1, 4]_8$ as auxiliary code yields a code $[200, 5, 168]_8$.

6 The quadratic structure

In this section we describe how the points $\neq P_0$ of the cap \mathcal{K}_q are distributed on three parabolic quadrics.

Lemma 2 shows that we can find $w_0 \in W$ such that $Tr_{q^4,q^2}(w_0) = \omega$. As 1, w_0 form a basis of F over K, each $y \in F$ can be expressed as $y = c_1 + c_2 w_0$, where $c_1, c_2 \in K$ are uniquely determined.

We have $N(y) = (c_1 + c_2 w_0)(c_1 + c_2/w_0) = c_1^2 + c_2^2 + \omega c_1 c_2$. In particular $y \in W$ if and only if $c_1^2 + c_2^2 + \omega c_1 c_2 + 1 = 0$.

Use 1, ω as basis of K over \mathbb{F}_q , write $c_1 = x_1 + \omega x_2$, $c_2 = x_3 + \omega x_4$. Represent (x_0, y) by the tuple $(x_0, x_1, x_2, x_3, x_4) \in \mathbb{F}_q^5$. Using these bases we can use any of the following representations for an element $x \in \mathbb{F}_q^5$:

$$x = (x_0, y) = (c_0, c_1, c_2) = (x_0, x_1, x_2, x_3, x_4),$$
 where
 $y \in F, c_0 = x_0 \in \mathbb{F}_q, c_1, c_2 \in K, x_i \in \mathbb{F}_q.$

We have

$$N(y) = x_1^2 + \overline{\omega}x_2^2 + x_3^2 + \overline{\omega}x_4^2 + x_2x_4 + \omega x_1x_3 + \overline{\omega}(x_1x_4 + x_2x_3),$$

equivalently $N(y) = u_1 + \omega u_2$, where

$$u_1 = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_2x_4 + x_1x_4 + x_2x_3.$$
$$u_2 = x_2^2 + x_4^2 + x_1x_3 + x_1x_4 + x_2x_3.$$

Definition 2. Consider the following quadratic forms in 5 variables:

$$Q_2(x_0, x_1, x_2, x_3, x_4) = \sum_{i=0}^{4} x_i^2 + x_2 x_4 + x_1 x_4 + x_2 x_3,$$
$$Q_3(x_0, x_1, x_2, x_3, x_4) = x_0^2 + x_1^2 + x_3^2 + x_1 x_3 + x_2 x_4.$$

It follows

$$N(y) = x_0^2 + Q_2(x) + \omega(Q_2(x) + Q_3(x)), \text{ where } x = (x_0, y).$$

Both Q_2 and Q_3 are non-degenerate, hence parabolic. They share the radical P_0 of the associated symplectic bilinear form.

Definition 3. Consider the symmetry ρ defined by $\rho(c_0, c_1, c_2) = (c_0, \omega c_1, \omega c_2)$, equivalently $\rho(x) = (x_0, x_2, x_1 + x_2, x_4, x_3 + x_4)$. Clearly ρ has order 3. It implies an action on quadratic forms by

$$(\rho Q)(x) = Q(\rho(x)).$$

Our quadratic forms are related by $Q_3 = \rho(Q_2)$. Let Q_1 be the third quadratic form in this ρ -orbit, so $Q_1 = \rho(Q_3)$.

Definition 4. Let K_1 consist of the points (1 : y), where N(y) = 1. Likewise K_2 is defined by $N(y) = \omega$ and K_3 by $N(y) = \overline{\omega}$.

The points $\neq P_0$ of \mathcal{K}_q form the union $K_1 \cup K_2 \cup K_3$. Observe that K_1 consists of the points $(1, w), K_2$ of the points $(1, \overline{\omega}w)$ and K_3 of the points $(1, \omega w)$ (where N(w) = 1). The formula in Definition 2 shows that N(y) = 1 if and only if x = (1, y) satisfies $Q_2(x) = Q_3(x) = 0$. The same formula shows that a vector x = (0, y) where $y \neq 0$ cannot satisfy $Q_2(x) = Q_3(x) = 0$ as otherwise we would have N(y) = 0. This shows $Q_2 \cap Q_3 = K_1$. The symmetry ρ shows that $Q_i \cap Q_j = K_k$ for $\{i, j, k\} = \{1, 2, 3\}$.

Theorem 5. The points $\neq P_0$ of our cap form the union $K_1 \cup K_2 \cup K_3$. Each such point is on two of the quadrics Q_1, Q_2, Q_3 , more exactly

$$Q_i \cap Q_j = K_k$$
 whenever $\{i, j, k\} = \{1, 2, 3\}.$

References

- J. Bierbrauer: The theory of cyclic codes and a generalization to additive codes, Designs, Codes and Cryptography 25 (2002), 189-206.
- [2] J. Bierbrauer: Large caps, Combinatorics 2002, Topics in Combinatorics: geometry, graph theory and designs, Maratea (Potenza), Italy, 2-8 June, G.Korchmaros, editor, pp.7-38.
- [3] J. Bierbrauer and Y. Edel: A family of caps in projective 4-space in odd characteristic, Finite Fields and Their Applications 6 (2000),283-293.
- [4] J. Bierbrauer, A. Cossidente and Y. Edel: Caps on classical varieties and their projections, European Journal of Combinatorics 22 (2001), 135-143.
- [5] A. Carlet, P. Charpin and V. Zinoviev: Codes, bent functions, and permutations suitable for DES-like cryptosystems, Designs, Codes and Cryptography 15 (1998), 125-156.
- [6] T. Helleseth and V. Kumar: Sequences with low correlation, in Handbook of Coding Theory, edited by V.Pless and C.Huffman, Elsevier Science Publishers, 1998.
- [7] J. W. P. Hirschfeld and L. Storme: The packing problem in statistics, coding theory and finite projective spaces: update 2001, Developments in Mathematics Vol. 3, Kluwer Academic Publishers. Finite Geometries, Proceedings of the Fourth Isle of Thorns Conference (Chelwood Gate, July 16-21, 2000) (Eds. A. Blokhuis, J.W.P. Hirschfeld, D. Jungnickel and J.A. Thas), pp. 201-246.
- [8] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes, North-Holland, 1977.
- R. Schoof and M. van der Vlugt: Hecke operators and the weight distribution of certain codes, Journal of Combinatorial Theory A 57 (1991), 163-186.
- [10] B. Segre: Le geometrie di Galois, Annali di Matematica Pura ed Applicata 48 (1959),1-97.