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Abstract

We prove that a class of q-ary dual BCH-codes in characteristic
2 produce caps in AG(4, q). This is the first family of caps of order
3q2 in PG(4, q). It is proved that our caps are complete in PG(4, q).
We determine the weight distribution of the codes generated by the
caps, via a close link to the binary Kloosterman codes, the dual Mélas
codes.

1 Introduction

A cap in projective geometry PG(n, q) is a set of points no three of which
are collinear.

Theorem 1. Let q = 2f , where f is odd, and F = Fq4 . Identify the points
in AG(4, q) with the points (1, x), x ∈ F. The points (1, x) where x = 0 or x
is a 3(q2 + 1)-th root of unity form a (3q2 + 4)-cap Kq ⊂ AG(4, q).

1



The construction of large caps in PG(4, q) or AG(4, q) appears to be a
difficult problem. The best known asymptotic result is a family of caps of
order 2.5q2 in PG(4, q) in odd characteristic (see [3, 10]). Here we speak of
order cq2 if the number of points is a polynomial in q with cq2 as leading term.
In characteristic 2 it had hitherto not been possible to construct families of
caps in PG(4, q) of order more than 2q2. This asymptotic value is trivial to
reach (the union of two ovoids in hyperplanes is a (2q2 +2)-cap in PG(4, q)).
A survey of the problem is in [2], and [7] is a more general survey concerning
related questions.

Theorem 1 shows that caps of order 3q2 can be constructed in character-
istic 2, more precisely in AG(4, q), where q = 2f , f odd.

Moreover the cap Kq constructed in Theorem 1 essentially is a cyclic
code. Clearly Kq admits the cyclic group of order 3(q2 + 1) as a group of
automorphisms, with (1, 0) as fixed point and with regular action on the
remaining points of Kq. In the language of the theory of cyclic codes we can
describe Kq\{(1, 0)} as the dual of the q-ary BCH-code of length 3(q2+1) and
defining set A = {0, 1} of exponents (see [1, 8]). The claim that Kq \ {(1, 0)}
is a cap is equivalent to the statement that the BCH-code has minimum
distance 4. This will be proved in Section 2. In Section 3 we prove that Kq

is complete in PG(4, q). The maximum hyperplane section, equivalently the
minimum distance of the code Cq generated by Kq, will be determined in
Section 4.

Theorem 2. The cap Kq is complete in PG(4, q). All intersection sizes of
Kq with hyperplanes of PG(4, q) are multiples of 4. Let ιq be the maximum
hyperplane intersection size of Kq. Then ι2 = 8, ι8 = 32, ι32 = 120 and, for
q > 32, ιq = 3(q + 1 + t) , where t is the largest integer smaller than 2

√
q,

which is congruent to 3 mod 4.

Let Cq be a [3q2 + 4, 5]q-code whose generator matrix has as columns
representatives of the points of Kq (the extended dual BCH-code). We exhibit
a close link between the weight distribution of Cq and the weight distribution
of the 2f -dimensional binary Kloosterman code, the dual Mélas code. As the
weight distribution of the Kloosterman codes is known by [9] we determine
the weight distribution of Cq.

The theory of sequences with low crosscorrelation motivated the study of
binary cyclic codes with minimum distance 5, see [5] for the link to coding
theory and [6] for a survey. Theorem 1 shows that interesting caps may be
constructed as duals of BCH-codes. This raises the question to determine
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which cyclic codes have minimum distance ≥ 4. Another family of cyclic caps
was recently constructed in [4].

2 Proof of Theorem 1

Let us fix notation. We have q = 2f , f odd, F = Fq4 , K = Fq2 . Denote by
Tra,b the trace : Fa −→ Fb and by N : F −→ K the norm. Let W ⊂ F be
the group of (q2 + 1)-st roots of unity (w ∈ W ⇐⇒ N(w) = 1). Denote the
points of Kq as P (0) = (1, 0) and P (a, w) = (1, aw), where 0 6= a ∈ F4 and
w ∈ W.

Lemma 1. The numbers 3, q − 1 and q2 + 1 are pairwise coprime.

The trivial Lemma 1 implies that the points P (0) and P (a, w) are pairwise
different. Moreover, if (a1, w1) 6= (a2, w2) (0 6= ai ∈ F4, wi ∈ W ), then
a1w1

a2w2

/∈ Fq. It follows that P (0) is not collinear with two of the remaining

points of Kq. It suffices to show that the P (a, w) form a cap.

Lemma 2. Let 0 6= α ∈ K. The following are equivalent:

• There exists w ∈ W such that Trq4,q2(w) = α

• Trq2,4(1/α) ∈ F4 \ F2.

• Trq2,2(1/α) = 1.

Proof. It is clear that the second and third condition are equivalent, and
Trq4,q2(w) = w + 1/w = α is equivalent with (w/α)2 + (w/α) + 1/α2 = 0.
Clearly, w = 1 is not a solution. Let Trq2,2(1/α) = 0. Then the solutions of
x2 +x+1/α2 = 0 are in K. It follows w ∈ K, contradiction. This shows that
there is no solution in this case. As there are q2/2 elements α ∈ K such that
Trq2,2(1/α) = 1 and each contributes at most two solutions 1 6= w ∈ W, we
must have equality.

Lemma 3. Trq2,2(Fq) = 0. We have Fq = F
⊥
q with respect to the bilinear

form defined by Trq2,2 on K.

Lemma 3 is obvious as λq = λ for λ ∈ Fq.
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Let P (a1, w1), P (a2, w2), P (a3, w3) be different points of Kq, which are
collinear. Let the coefficients of an affine linear combination be 1, λ, λ + 1,
where λ ∈ Fq \ F2. This yields the equation

(λ + 1)a1w1 = a2w2 + λa3w3.

Assume at first ai = aj for some i 6= j. Using the automorphism group we
can assume a2 = a3 = 1 and w3 = 1. The equation is

(λ + 1)a1w1 = w2 + λ.

As the second and third point are different, it follows w2 6= 1. Application of
the norm (N(x) = xq2+1) to both sides yields (λ2 +1)a2

1 = λ2 +1+λα, where
α = Trq4,q2(w2). We have α 6= 0 as w2 6= 1. It follows a1 6= 1. The equation

1

α
(a2

1 + 1) =
λ

λ2 + 1
=

1

λ + 1
+

1

(λ + 1)2

shows (a2
1 + 1)Trq2,4(1/α) = Trq2,4(

1
λ+1

+ 1
(λ+1)2

) = Trq2,2(
1

λ+1
) = 0 (see

Lemma 3). It follows Trq2,4(1/α) = 0, contradicting Lemma 2.
Assume now the ai are pairwise different (and nonzero) elements of F4.

We can choose notation such that

(λ + 1)w1 = ωw2 + λω.

Here ω and ω = ω2 are the primitive elements of F4. Application of N yields
λ2 + 1 = ω + λ2ω + λα, where α = Trq4,q2(w2). We have α 6= 0 as otherwise
λ ∈ F4, which is impossible as Fq ∩ F4 = F2. An equivalent form of the
equation is λ2ω+λα+ω = 0. Multiplication by ω/α2 yields x2+x+1/α2 = 0,
where x = λω/α. This yields Trq2,2(1/α) = 0, contradicting Lemma 2.

3 Completeness

In this section we prove that Kq ⊂ PG(4, q) is a complete cap.

Proposition 1. Each point in the hyperplane avoided by Kq is collinear with
two points of Kq.
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Proof. Consider point (0, x). We want to find 0 6= λ ∈ Fq, 0 6= a ∈ F4

and w1, w2 ∈ W such that (0, x) = λ(1, aw1) + λ(1, aw2), equivalently x =
λa(w1 + w2). Applying the norm we obtain N(x) = λ2a2Trq4,q2(w), where
w = w1/w2 6= 1. Assume this equation is satisfied. Then x and λa(w1 + w2)
have the same norm. As the elements of W are precisely those of norm 1,
we can find w′ ∈ W such that x = λa(w1w

′ + w2w
′) and are done. We have

seen that it suffices to find λ, a, w such that N(x) = λ2a2Trq4,q2(w). We have
Trq4,q2(w) 6= 0 as w 6= 1. Let α = N(x)/(λ2a2). By Lemma 2 we need to find
α, a such that Trq2,2(1/α) = 1, where

1

α
=

λ2a2

N(x)
.

If Trq2,4(λ
2/N(x)) 6= 0 we can choose a ∈ F4 appropriately and are done.

Assume Trq2,4(λ
2/N(x)) = 0 for all λ ∈ Fq. Then Trq2,2(λ

2/N(x)) = 0, and
1/N(x) is in the dual of Fq in the trace form defined by Trq2,2 on K. By
Lemma 3 this dual is precisely Fq. It follows N(x) ∈ Fq. Choose λ2 = N(x).
Then Trq2,4(λ

2/N(x)) = Trq2,4(1) 6= 0, contradiction.

Proposition 2. Each point (1, x) /∈ Kq, where y = N(x) = xq2+1 either is
in F4 or is not a (q + 1)-st root of unity, is collinear with two points of Kq.

Proof. Consider points (1, x). Projection from P (0) shows that we are done
if the order of x divides 3(q − 1)(q2 + 1). From now on we assume the order
of y does not divide 3(q − 1). In particular y /∈ Fq, y /∈ F4 and yq+1 6= 1.

We want to find λ, µ ∈ Fq, ai ∈ F
∗
4, wi ∈ W such that

(1, x) = λ(1, a1w1) + µ(1, a2w2),

equivalently x = λa1w1 + (λ + 1)a2w2. Applying the norm we obtain the
equivalent condition

y = λ2a2
1 + (λ2 + 1)a2

2 + λ(λ + 1)a1a2Trq4,q2(w) (1)

for some w ∈ W. Let Trq4,q2(w) = α. Choose a1 = a2 = a. We have
α 6= 0 as otherwise y ∈ F4. By Lemma 2 we need to find constants such that
Trq2,2(1/α) = 1, where

1

α
=

(λ2 + λ)a2

y + a2
.
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Assume Trq2,2(1/α) = 0 for all λ ∈ Fq. Repeated application yields

Trq2,2(λa2/(y +a2)) = Trq2,2(λ
2a2/(y +a2)) = · · · = Trq2,2(λ

2f−1

a2/(y +a2)).

As we have an odd number of terms it follows

Trq2,2(λa2/(y + a2)) = Trq2,2(la
2/(y + a2)) = l · Trq2,2(a

2/(y + a2)) (2)

where l = Trq,2(λ).
Assume Trq2,2(a

2/(y + a2)) = 0. By equation 2, Trq2,2(λa2/(y + a2)) = 0
for all λ ∈ Fq. Because of Lemma 3 this implies a2/(y + a2) ∈ Fq. We obtain
y/a2 ∈ Fq. It follows that the order of x divides 3(q − 1)(q2 + 1). This case
has been taken care of already.

We can assume Trq2,2(a
2/(y + a2)) = 1. Equation 2 says

Trq2,2(λa2/(y + a2)) = Trq,2(λ).

Factoring Trq2,2 over Trq,2 we obtain

Trq,2(λ(
a2

y + a2
+

a

yq + a
+ 1)) = 0

for all λ ∈ Fq. The second factor under the trace must vanish. This simplifies
to yq+1 = 1.

¿From now on we assume yq+1 = 1, y /∈ F4 and we need to choose a1 6= a2.
The choice a1 = ω, a2 = ω in equation 1 yields

1

α
=

λ2 + λ

y + λ2 + ω

In case a1 = ω, a2 = ω an equivalent expression results, obtained by the
substitution λ 7→ λ + 1. Cases {a1, a2} = {1, ω} and {a1, a2} = {1, ω} lead
to similar expressions, where in the denominator y is replaced by ωy or ωy.
The choice λ = 0 or λ = 1 leads to y ∈ F4, a case we have excluded. We
can assume λ /∈ F2. This implies that the expressions above make sense as
y 6= λ2 + ω. In fact, assume y = λ2 + ω. Then 1 = yq+1 = (λ2 + ω)(λ2 + ω),
hence λ2(λ2 + 1) = 0. We sum up:

Lemma 4. The cap Kq ⊂ PG(4, q) is complete if and only if for every y ∈ K
such that yq+1 = 1, y /∈ F4 we can find λ ∈ Fq \ F2 and 0 6= a ∈ F4 such that

Trq2,2(
λ2 + λ

ay + ω + λ2
) = 1.
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Lemma 4 is a motivation to study the rational function ρ(X) =
∑

λ∈Fq

λ2 + λ

X + λ2

in the variable X. The common denominator is
∏

λ(X + λ) = Xq + X. The
numerator ∑

λ

(λ2 + λ)
∏

µ6=λ2

(X + µ)

is a polynomial of degree ≤ q − 1, which maps λ2 7→ (λ2 + λ), for all λ ∈ Fq.
The polynomial Xq/2 + X affords the same mapping. Because of the unicity
of the interpolating polynomial our numerator is X q/2 + X. We have seen

ρ(X) =
Xq/2 + X

Xq + X
.

In view of Lemma 4 and replacing y by y2 (in order to avoid square roots in
the formulas) the following is obtained:

Lemma 5. Let ρ(X) = (Xq/2 + X)/(Xq + X). In order to prove the com-
pleteness of Kq it is sufficient to show that for every (q + 1)-st root of unity
y ∈ K \ F4 we have

Trq2,q(
∑

06=a∈F4

ρ(ay2 + ω)) = 1.

Proof. In fact, in the contrary case we would have in particular Trq2,2(ρ(ay2+
ω) = 0 for all 0 6= a ∈ F4 and therefore also Trq2,2(

∑
06=a∈F4

ρ(ay2 + ω)) = 0,
which is incompatible with the expression in the statement of the lemma.

We have

ρ(ay2 + ω) =
ay2 + ayq

1 + ay2 + a2y2q
=

ay2 + a/y

1 + ay2 + a2/y2

and

Trq2,q(ρ(ay2 + ω)) =
ay2 + a/y + a2/y2 + a2y

1 + ay2 + a2/y2
=

= 1 +
1 + a/y + a2y

1 + ay2 + a2/y2
= 1 +

1

1 + a2y + a/y
.

Observe that these expressions make sense as the denominator does not van-
ish. If it vanished, ay2 would satisfy a quadratic equation with coefficients
in F2, resulting in the contradiction y ∈ F4.
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We have seen

Trq2,q(ρ(ay2 + ω)) = 1 +
1

1 + Trq2,q(a2y)
.

Summing up over all a we obtain 1+
∑

a
1

1+Tr
q2,q

(a2y)
. It suffices to show that

the last sum vanishes. Writing it with the obvious common denominator the
numerator is

(1+y+
1

y
)(1+ωy+ω/y)+(1+y+

1

y
)(1+ωy+ω/y)+(1+ωy+ω/y)(1+ωy+ω/y)

which simplifies to 0. This completes the proof of completeness, by Lemma 5.

4 Hyperplane sections and codes

In this section we determine ιq. Moreover we show how to determine the
weight distribution of Cq.

Write the points of AG(4, q) as (1, x), x ∈ F. Let τ = Trq4,q : F −→ Fq be
the trace. The hyperplanes of PG(4, q) aside of the hyperplane described by
the first coordinate are coordinatized by pairs (u, c), where 0 6= u ∈ F, c ∈ Fq.
Point (1, x) belongs to hyperplane H = Hu,c if and only if τ(ux) = c. In
particular P (0) ∈ H if and only if c = 0, and P (a, w) ∈ H if and only if
τ(uaw) = c. Observe that Hu,c = Hλu,λc for every 0 6= λ ∈ Fq.

A family of 2-weight codes

The following lemma will be used in the proof of Theorem 3 below.

Lemma 6. Each 0 6= z ∈ K can be written in the form z = λz2, where
λ ∈ Fq, zq+1

2 = 1, in a unique way, and zq−1 = 1/z2
2 .

Let a (q+1)-st root of unity z2 be given. If z2 6= 1, there are q/2 elements
λ ∈ Fq such that Trq2,2(λz2) = 1. If z2 = 1 there is no such λ.

Proof. The first statements follow from the fact that the multiplicative group
of K is the direct product of the multiplicative group of Fq and of the cyclic
subgroup of order q + 1. Let z2 6= 1. Assume Trq2,2(λz2) = 0 for all λ ∈ Fq.
By Lemma 3, z2 ∈ F

⊥
q = Fq, which is a contradiction.
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Theorem 3. Let A be a set of (q + 1)-st roots of unity in K, |A| = d.
Let D(A) be the 4-dimensional q-ary code of length d(q2 + 1) defined by its
generator matrix whose columns are the points Q(a, w), a ∈ A,wq2+1 = 1,
where Q(a, w) is the point in PG(3, q) generated by aw ∈ F. Then D(A) is a
2-weight code with weights dq2−(d−1)q and d(q2−q). There are d(q−1)(q2+1)
words of weight dq2 − (d− 1)q and (q + 1− d)(q − 1)(q2 + 1) words of weight
d(q2 − q).

Proof. Consider intersections with hyperplane H ′ = H ′
〈u〉 of PG(3, q), where

Q(a, w) ∈ H ′ if and only if τ(uaw) = 0. The number of points Q(a, w) ∈ H ′

remains unchanged if we multiply u by an element of W. It can therefore be
assumed that u ∈ K. Factorize the trace:

τ(uaw) = Trq2,q(uaα) = uaα + uqaqαq = 0,

where α = Trq4,q2(w). If α = 0, then w = 1 and 0 6= a ∈ A arbitrary. This
gives us d points on H ′. Let now α 6= 0. We have to count solutions of the
equation

(1/α)q−1 = aq−1v = v/a2,

where v = uq−1 and Trq2,2(1/α) = 1 (see Lemma 2). Observe vq+1 = aq+1 =
1. We distinguish two cases. Assume at first v = a2

0 for a0 ∈ A. The choice
a = a0 gives no solution α such that Trq2,2(1/α) = 1. In each of the remaining
d−1 choices for a we obtain q/2 solutions for α (see Lemma 6), each of which
contributes 2 solutions for w. The hyperplane intersection size is d+0+(d−
1) · 2 · q/2 = (d − 1)q + d in this case.

Assume v /∈ A2. This time each of the d choices for a yields q/2 choices for
α 6= 0 and therefore q solutions for w. The size of the hyperplane intersection
is d + dq in this case.

Corollary 1. Let Dq be the q-ary cyclic code of length 3(q2 +1) with defining
set {1}. Then Dq is the shortened code of Cq with respect to the coordinate
indexed by P (0) (the 4-dimensional subcode of Cq consisting of all codewords
of Cq which vanish in that coordinate, with this coordinate removed).

Further Dq, q > 2 is a 2-weight code with weights 3q2 − 3q and 3q2 − 2q.
In particular Dq is a [3(q2 + 1), 4, 3q(q − 1)]q-code.

In case q = 2 the second case in the proof of Theorem 3 does not occur.
It follows that D2 is a constant-weight code. Clearly D2 is the Simplex code
[15, 4, 8]2.
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Factorize τ over K : τ(x) = Trq2,q(Trq4,q2(x)). As in the proof of Theo-
rem 3 we can assume u ∈ K, and Trq4,q2(uaw) = uaw + ua/w = uaα, where
α = Trq4,q2(w) = w + 1/w.

We wish to count the number of points of Kq on hyperplanes H = Hu,c,
where P (a, w) ∈ H if and only if τ(uaw) = c. Case c = 0 is covered by
Corollary 1. Let c 6= 0. Upon multiplying u by a suitable factor from Fq we
can assume c = 1.

Lemma 7. Let x ∈ K. Then the following are equivalent:

• Trq2,q(x) = 1,

• x =
1

z + 1
, where z 6= 1, zq+1 = 1.

Lemma 7 follows from a direct calculation. It implies that P (a, w) ∈ H if
and only if uaα = 1/(z + 1), where zq+1 = 1 and Trq2,2(1/α) = Trq2,2(u(z +
1)a) = 1. For given 1 6= z, zq+1 = 1 the number of solutions a is either 0 or 2.
It is 0 if u(z + 1) ∈ F

⊥
4 with respect to the bilinear form defined by Trq2,2 on

K, it is 2 otherwise. Each value of α contributes precisely two solutions w. We
see that each z contributes either 0 or 4 to the intersection with hyperplane
H. The contribution is 4 if and only if u(z +1) /∈ F

⊥
4 (with respect to Trq2,2).

In particular all of these hyperplane section sizes are multiples of 4 and at
most 4q. Let |Kq ∩ H| = 4s.

Lemma 8. Let l ∈ K. Then l is orthogonal to F4 with respect to the trace
form defined by Trq2,2 if and only if Trq2,4(l) = 0.

Proof. Orthogonality means Trq2,2(l) = Trq2,2(ωl) = 0. Assume Trq2,2(l) =
0. Then Trq2,2(ωl) = ωTrq2,4(l) + ωTrq2,4(l) = Trq2,4(l).

By Lemma 8, z contributes to the hyperplane section size if and only if
Trq2,4(u(z + 1)) 6= 0. It follows that s equals the number of z, zq+1 = 1 such
that Trq2,4(u(z + 1)) 6= 0. Equivalently q + 1 − s is the number of such z
satisfying Trq2,4(u(z + 1)) = 0.

Let u(z + 1) = c1ω + c2. Here c1, c2 ∈ Fq are uniquely determined as
1, ω form a basis of K over Fq. The last trace condition is equivalent with
Trq,2(c1) = Trq,2(c2) = 0. We count such c1, c2 satisfying

(
c1ω + c2

u
+ 1)q+1 = 1.
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This is equivalent with

c2
1 + c1c2 + c2

2 + uq(c1ω + c2) + u(c1ω + c2) = 0.

With u = u1ω + u2 this becomes

c2
1 + c1c2 + c2

2 + c1u2 + c2u1 = 0.

Let x = c1 + u1, y = c2 + u2. The main condition is

x2 + xy + y2 + (u2
1 + u1u2 + u2

2) = 0,

the side conditions are Trq,2(x) = Trq,2(u1), T rq,2(y) = Trq,2(u2). Let v2 =
u2

1 + u1u2 + u2
2 6= 0.

4.1 Kloosterman and Mélas codes

In the sequel the trace Trq,2 will often be used. We abbreviate it by tr0.

Definition 1. For 0 6= v ∈ Fq let pv be the number of 0 6= x ∈ Fq such that

tr0(x) = tr0(v/x) = 1.

Also let mi be the number of v such that pv = i.

The curve with affine equation

y2 + y = x +
v

x

defined over Fq is elliptic and has 4pv rational points. The Hasse inequality
implies

q + 1 − 2
√

q

4
< pv <

q + 1 + 2
√

q

4
.

The Kloosterman code Lq or dual Mélas code is a binary code of length q−1
and dimension 2f. Codeword c(a, b), where a, b ∈ Fq, has entry

tr0(ax + b/x).

Clearly wt(c(a, b)) = wt(c(1, ab)) for ab 6= 0, and

wt(c(1, v)) = q − 2pv.
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A detailed analysis is in [9], where the weight distribution of Lq is determined.
In particular mi > 0 for every integer i contained in the interval. Knowledge
of the weight distribution of Lq is equivalent with knowledge of the numbers
mi in Definition 1.

In order to avoid confusion let us sum up. Consider the hyperplane
H = Hu,1, where u = u1ω + u2 ∈ K, v2 = u2

1 + u1u2 + u2
2. The parameters

u1, u2 ∈ Fq and their absolute traces tr0(u1), tr0(u2) are given, as well as
0 6= v ∈ Fq. The intersection size |Kq ∩H| = 4s is determined by the number
of pairs x, y ∈ Fq which satisfy tr0(x) = tr0(u1), tr0(y) = tr0(u2) and the
quadratic equation

x2 + xy + y2 = v2. (3)

The number of such pairs x, y is q + 1 − s.
Let tr0(u2) = 1. We have to choose y (automatically 6= 0) such that

tr0(y) = 1. Dividing equation 3 by y2 yields the equivalent equation

(x/y)2 + (x/y) + 1 + (v/y)2 = 0.

This has solutions if and only if tr0(v/y) = 1. If this is satisfied there are
two solutions x, which have different absolute traces. Exactly one will satisfy
tr0(x) = tr0(u1). We conclude q + 1 − s = pv, or

s = q + 1 − pv.

By symmetry the same is true when tr0(u1) = 1. It remains to consider
the cases when tr0(u1) = tr0(u2) = 0. Let r be the number of pairs (x, y) such
that tr0(x) = 0 and equation 3 is satisfied. The only solution for x = 0 has
y = v. In all other cases we must have tr0(v/x) = 1, tr0(x) = 0, and in each
such case we count two choices for y. This yields r = 1+2( q

2
−pv) = q+1−2pv.

The number of pairs (x, y) satisfying tr0(x) = 0, tr0(y) = 1 and equation 3
is pv. We obtain

s = 3pv.

In case s = q + 1 − pv we have

4s ≤ 4(q + 1) − (q + 1) + 2
√

q.

This is smaller than in the second case, where s = 3pv and therefore

s ≤ 3(q + 1 + t).

Here t is as in Theorem 2.
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4.2 The weight distribution of Cq

Consider the hyperplane H = Hu,1, where u = u1ω + u2 ∈ K, v2 = u2
1 +

u1u2 + u2
2. Let pv = i. We have seen that |Kq ∩ H| = 4s and 4s = 4(q +

1 − i) if (tr0(u1), tr0(u2)) 6= (0, 0), whereas 4s = 12i if (tr0(u1), tr0(u2)) =
(0, 0). For fixed v the number of (u1, u2) such that v2 = u2

1 + u1u2 + u2
2 and

(tr0(u1), tr0(u2)) 6= (0, 0) is 3pv = 3i, and consequently the number of (u1, u2)
such that v2 = u2

1 + u1u2 + u2
2 and (tr0(u1), tr0(u2)) = (0, 0) is q + 1 − 3i.

It follows that each of the mi elements v ∈ Fq such that pv = i contributes
3imi hyperplanes Hu,1 with intersection size 4(q + 1 − i) and (q + 1 − 3i)mi

such hyperplanes with intersection size 12i. Recall that by [9] we have mi > 0
for all i in the Hasse interval. In particular ιq ≤ 3(q + 1 + t) with equality if
and only if t < (q + 1)/3. This is satisfied for q > 32.

In case q = 32 we have t = 11. Clearly ι32 = 3(q +1+7) = 120. For q = 8
we have i ∈ {1, 2, 3} and ι8 = 4(9 − 1) = 32.

Multiplication by (q − 1)(q2 + 1) yields the weight distribution of C ′
q, the

subset of codewords of Cq, which do not belong to Dq or to 〈1〉.
Theorem 4. Let n = 3q2 + 4 and Aw(C ′

q) the number of codewords of C ′
q of

weight w. Then

Aw(C ′
q) = (q − 1)(q2 + 1)(q + 1 − (n − w)/4){3mq+1−(n−w)/4 + m(n−w)/12}

with the proviso that mi = 0 if i is not a positive integer.

As the mi have been determined in [9] we know the weight distribution
of C ′

q. As all elements of Cq \C ′
q belong either to 〈1〉 or to the 2-weight code

Dq (see Corollary 1) this determines the weight distribution of Cq.

5 An example: C8

As ι8 = 32, code C8 is a [196, 5, 164]8-code. Represent F8 as F2(ε) where
ε3 + ε2 + 1 = 0. The numbers pv from Definition 1 are

p1 = 1, pε = pε2 = pε4 = 3, pε3 = pε5 = pε6 = 2,

hence
m1 = 1, m2 = 3, m3 = 3.

By Subsection 4.2 this yields 3 hyperplanes Hu,1, u ∈ K of intersection size
32, 18 such hyperplanes of intersection size 28, 27 of intersection size 24, 6 of

13



intersection size 12, 9 more of intersection size 24 and finally 0 hyperplanes
of intersection size 36. The weight distribution of C ′

8 is therefore

A184(C
′
8) = 2730, A172(C

′
8) = 16380, A168(C

′
8) = 8190, A164(C

′
8) = 1365.

Together with the repetition code 〈1〉 and the weights of the 2-weight subcode
D8 this leads to the following weight distribution for C8 :

A0 = 1, A164 = 1365, A168 = 10920, A172 = 16380,

A176 = 1365, A184 = 2730, A196 = 7.

In particular C8 ⊃ D8 form a chain of codes with parameters [196, 5, 164]8 ⊃
[196, 4, 168]8. Application of construction X from coding theory (see [8]) with
[4, 1, 4]8 as auxiliary code yields a code [200, 5, 168]8.

6 The quadratic structure

In this section we describe how the points 6= P0 of the cap Kq are distributed
on three parabolic quadrics.

Lemma 2 shows that we can find w0 ∈ W such that Trq4,q2(w0) = ω. As
1, w0 form a basis of F over K, each y ∈ F can be expressed as y = c1 +c2w0,
where c1, c2 ∈ K are uniquely determined.

We have N(y) = (c1 + c2w0)(c1 + c2/w0) = c2
1 + c2

2 + ωc1c2. In particular
y ∈ W if and only if c2

1 + c2
2 + ωc1c2 + 1 = 0.

Use 1, ω as basis of K over Fq, write c1 = x1 + ωx2, c2 = x3 + ωx4.
Represent (x0, y) by the tuple (x0, x1, x2, x3, x4) ∈ F

5
q. Using these bases we

can use any of the following representations for an element x ∈ F
5
q :

x = (x0, y) = (c0, c1, c2) = (x0, x1, x2, x3, x4), where

y ∈ F, c0 = x0 ∈ Fq, c1, c2 ∈ K, xi ∈ Fq.

We have

N(y) = x2
1 + ωx2

2 + x2
3 + ωx2

4 + x2x4 + ωx1x3 + ω(x1x4 + x2x3),

equivalently N(y) = u1 + ωu2, where

u1 = x2
1 + x2

2 + x2
3 + x2

4 + x2x4 + x1x4 + x2x3,

u2 = x2
2 + x2

4 + x1x3 + x1x4 + x2x3.

14



Definition 2. Consider the following quadratic forms in 5 variables:

Q2(x0, x1, x2, x3, x4) =
4∑

i=0

x2
i + x2x4 + x1x4 + x2x3,

Q3(x0, x1, x2, x3, x4) = x2
0 + x2

1 + x2
3 + x1x3 + x2x4.

It follows

N(y) = x2
0 + Q2(x) + ω(Q2(x) + Q3(x)), where x = (x0, y).

Both Q2 and Q3 are non-degenerate, hence parabolic. They share the radical
P0 of the associated symplectic bilinear form.

Definition 3. Consider the symmetry ρ defined by ρ(c0, c1, c2) = (c0, ωc1, ωc2),
equivalently ρ(x) = (x0, x2, x1 + x2, x4, x3 + x4). Clearly ρ has order 3. It im-
plies an action on quadratic forms by

(ρQ)(x) = Q(ρ(x)).

Our quadratic forms are related by Q3 = ρ(Q2). Let Q1 be the third
quadratic form in this ρ-orbit, so Q1 = ρ(Q3).

Definition 4. Let K1 consist of the points (1 : y), where N(y) = 1. Likewise
K2 is defined by N(y) = ω and K3 by N(y) = ω.

The points 6= P0 of Kq form the union K1 ∪ K2 ∪ K3. Observe that K1

consists of the points (1, w), K2 of the points (1, ωw) and K3 of the points
(1, ωw) (where N(w) = 1). The formula in Definition 2 shows that N(y) = 1
if and only if x = (1, y) satisfies Q2(x) = Q3(x) = 0. The same formula shows
that a vector x = (0, y) where y 6= 0 cannot satisfy Q2(x) = Q3(x) = 0 as
otherwise we would have N(y) = 0. This shows Q2∩Q3 = K1. The symmetry
ρ shows that Qi ∩ Qj = Kk for {i, j, k} = {1, 2, 3}.

Theorem 5. The points 6= P0 of our cap form the union K1∪K2∪K3. Each
such point is on two of the quadrics Q1, Q2, Q3, more exactly

Qi ∩ Qj = Kk whenever {i, j, k} = {1, 2, 3}.
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