Caps of order $3 q^{2}$ in affine 4 -space in characteristic 2

Yves Edel
Mathematisches Institut der Universität
Im Neuenheimer Feld 288
69120 Heidelberg (Germany)
Jürgen Bierbrauer
Department of Mathematical Sciences Michigan Technological University Houghton, Michigan 49931 (USA)

Abstract

We prove that a class of q-ary dual BCH -codes in characteristic 2 produce caps in $A G(4, q)$. This is the first family of caps of order $3 q^{2}$ in $P G(4, q)$. It is proved that our caps are complete in $P G(4, q)$. We determine the weight distribution of the codes generated by the caps, via a close link to the binary Kloosterman codes, the dual Mélas codes.

1 Introduction

A cap in projective geometry $P G(n, q)$ is a set of points no three of which are collinear.

Theorem 1. Let $q=2^{f}$, where f is odd, and $F=\mathbb{F}_{q^{4}}$. Identify the points in $A G(4, q)$ with the points $(1, x), x \in F$. The points $(1, x)$ where $x=0$ or x is a $3\left(q^{2}+1\right)$-th root of unity form a $\left(3 q^{2}+4\right)$-cap $\mathcal{K}_{q} \subset A G(4, q)$.

The construction of large caps in $P G(4, q)$ or $A G(4, q)$ appears to be a difficult problem. The best known asymptotic result is a family of caps of order $2.5 q^{2}$ in $P G(4, q)$ in odd characteristic (see $[3,10]$). Here we speak of order $c q^{2}$ if the number of points is a polynomial in q with $c q^{2}$ as leading term. In characteristic 2 it had hitherto not been possible to construct families of caps in $P G(4, q)$ of order more than $2 q^{2}$. This asymptotic value is trivial to reach (the union of two ovoids in hyperplanes is a $\left(2 q^{2}+2\right)$-cap in $P G(4, q)$). A survey of the problem is in [2], and [7] is a more general survey concerning related questions.

Theorem 1 shows that caps of order $3 q^{2}$ can be constructed in characteristic 2 , more precisely in $A G(4, q)$, where $q=2^{f}$, f odd.

Moreover the cap \mathcal{K}_{q} constructed in Theorem 1 essentially is a cyclic code. Clearly \mathcal{K}_{q} admits the cyclic group of order $3\left(q^{2}+1\right)$ as a group of automorphisms, with $(1,0)$ as fixed point and with regular action on the remaining points of \mathcal{K}_{q}. In the language of the theory of cyclic codes we can describe $\mathcal{K}_{q} \backslash\{(1,0)\}$ as the dual of the q-ary BCH-code of length $3\left(q^{2}+1\right)$ and defining set $A=\{0,1\}$ of exponents (see $[1,8]$). The claim that $\mathcal{K}_{q} \backslash\{(1,0)\}$ is a cap is equivalent to the statement that the BCH -code has minimum distance 4 . This will be proved in Section 2. In Section 3 we prove that \mathcal{K}_{q} is complete in $P G(4, q)$. The maximum hyperplane section, equivalently the minimum distance of the code C_{q} generated by \mathcal{K}_{q}, will be determined in Section 4.

Theorem 2. The cap \mathcal{K}_{q} is complete in $P G(4, q)$. All intersection sizes of \mathcal{K}_{q} with hyperplanes of $\operatorname{PG}(4, q)$ are multiples of 4 . Let ι_{q} be the maximum hyperplane intersection size of \mathcal{K}_{q}. Then $\iota_{2}=8, \iota_{8}=32, \iota_{32}=120$ and, for $q>32, \iota_{q}=3(q+1+t)$, where t is the largest integer smaller than $2 \sqrt{q}$, which is congruent to $3 \bmod 4$.

Let C_{q} be a $\left[3 q^{2}+4,5\right]_{q}$-code whose generator matrix has as columns representatives of the points of \mathcal{K}_{q} (the extended dual BCH -code). We exhibit a close link between the weight distribution of C_{q} and the weight distribution of the $2 f$-dimensional binary Kloosterman code, the dual Mélas code. As the weight distribution of the Kloosterman codes is known by [9] we determine the weight distribution of C_{q}.

The theory of sequences with low crosscorrelation motivated the study of binary cyclic codes with minimum distance 5, see [5] for the link to coding theory and [6] for a survey. Theorem 1 shows that interesting caps may be constructed as duals of BCH-codes. This raises the question to determine
which cyclic codes have minimum distance ≥ 4. Another family of cyclic caps was recently constructed in [4].

2 Proof of Theorem 1

Let us fix notation. We have $q=2^{f}, f$ odd, $F=\mathbb{F}_{q^{4}}, K=\mathbb{F}_{q^{2}}$. Denote by $T r_{a, b}$ the trace : $\mathbb{F}_{a} \longrightarrow \mathbb{F}_{b}$ and by $N: F \longrightarrow K$ the norm. Let $W \subset F$ be the group of $\left(q^{2}+1\right)$-st roots of unity $(w \in W \Longleftrightarrow N(w)=1)$. Denote the points of \mathcal{K}_{q} as $P(0)=(1,0)$ and $P(a, w)=(1, a w)$, where $0 \neq a \in \mathbb{F}_{4}$ and $w \in W$.

Lemma 1. The numbers $3, q-1$ and $q^{2}+1$ are pairwise coprime.
The trivial Lemma 1 implies that the points $P(0)$ and $P(a, w)$ are pairwise different. Moreover, if $\left(a_{1}, w_{1}\right) \neq\left(a_{2}, w_{2}\right)\left(0 \neq a_{i} \in \mathbb{F}_{4}, w_{i} \in W\right)$, then $\frac{a_{1} w_{1}}{a_{2} w_{2}} \notin \mathbb{F}_{q}$. It follows that $P(0)$ is not collinear with two of the remaining points of \mathcal{K}_{q}. It suffices to show that the $P(a, w)$ form a cap.

Lemma 2. Let $0 \neq \alpha \in K$. The following are equivalent:

- There exists $w \in W$ such that $\operatorname{Tr}_{q^{4}, q^{2}}(w)=\alpha$
- $\operatorname{Tr}_{q^{2}, 4}(1 / \alpha) \in \mathbb{F}_{4} \backslash \mathbb{F}_{2}$.
- $\operatorname{Tr}_{q^{2}, 2}(1 / \alpha)=1$.

Proof. It is clear that the second and third condition are equivalent, and $\operatorname{Tr}_{q^{4}, q^{2}}(w)=w+1 / w=\alpha$ is equivalent with $(w / \alpha)^{2}+(w / \alpha)+1 / \alpha^{2}=0$. Clearly, $w=1$ is not a solution. Let $\operatorname{Tr}_{q^{2}, 2}(1 / \alpha)=0$. Then the solutions of $x^{2}+x+1 / \alpha^{2}=0$ are in K. It follows $w \in K$, contradiction. This shows that there is no solution in this case. As there are $q^{2} / 2$ elements $\alpha \in K$ such that $\operatorname{Tr}_{q^{2}, 2}(1 / \alpha)=1$ and each contributes at most two solutions $1 \neq w \in W$, we must have equality.

Lemma 3. $T r_{q^{2}, 2}\left(\mathbb{F}_{q}\right)=0$. We have $\mathbb{F}_{q}=\mathbb{F}_{q}^{\perp}$ with respect to the bilinear form defined by $T r_{q^{2}, 2}$ on K.

Lemma 3 is obvious as $\lambda^{q}=\lambda$ for $\lambda \in \mathbb{F}_{q}$.

Let $P\left(a_{1}, w_{1}\right), P\left(a_{2}, w_{2}\right), P\left(a_{3}, w_{3}\right)$ be different points of \mathcal{K}_{q}, which are collinear. Let the coefficients of an affine linear combination be $1, \lambda, \lambda+1$, where $\lambda \in \mathbb{F}_{q} \backslash \mathbb{F}_{2}$. This yields the equation

$$
(\lambda+1) a_{1} w_{1}=a_{2} w_{2}+\lambda a_{3} w_{3} .
$$

Assume at first $a_{i}=a_{j}$ for some $i \neq j$. Using the automorphism group we can assume $a_{2}=a_{3}=1$ and $w_{3}=1$. The equation is

$$
(\lambda+1) a_{1} w_{1}=w_{2}+\lambda .
$$

As the second and third point are different, it follows $w_{2} \neq 1$. Application of the $\operatorname{norm}\left(N(x)=x^{q^{2}+1}\right)$ to both sides yields $\left(\lambda^{2}+1\right) a_{1}^{2}=\lambda^{2}+1+\lambda \alpha$, where $\alpha=\operatorname{Tr}_{q^{4}, q^{2}}\left(w_{2}\right)$. We have $\alpha \neq 0$ as $w_{2} \neq 1$. It follows $a_{1} \neq 1$. The equation

$$
\frac{1}{\alpha}\left(a_{1}^{2}+1\right)=\frac{\lambda}{\lambda^{2}+1}=\frac{1}{\lambda+1}+\frac{1}{(\lambda+1)^{2}}
$$

shows $\left(a_{1}^{2}+1\right) \operatorname{Tr}_{q^{2}, 4}(1 / \alpha)=\operatorname{Tr}_{q^{2}, 4}\left(\frac{1}{\lambda+1}+\frac{1}{(\lambda+1)^{2}}\right)=\operatorname{Tr}_{q^{2}, 2}\left(\frac{1}{\lambda+1}\right)=0$ (see Lemma 3). It follows $\operatorname{Tr}_{q^{2}, 4}(1 / \alpha)=0$, contradicting Lemma 2 .

Assume now the a_{i} are pairwise different (and nonzero) elements of \mathbb{F}_{4}. We can choose notation such that

$$
(\lambda+1) w_{1}=\omega w_{2}+\lambda \bar{\omega} .
$$

Here ω and $\bar{\omega}=\omega^{2}$ are the primitive elements of \mathbb{F}_{4}. Application of N yields $\lambda^{2}+1=\bar{\omega}+\lambda^{2} \omega+\lambda \alpha$, where $\alpha=\operatorname{Tr}_{q^{4}, q^{2}}\left(w_{2}\right)$. We have $\alpha \neq 0$ as otherwise $\lambda \in \mathbb{F}_{4}$, which is impossible as $\mathbb{F}_{q} \cap \mathbb{F}_{4}=\mathbb{F}_{2}$. An equivalent form of the equation is $\lambda^{2} \bar{\omega}+\lambda \alpha+\omega=0$. Multiplication by $\bar{\omega} / \alpha^{2}$ yields $x^{2}+x+1 / \alpha^{2}=0$, where $x=\lambda \bar{\omega} / \alpha$. This yields $\operatorname{Tr}_{q^{2}, 2}(1 / \alpha)=0$, contradicting Lemma 2 .

3 Completeness

In this section we prove that $\mathcal{K}_{q} \subset P G(4, q)$ is a complete cap.
Proposition 1. Each point in the hyperplane avoided by \mathcal{K}_{q} is collinear with two points of \mathcal{K}_{q}.

Proof. Consider point $(0, x)$. We want to find $0 \neq \lambda \in \mathbb{F}_{q}, 0 \neq a \in \mathbb{F}_{4}$ and $w_{1}, w_{2} \in W$ such that $(0, x)=\lambda\left(1, a w_{1}\right)+\lambda\left(1, a w_{2}\right)$, equivalently $x=$ $\lambda a\left(w_{1}+w_{2}\right)$. Applying the norm we obtain $N(x)=\lambda^{2} a^{2} T r_{q^{4}, q^{2}}(w)$, where $w=w_{1} / w_{2} \neq 1$. Assume this equation is satisfied. Then x and $\lambda a\left(w_{1}+w_{2}\right)$ have the same norm. As the elements of W are precisely those of norm 1, we can find $w^{\prime} \in W$ such that $x=\lambda a\left(w_{1} w^{\prime}+w_{2} w^{\prime}\right)$ and are done. We have seen that it suffices to find λ, a, w such that $N(x)=\lambda^{2} a^{2} T r_{q^{4}, q^{2}}(w)$. We have $\operatorname{Tr}_{q^{4}, q^{2}}(w) \neq 0$ as $w \neq 1$. Let $\alpha=N(x) /\left(\lambda^{2} a^{2}\right)$. By Lemma 2 we need to find α, a such that $\operatorname{Tr}_{q^{2}, 2}(1 / \alpha)=1$, where

$$
\frac{1}{\alpha}=\frac{\lambda^{2} a^{2}}{N(x)} .
$$

If $\operatorname{Tr}_{q^{2}, 4}\left(\lambda^{2} / N(x)\right) \neq 0$ we can choose $a \in \mathbb{F}_{4}$ appropriately and are done. Assume $\operatorname{Tr}_{q^{2}, 4}\left(\lambda^{2} / N(x)\right)=0$ for all $\lambda \in \mathbb{F}_{q}$. Then $\operatorname{Tr}_{q^{2}, 2}\left(\lambda^{2} / N(x)\right)=0$, and $1 / N(x)$ is in the dual of \mathbb{F}_{q} in the trace form defined by $T r_{q^{2}, 2}$ on K. By Lemma 3 this dual is precisely \mathbb{F}_{q}. It follows $N(x) \in \mathbb{F}_{q}$. Choose $\lambda^{2}=N(x)$. Then $\operatorname{Tr}_{q^{2}, 4}\left(\lambda^{2} / N(x)\right)=\operatorname{Tr}_{q^{2}, 4}(1) \neq 0$, contradiction.

Proposition 2. Each point $(1, x) \notin \mathcal{K}_{q}$, where $y=N(x)=x^{q^{2}+1}$ either is in \mathbb{F}_{4} or is not a $(q+1)$-st root of unity, is collinear with two points of \mathcal{K}_{q}.

Proof. Consider points $(1, x)$. Projection from $P(0)$ shows that we are done if the order of x divides $3(q-1)\left(q^{2}+1\right)$. From now on we assume the order of y does not divide $3(q-1)$. In particular $y \notin \mathbb{F}_{q}, y \notin \mathbb{F}_{4}$ and $y^{q+1} \neq 1$.

We want to find $\lambda, \mu \in \mathbb{F}_{q}, a_{i} \in \mathbb{F}_{4}^{*}, w_{i} \in W$ such that

$$
(1, x)=\lambda\left(1, a_{1} w_{1}\right)+\mu\left(1, a_{2} w_{2}\right)
$$

equivalently $x=\lambda a_{1} w_{1}+(\lambda+1) a_{2} w_{2}$. Applying the norm we obtain the equivalent condition

$$
\begin{equation*}
y=\lambda^{2} a_{1}^{2}+\left(\lambda^{2}+1\right) a_{2}^{2}+\lambda(\lambda+1) a_{1} a_{2} T r_{q^{4}, q^{2}}(w) \tag{1}
\end{equation*}
$$

for some $w \in W$. Let $\operatorname{Tr}_{q^{4}, q^{2}}(w)=\alpha$. Choose $a_{1}=a_{2}=a$. We have $\alpha \neq 0$ as otherwise $y \in \mathbb{F}_{4}$. By Lemma 2 we need to find constants such that $T r_{q^{2}, 2}(1 / \alpha)=1$, where

$$
\frac{1}{\alpha}=\frac{\left(\lambda^{2}+\lambda\right) a^{2}}{y+a^{2}} .
$$

Assume $\operatorname{Tr}_{q^{2}, 2}(1 / \alpha)=0$ for all $\lambda \in \mathbb{F}_{q}$. Repeated application yields
$\operatorname{Tr}_{q^{2}, 2}\left(\lambda a^{2} /\left(y+a^{2}\right)\right)=\operatorname{Tr}_{q^{2}, 2}\left(\lambda^{2} a^{2} /\left(y+a^{2}\right)\right)=\cdots=\operatorname{Tr}_{q^{2}, 2}\left(\lambda^{2^{f-1}} a^{2} /\left(y+a^{2}\right)\right)$.
As we have an odd number of terms it follows

$$
\begin{equation*}
\operatorname{Tr}_{q^{2}, 2}\left(\lambda a^{2} /\left(y+a^{2}\right)\right)=\operatorname{Tr}_{q^{2}, 2}\left(l a^{2} /\left(y+a^{2}\right)\right)=l \cdot \operatorname{Tr}_{q^{2}, 2}\left(a^{2} /\left(y+a^{2}\right)\right) \tag{2}
\end{equation*}
$$

where $l=\operatorname{Tr}_{q, 2}(\lambda)$.
Assume $\operatorname{Tr}_{q^{2}, 2}\left(a^{2} /\left(y+a^{2}\right)\right)=0$. By equation $2, T r_{q^{2}, 2}\left(\lambda a^{2} /\left(y+a^{2}\right)\right)=0$ for all $\lambda \in \mathbb{F}_{q}$. Because of Lemma 3 this implies $a^{2} /\left(y+a^{2}\right) \in \mathbb{F}_{q}$. We obtain $y / a^{2} \in \mathbb{F}_{q}$. It follows that the order of x divides $3(q-1)\left(q^{2}+1\right)$. This case has been taken care of already.

We can assume $\operatorname{Tr}_{q^{2}, 2}\left(a^{2} /\left(y+a^{2}\right)\right)=1$. Equation 2 says

$$
\operatorname{Tr}_{q^{2}, 2}\left(\lambda a^{2} /\left(y+a^{2}\right)\right)=\operatorname{Tr}_{q, 2}(\lambda)
$$

Factoring $T r_{q^{2}, 2}$ over $T r_{q, 2}$ we obtain

$$
\operatorname{Tr}_{q, 2}\left(\lambda\left(\frac{a^{2}}{y+a^{2}}+\frac{a}{y^{q}+a}+1\right)\right)=0
$$

for all $\lambda \in \mathbb{F}_{q}$. The second factor under the trace must vanish. This simplifies to $y^{q+1}=1$.
¿From now on we assume $y^{q+1}=1, y \notin \mathbb{F}_{4}$ and we need to choose $a_{1} \neq a_{2}$. The choice $a_{1}=\omega, a_{2}=\bar{\omega}$ in equation 1 yields

$$
\frac{1}{\alpha}=\frac{\lambda^{2}+\lambda}{y+\lambda^{2}+\omega}
$$

In case $a_{1}=\bar{\omega}, a_{2}=\omega$ an equivalent expression results, obtained by the substitution $\lambda \mapsto \lambda+1$. Cases $\left\{a_{1}, a_{2}\right\}=\{1, \omega\}$ and $\left\{a_{1}, a_{2}\right\}=\{1, \bar{\omega}\}$ lead to similar expressions, where in the denominator y is replaced by ωy or $\bar{\omega} y$. The choice $\lambda=0$ or $\lambda=1$ leads to $y \in \mathbb{F}_{4}$, a case we have excluded. We can assume $\lambda \notin \mathbb{F}_{2}$. This implies that the expressions above make sense as $y \neq \lambda^{2}+\omega$. In fact, assume $y=\lambda^{2}+\omega$. Then $1=y^{q+1}=\left(\lambda^{2}+\omega\right)\left(\lambda^{2}+\bar{\omega}\right)$, hence $\lambda^{2}\left(\lambda^{2}+1\right)=0$. We sum up:
Lemma 4. The cap $\mathcal{K}_{q} \subset P G(4, q)$ is complete if and only if for every $y \in K$ such that $y^{q+1}=1, y \notin \mathbb{F}_{4}$ we can find $\lambda \in \mathbb{F}_{q} \backslash \mathbb{F}_{2}$ and $0 \neq a \in \mathbb{F}_{4}$ such that

$$
\operatorname{Tr}_{q^{2}, 2}\left(\frac{\lambda^{2}+\lambda}{a y+\omega+\lambda^{2}}\right)=1
$$

Lemma 4 is a motivation to study the rational function $\rho(X)=\sum_{\lambda \in \mathbb{F}_{q}} \frac{\lambda^{2}+\lambda}{X+\lambda^{2}}$ in the variable X. The common denominator is $\prod_{\lambda}(X+\lambda)=X^{q}+X$. The numerator

$$
\sum_{\lambda}\left(\lambda^{2}+\lambda\right) \prod_{\mu \neq \lambda^{2}}(X+\mu)
$$

is a polynomial of degree $\leq q-1$, which maps $\lambda^{2} \mapsto\left(\lambda^{2}+\lambda\right)$, for all $\lambda \in \mathbb{F}_{q}$. The polynomial $X^{q / 2}+X$ affords the same mapping. Because of the unicity of the interpolating polynomial our numerator is $X^{q / 2}+X$. We have seen

$$
\rho(X)=\frac{X^{q / 2}+X}{X^{q}+X} .
$$

In view of Lemma 4 and replacing y by y^{2} (in order to avoid square roots in the formulas) the following is obtained:

Lemma 5. Let $\rho(X)=\left(X^{q / 2}+X\right) /\left(X^{q}+X\right)$. In order to prove the completeness of \mathcal{K}_{q} it is sufficient to show that for every $(q+1)$-st root of unity $y \in K \backslash \mathbb{F}_{4}$ we have

$$
T r_{q^{2}, q}\left(\sum_{0 \neq a \in \mathbb{F}_{4}} \rho\left(a y^{2}+\omega\right)\right)=1
$$

Proof. In fact, in the contrary case we would have in particular $\operatorname{Tr}_{q^{2}, 2}\left(\rho\left(a y^{2}+\right.\right.$ $\omega)=0$ for all $0 \neq a \in \mathbb{F}_{4}$ and therefore also $\operatorname{Tr}_{q^{2}, 2}\left(\sum_{0 \neq a \in \mathbb{F}_{4}} \rho\left(a y^{2}+\omega\right)\right)=0$, which is incompatible with the expression in the statement of the lemma.

We have

$$
\rho\left(a y^{2}+\omega\right)=\frac{a y^{2}+a y^{q}}{1+a y^{2}+a^{2} y^{2 q}}=\frac{a y^{2}+a / y}{1+a y^{2}+a^{2} / y^{2}}
$$

and

$$
\begin{aligned}
& \operatorname{Tr}_{q^{2}, q}\left(\rho\left(a y^{2}+\omega\right)\right)=\frac{a y^{2}+a / y+a^{2} / y^{2}+a^{2} y}{1+a y^{2}+a^{2} / y^{2}}= \\
& \quad=1+\frac{1+a / y+a^{2} y}{1+a y^{2}+a^{2} / y^{2}}=1+\frac{1}{1+a^{2} y+a / y}
\end{aligned}
$$

Observe that these expressions make sense as the denominator does not vanish. If it vanished, $a y^{2}$ would satisfy a quadratic equation with coefficients in \mathbb{F}_{2}, resulting in the contradiction $y \in \mathbb{F}_{4}$.

We have seen

$$
\operatorname{Tr}_{q^{2}, q}\left(\rho\left(a y^{2}+\omega\right)\right)=1+\frac{1}{1+T r_{q^{2}, q}\left(a^{2} y\right)}
$$

Summing up over all a we obtain $1+\sum_{a} \frac{1}{1+T r_{q^{2}, q}\left(a^{2} y\right)}$. It suffices to show that the last sum vanishes. Writing it with the obvious common denominator the numerator is
$\left(1+y+\frac{1}{y}\right)(1+\omega y+\bar{\omega} / y)+\left(1+y+\frac{1}{y}\right)(1+\bar{\omega} y+\omega / y)+(1+\omega y+\bar{\omega} / y)(1+\bar{\omega} y+\omega / y)$
which simplifies to 0 . This completes the proof of completeness, by Lemma 5 .

4 Hyperplane sections and codes

In this section we determine ι_{q}. Moreover we show how to determine the weight distribution of C_{q}.

Write the points of $A G(4, q)$ as $(1, x), x \in F$. Let $\tau=T r_{q^{4}, q}: F \longrightarrow \mathbb{F}_{q}$ be the trace. The hyperplanes of $P G(4, q)$ aside of the hyperplane described by the first coordinate are coordinatized by pairs (u, c), where $0 \neq u \in F, c \in \mathbb{F}_{q}$. Point ($1, x$) belongs to hyperplane $H=H_{u, c}$ if and only if $\tau(u x)=c$. In particular $P(0) \in H$ if and only if $c=0$, and $P(a, w) \in H$ if and only if $\tau($ uaw $)=c$. Observe that $H_{u, c}=H_{\lambda u, \lambda c}$ for every $0 \neq \lambda \in \mathbb{F}_{q}$.

A family of 2-weight codes

The following lemma will be used in the proof of Theorem 3 below.
Lemma 6. Each $0 \neq z \in K$ can be written in the form $z=\lambda z_{2}$, where $\lambda \in \mathbb{F}_{q}, z_{2}^{q+1}=1$, in a unique way, and $z^{q-1}=1 / z_{2}^{2}$.

Let a $(q+1)$-st root of unity z_{2} be given. If $z_{2} \neq 1$, there are $q / 2$ elements $\lambda \in \mathbb{F}_{q}$ such that $\operatorname{Tr}_{q^{2}, 2}\left(\lambda z_{2}\right)=1$. If $z_{2}=1$ there is no such λ.

Proof. The first statements follow from the fact that the multiplicative group of K is the direct product of the multiplicative group of \mathbb{F}_{q} and of the cyclic subgroup of order $q+1$. Let $z_{2} \neq 1$. Assume $\operatorname{Tr}_{q^{2}, 2}\left(\lambda z_{2}\right)=0$ for all $\lambda \in \mathbb{F}_{q}$. By Lemma 3, $z_{2} \in \mathbb{F}_{q}^{\perp}=\mathbb{F}_{q}$, which is a contradiction.

Theorem 3. Let A be a set of $(q+1)$-st roots of unity in $K,|A|=d$. Let $D(A)$ be the 4-dimensional q-ary code of length $d\left(q^{2}+1\right)$ defined by its generator matrix whose columns are the points $Q(a, w), a \in A, w^{q^{2}+1}=1$, where $Q(a, w)$ is the point in $P G(3, q)$ generated by $a w \in F$. Then $D(A)$ is a 2 -weight code with weights $d q^{2}-(d-1) q$ and $d\left(q^{2}-q\right)$. There are $d(q-1)\left(q^{2}+1\right)$ words of weight $d q^{2}-(d-1) q$ and $(q+1-d)(q-1)\left(q^{2}+1\right)$ words of weight $d\left(q^{2}-q\right)$.

Proof. Consider intersections with hyperplane $H^{\prime}=H_{\langle u\rangle}^{\prime}$ of $P G(3, q)$, where $Q(a, w) \in H^{\prime}$ if and only if $\tau(u a w)=0$. The number of points $Q(a, w) \in H^{\prime}$ remains unchanged if we multiply u by an element of W. It can therefore be assumed that $u \in K$. Factorize the trace:

$$
\tau(u a w)=\operatorname{Tr}_{q^{2}, q}(u a \alpha)=u a \alpha+u^{q} a^{q} \alpha^{q}=0
$$

where $\alpha=\operatorname{Tr}_{q^{4}, q^{2}}(w)$. If $\alpha=0$, then $w=1$ and $0 \neq a \in A$ arbitrary. This gives us d points on H^{\prime}. Let now $\alpha \neq 0$. We have to count solutions of the equation

$$
(1 / \alpha)^{q-1}=a^{q-1} v=v / a^{2}
$$

where $v=u^{q-1}$ and $\operatorname{Tr}_{q^{2}, 2}(1 / \alpha)=1$ (see Lemma 2). Observe $v^{q+1}=a^{q+1}=$ 1. We distinguish two cases. Assume at first $v=a_{0}^{2}$ for $a_{0} \in A$. The choice $a=a_{0}$ gives no solution α such that $\operatorname{Tr}_{q^{2}, 2}(1 / \alpha)=1$. In each of the remaining $d-1$ choices for a we obtain $q / 2$ solutions for α (see Lemma 6), each of which contributes 2 solutions for w. The hyperplane intersection size is $d+0+(d-$ 1) $\cdot 2 \cdot q / 2=(d-1) q+d$ in this case.

Assume $v \notin A^{2}$. This time each of the d choices for a yields $q / 2$ choices for $\alpha \neq 0$ and therefore q solutions for w. The size of the hyperplane intersection is $d+d q$ in this case.

Corollary 1. Let D_{q} be the q-ary cyclic code of length $3\left(q^{2}+1\right)$ with defining set $\{1\}$. Then D_{q} is the shortened code of C_{q} with respect to the coordinate indexed by $P(0)$ (the 4-dimensional subcode of C_{q} consisting of all codewords of C_{q} which vanish in that coordinate, with this coordinate removed).

Further $D_{q}, q>2$ is a 2 -weight code with weights $3 q^{2}-3 q$ and $3 q^{2}-2 q$. In particular D_{q} is a $\left[3\left(q^{2}+1\right), 4,3 q(q-1)\right]_{q}$-code.

In case $q=2$ the second case in the proof of Theorem 3 does not occur. It follows that D_{2} is a constant-weight code. Clearly D_{2} is the Simplex code $[15,4,8]_{2}$.

Factorize τ over $K: \tau(x)=\operatorname{Tr}_{q^{2}, q}\left(\operatorname{Tr}_{q^{4}, q^{2}}(x)\right)$. As in the proof of Theorem 3 we can assume $u \in K$, and $\operatorname{Tr}_{q^{4}, q^{2}}(u a w)=u a w+u a / w=u a \alpha$, where $\alpha=\operatorname{Tr}_{q^{4}, q^{2}}(w)=w+1 / w$.

We wish to count the number of points of \mathcal{K}_{q} on hyperplanes $H=H_{u, c}$, where $P(a, w) \in H$ if and only if $\tau(u a w)=c$. Case $c=0$ is covered by Corollary 1 . Let $c \neq 0$. Upon multiplying u by a suitable factor from \mathbb{F}_{q} we can assume $c=1$.

Lemma 7. Let $x \in K$. Then the following are equivalent:

- $\operatorname{Tr}_{q^{2}, q}(x)=1$,
- $x=\frac{1}{z+1}$, where $z \neq 1, z^{q+1}=1$.

Lemma 7 follows from a direct calculation. It implies that $P(a, w) \in H$ if and only if $u a \alpha=1 /(z+1)$, where $z^{q+1}=1$ and $\operatorname{Tr}_{q^{2}, 2}(1 / \alpha)=T r_{q^{2}, 2}(u(z+$ 1) a) $=1$. For given $1 \neq z, z^{q+1}=1$ the number of solutions a is either 0 or 2 . It is 0 if $u(z+1) \in \mathbb{F}_{4}^{\perp}$ with respect to the bilinear form defined by $T r_{q^{2}, 2}$ on K, it is 2 otherwise. Each value of α contributes precisely two solutions w. We see that each z contributes either 0 or 4 to the intersection with hyperplane H. The contribution is 4 if and only if $u(z+1) \notin \mathbb{F}_{4}^{\perp}$ (with respect to $T r_{q^{2}, 2}$). In particular all of these hyperplane section sizes are multiples of 4 and at most $4 q$. Let $\left|\mathcal{K}_{q} \cap H\right|=4 s$.

Lemma 8. Let $l \in K$. Then l is orthogonal to \mathbb{F}_{4} with respect to the trace form defined by $T r_{q^{2}, 2}$ if and only if $\operatorname{Tr}_{q^{2}, 4}(l)=0$.

Proof. Orthogonality means $\operatorname{Tr}_{q^{2}, 2}(l)=\operatorname{Tr}_{q^{2}, 2}(\omega l)=0$. Assume $\operatorname{Tr}_{q^{2}, 2}(l)=$ 0 . Then $\operatorname{Tr}_{q^{2}, 2}(\omega l)=\omega \operatorname{Tr}_{q^{2}, 4}(l)+\bar{\omega} \operatorname{Tr}_{q^{2}, 4}(l)=\operatorname{Tr}_{q^{2}, 4}(l)$.

By Lemma $8, z$ contributes to the hyperplane section size if and only if $\operatorname{Tr}_{q^{2}, 4}(u(z+1)) \neq 0$. It follows that s equals the number of $z, z^{q+1}=1$ such that $\operatorname{Tr}_{q^{2}, 4}(u(z+1)) \neq 0$. Equivalently $q+1-s$ is the number of such z satisfying $\operatorname{Tr}_{q^{2}, 4}(u(z+1))=0$.

Let $u(z+1)=c_{1} \omega+c_{2}$. Here $c_{1}, c_{2} \in \mathbb{F}_{q}$ are uniquely determined as $1, \omega$ form a basis of K over \mathbb{F}_{q}. The last trace condition is equivalent with $T r_{q, 2}\left(c_{1}\right)=T r_{q, 2}\left(c_{2}\right)=0$. We count such c_{1}, c_{2} satisfying

$$
\left(\frac{c_{1} \omega+c_{2}}{u}+1\right)^{q+1}=1
$$

This is equivalent with

$$
c_{1}^{2}+c_{1} c_{2}+c_{2}^{2}+u^{q}\left(c_{1} \omega+c_{2}\right)+u\left(c_{1} \bar{\omega}+c_{2}\right)=0 .
$$

With $u=u_{1} \omega+u_{2}$ this becomes

$$
c_{1}^{2}+c_{1} c_{2}+c_{2}^{2}+c_{1} u_{2}+c_{2} u_{1}=0
$$

Let $x=c_{1}+u_{1}, y=c_{2}+u_{2}$. The main condition is

$$
x^{2}+x y+y^{2}+\left(u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}\right)=0,
$$

the side conditions are $T r_{q, 2}(x)=T r_{q, 2}\left(u_{1}\right), T r_{q, 2}(y)=T r_{q, 2}\left(u_{2}\right)$. Let $v^{2}=$ $u_{1}^{2}+u_{1} u_{2}+u_{2}^{2} \neq 0$.

4.1 Kloosterman and Mélas codes

In the sequel the trace $T r_{q, 2}$ will often be used. We abbreviate it by $t r_{0}$.
Definition 1. For $0 \neq v \in \mathbb{F}_{q}$ let p_{v} be the number of $0 \neq x \in \mathbb{F}_{q}$ such that

$$
\operatorname{tr}_{0}(x)=\operatorname{tr}_{0}(v / x)=1 .
$$

Also let m_{i} be the number of v such that $p_{v}=i$.
The curve with affine equation

$$
y^{2}+y=x+\frac{v}{x}
$$

defined over \mathbb{F}_{q} is elliptic and has $4 p_{v}$ rational points. The Hasse inequality implies

$$
\frac{q+1-2 \sqrt{q}}{4}<p_{v}<\frac{q+1+2 \sqrt{q}}{4} .
$$

The Kloosterman code L_{q} or dual Mélas code is a binary code of length $q-1$ and dimension $2 f$. Codeword $c(a, b)$, where $a, b \in \mathbb{F}_{q}$, has entry

$$
t r_{0}(a x+b / x)
$$

Clearly $w t(c(a, b))=w t(c(1, a b))$ for $a b \neq 0$, and

$$
w t(c(1, v))=q-2 p_{v} .
$$

A detailed analysis is in [9], where the weight distribution of L_{q} is determined. In particular $m_{i}>0$ for every integer i contained in the interval. Knowledge of the weight distribution of L_{q} is equivalent with knowledge of the numbers m_{i} in Definition 1.

In order to avoid confusion let us sum up. Consider the hyperplane $H=H_{u, 1}$, where $u=u_{1} \omega+u_{2} \in K, v^{2}=u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}$. The parameters $u_{1}, u_{2} \in \mathbb{F}_{q}$ and their absolute traces $\operatorname{tr}_{0}\left(u_{1}\right), \operatorname{tr}_{0}\left(u_{2}\right)$ are given, as well as $0 \neq v \in \mathbb{F}_{q}$. The intersection size $\left|\mathcal{K}_{q} \cap H\right|=4 s$ is determined by the number of pairs $x, y \in \mathbb{F}_{q}$ which satisfy $\operatorname{tr}_{0}(x)=\operatorname{tr}_{0}\left(u_{1}\right), \operatorname{tr}_{0}(y)=\operatorname{tr}_{0}\left(u_{2}\right)$ and the quadratic equation

$$
\begin{equation*}
x^{2}+x y+y^{2}=v^{2} . \tag{3}
\end{equation*}
$$

The number of such pairs x, y is $q+1-s$.
Let $\operatorname{tr}_{0}\left(u_{2}\right)=1$. We have to choose y (automatically $\neq 0$) such that $\operatorname{tr}_{0}(y)=1$. Dividing equation 3 by y^{2} yields the equivalent equation

$$
(x / y)^{2}+(x / y)+1+(v / y)^{2}=0
$$

This has solutions if and only if $\operatorname{tr}_{0}(v / y)=1$. If this is satisfied there are two solutions x, which have different absolute traces. Exactly one will satisfy $\operatorname{tr}_{0}(x)=\operatorname{tr}_{0}\left(u_{1}\right)$. We conclude $q+1-s=p_{v}$, or

$$
s=q+1-p_{v} .
$$

By symmetry the same is true when $\operatorname{tr}_{0}\left(u_{1}\right)=1$. It remains to consider the cases when $\operatorname{tr}_{0}\left(u_{1}\right)=t r_{0}\left(u_{2}\right)=0$. Let r be the number of pairs (x, y) such that $\operatorname{tr}_{0}(x)=0$ and equation 3 is satisfied. The only solution for $x=0$ has $y=v$. In all other cases we must have $\operatorname{tr}_{0}(v / x)=1, \operatorname{tr}_{0}(x)=0$, and in each such case we count two choices for y. This yields $r=1+2\left(\frac{q}{2}-p_{v}\right)=q+1-2 p_{v}$. The number of pairs (x, y) satisfying $\operatorname{tr}_{0}(x)=0, \operatorname{tr}_{0}(y)=1$ and equation 3 is p_{v}. We obtain

$$
s=3 p_{v}
$$

In case $s=q+1-p_{v}$ we have

$$
4 s \leq 4(q+1)-(q+1)+2 \sqrt{q} .
$$

This is smaller than in the second case, where $s=3 p_{v}$ and therefore

$$
s \leq 3(q+1+t)
$$

Here t is as in Theorem 2.

4.2 The weight distribution of C_{q}

Consider the hyperplane $H=H_{u, 1}$, where $u=u_{1} \omega+u_{2} \in K, v^{2}=u_{1}^{2}+$ $u_{1} u_{2}+u_{2}^{2}$. Let $p_{v}=i$. We have seen that $\left|\mathcal{K}_{q} \cap H\right|=4 s$ and $4 s=4(q+$ $1-i)$ if $\left(\operatorname{tr}_{0}\left(u_{1}\right), t r_{0}\left(u_{2}\right)\right) \neq(0,0)$, whereas $4 s=12 i$ if $\left(\operatorname{tr}_{0}\left(u_{1}\right), t r_{0}\left(u_{2}\right)\right)=$ $(0,0)$. For fixed v the number of $\left(u_{1}, u_{2}\right)$ such that $v^{2}=u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}$ and $\left(t r_{0}\left(u_{1}\right), t r_{0}\left(u_{2}\right)\right) \neq(0,0)$ is $3 p_{v}=3 i$, and consequently the number of $\left(u_{1}, u_{2}\right)$ such that $v^{2}=u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}$ and $\left(\operatorname{tr}_{0}\left(u_{1}\right), \operatorname{tr}_{0}\left(u_{2}\right)\right)=(0,0)$ is $q+1-3 i$.

It follows that each of the m_{i} elements $v \in \mathbb{F}_{q}$ such that $p_{v}=i$ contributes $3 i m_{i}$ hyperplanes $H_{u, 1}$ with intersection size $4(q+1-i)$ and $(q+1-3 i) m_{i}$ such hyperplanes with intersection size $12 i$. Recall that by [9] we have $m_{i}>0$ for all i in the Hasse interval. In particular $\iota_{q} \leq 3(q+1+t)$ with equality if and only if $t<(q+1) / 3$. This is satisfied for $q>32$.

In case $q=32$ we have $t=11$. Clearly $\iota_{32}=3(q+1+7)=120$. For $q=8$ we have $i \in\{1,2,3\}$ and $\iota_{8}=4(9-1)=32$.

Multiplication by $(q-1)\left(q^{2}+1\right)$ yields the weight distribution of C_{q}^{\prime}, the subset of codewords of C_{q}, which do not belong to D_{q} or to $\langle 1\rangle$.
Theorem 4. Let $n=3 q^{2}+4$ and $A_{w}\left(C_{q}^{\prime}\right)$ the number of codewords of C_{q}^{\prime} of weight w. Then

$$
A_{w}\left(C_{q}^{\prime}\right)=(q-1)\left(q^{2}+1\right)(q+1-(n-w) / 4)\left\{3 m_{q+1-(n-w) / 4}+m_{(n-w) / 12}\right\}
$$

with the proviso that $m_{i}=0$ if i is not a positive integer.
As the m_{i} have been determined in [9] we know the weight distribution of C_{q}^{\prime}. As all elements of $C_{q} \backslash C_{q}^{\prime}$ belong either to $\langle 1\rangle$ or to the 2-weight code D_{q} (see Corollary 1) this determines the weight distribution of C_{q}.

5 An example: C_{8}

As $\iota_{8}=32$, code C_{8} is a $[196,5,164]_{8}$-code. Represent \mathbb{F}_{8} as $\mathbb{F}_{2}(\epsilon)$ where $\epsilon^{3}+\epsilon^{2}+1=0$. The numbers p_{v} from Definition 1 are

$$
p_{1}=1, p_{\epsilon}=p_{\epsilon^{2}}=p_{\epsilon^{4}}=3, p_{\epsilon^{3}}=p_{\epsilon^{5}}=p_{\epsilon^{6}}=2,
$$

hence

$$
m_{1}=1, m_{2}=3, m_{3}=3 .
$$

By Subsection 4.2 this yields 3 hyperplanes $H_{u, 1}, u \in K$ of intersection size 32,18 such hyperplanes of intersection size 28,27 of intersection size 24,6 of
intersection size 12,9 more of intersection size 24 and finally 0 hyperplanes of intersection size 36 . The weight distribution of C_{8}^{\prime} is therefore

$$
A_{184}\left(C_{8}^{\prime}\right)=2730, A_{172}\left(C_{8}^{\prime}\right)=16380, A_{168}\left(C_{8}^{\prime}\right)=8190, A_{164}\left(C_{8}^{\prime}\right)=1365
$$

Together with the repetition code $\langle 1\rangle$ and the weights of the 2-weight subcode D_{8} this leads to the following weight distribution for C_{8} :

$$
\begin{gathered}
A_{0}=1, A_{164}=1365, A_{168}=10920, A_{172}=16380 \\
A_{176}=1365, A_{184}=2730, A_{196}=7
\end{gathered}
$$

In particular $C_{8} \supset D_{8}$ form a chain of codes with parameters $[196,5,164]_{8} \supset$ $[196,4,168]_{8}$. Application of construction X from coding theory (see [8]) with $[4,1,4]_{8}$ as auxiliary code yields a code $[200,5,168]_{8}$.

6 The quadratic structure

In this section we describe how the points $\neq P_{0}$ of the cap \mathcal{K}_{q} are distributed on three parabolic quadrics.

Lemma 2 shows that we can find $w_{0} \in W$ such that $\operatorname{Tr}_{q^{4}, q^{2}}\left(w_{0}\right)=\omega$. As $1, w_{0}$ form a basis of F over K, each $y \in F$ can be expressed as $y=c_{1}+c_{2} w_{0}$, where $c_{1}, c_{2} \in K$ are uniquely determined.

We have $N(y)=\left(c_{1}+c_{2} w_{0}\right)\left(c_{1}+c_{2} / w_{0}\right)=c_{1}^{2}+c_{2}^{2}+\omega c_{1} c_{2}$. In particular $y \in W$ if and only if $c_{1}^{2}+c_{2}^{2}+\omega c_{1} c_{2}+1=0$.

Use $1, \omega$ as basis of K over \mathbb{F}_{q}, write $c_{1}=x_{1}+\omega x_{2}, c_{2}=x_{3}+\omega x_{4}$. Represent $\left(x_{0}, y\right)$ by the tuple $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{F}_{q}^{5}$. Using these bases we can use any of the following representations for an element $x \in \mathbb{F}_{q}^{5}$:

$$
\begin{gathered}
x=\left(x_{0}, y\right)=\left(c_{0}, c_{1}, c_{2}\right)=\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right), \text { where } \\
y \in F, c_{0}=x_{0} \in \mathbb{F}_{q}, c_{1}, c_{2} \in K, x_{i} \in \mathbb{F}_{q} .
\end{gathered}
$$

We have

$$
N(y)=x_{1}^{2}+\bar{\omega} x_{2}^{2}+x_{3}^{2}+\bar{\omega} x_{4}^{2}+x_{2} x_{4}+\omega x_{1} x_{3}+\bar{\omega}\left(x_{1} x_{4}+x_{2} x_{3}\right)
$$

equivalently $N(y)=u_{1}+\omega u_{2}$, where

$$
\begin{gathered}
u_{1}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{2} x_{4}+x_{1} x_{4}+x_{2} x_{3}, \\
u_{2}=x_{2}^{2}+x_{4}^{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3} .
\end{gathered}
$$

Definition 2. Consider the following quadratic forms in 5 variables:

$$
\begin{array}{r}
Q_{2}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=0}^{4} x_{i}^{2}+x_{2} x_{4}+x_{1} x_{4}+x_{2} x_{3} \\
Q_{3}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{0}^{2}+x_{1}^{2}+x_{3}^{2}+x_{1} x_{3}+x_{2} x_{4}
\end{array}
$$

It follows

$$
N(y)=x_{0}^{2}+Q_{2}(x)+\omega\left(Q_{2}(x)+Q_{3}(x)\right), \text { where } x=\left(x_{0}, y\right) .
$$

Both Q_{2} and Q_{3} are non-degenerate, hence parabolic. They share the radical P_{0} of the associated symplectic bilinear form.

Definition 3. Consider the symmetry ρ defined by $\rho\left(c_{0}, c_{1}, c_{2}\right)=\left(c_{0}, \omega c_{1}, \omega c_{2}\right)$, equivalently $\rho(x)=\left(x_{0}, x_{2}, x_{1}+x_{2}, x_{4}, x_{3}+x_{4}\right)$. Clearly ρ has order 3. It implies an action on quadratic forms by

$$
(\rho Q)(x)=Q(\rho(x)) .
$$

Our quadratic forms are related by $Q_{3}=\rho\left(Q_{2}\right)$. Let Q_{1} be the third quadratic form in this ρ-orbit, so $Q_{1}=\rho\left(Q_{3}\right)$.

Definition 4. Let K_{1} consist of the points $(1: y)$, where $N(y)=1$. Likewise K_{2} is defined by $N(y)=\omega$ and K_{3} by $N(y)=\bar{\omega}$.

The points $\neq P_{0}$ of \mathcal{K}_{q} form the union $K_{1} \cup K_{2} \cup K_{3}$. Observe that K_{1} consists of the points $(1, w), K_{2}$ of the points $(1, \bar{\omega} w)$ and K_{3} of the points $(1, \omega w)$ (where $N(w)=1$). The formula in Definition 2 shows that $N(y)=1$ if and only if $x=(1, y)$ satisfies $Q_{2}(x)=Q_{3}(x)=0$. The same formula shows that a vector $x=(0, y)$ where $y \neq 0$ cannot satisfy $Q_{2}(x)=Q_{3}(x)=0$ as otherwise we would have $N(y)=0$. This shows $Q_{2} \cap Q_{3}=K_{1}$. The symmetry ρ shows that $Q_{i} \cap Q_{j}=K_{k}$ for $\{i, j, k\}=\{1,2,3\}$.

Theorem 5. The points $\neq P_{0}$ of our cap form the union $K_{1} \cup K_{2} \cup K_{3}$. Each such point is on two of the quadrics Q_{1}, Q_{2}, Q_{3}, more exactly

$$
Q_{i} \cap Q_{j}=K_{k} \text { whenever }\{i, j, k\}=\{1,2,3\} .
$$

References

[1] J. Bierbrauer: The theory of cyclic codes and a generalization to additive codes, Designs, Codes and Cryptography 25 (2002), 189-206.
[2] J. Bierbrauer: Large caps, Combinatorics 2002, Topics in Combinatorics: geometry, graph theory and designs, Maratea (Potenza), Italy, 2-8 June, G.Korchmaros, editor, pp.7-38.
[3] J. Bierbrauer and Y. Edel: A family of caps in projective 4-space in odd characteristic, Finite Fields and Their Applications 6 (2000),283-293.
[4] J. Bierbrauer, A. Cossidente and Y. Edel: Caps on classical varieties and their projections, European Journal of Combinatorics 22 (2001), 135-143.
[5] A. Carlet, P. Charpin and V. Zinoviev: Codes, bent functions, and permutations suitable for DES-like cryptosystems, Designs, Codes and Cryptography 15 (1998), 125-156.
[6] T. Helleseth and V. Kumar: Sequences with low correlation, in Handbook of Coding Theory, edited by V.Pless and C.Huffman, Elsevier Science Publishers, 1998.
[7] J. W. P. Hirschfeld and L. Storme: The packing problem in statistics, coding theory and finite projective spaces: update 2001, Developments in Mathematics Vol. 3, Kluwer Academic Publishers. Finite Geometries, Proceedings of the Fourth Isle of Thorns Conference (Chelwood Gate, July 16-21, 2000) (Eds. A. Blokhuis, J.W.P. Hirschfeld, D. Jungnickel and J.A. Thas), pp. 201-246.
[8] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes, North-Holland, 1977.
[9] R. Schoof and M. van der Vlugt: Hecke operators and the weight distribution of certain codes, Journal of Combinatorial Theory A 57 (1991), 163-186.
[10] B. Segre: Le geometrie di Galois, Annali di Matematica Pura ed Applicata 48 (1959),1-97.

