Although this site was up over 25 years it now soon will be shut down due to administrative reasons.
It will be further available on my new home page www.yvesedel.de


An M4(26,5,10,6)

10000*00000*00000*00000*00000*00000*00000*00000*00000*00000*10000*00000*10000*00000*10000*10000*10000*00000*10000*10000*10000*00000*10000*10000*10000*10000
00000*10000*00000*00000*00000*00000*00000*00000*00000*00000*00000*10000*00000*10000*20000*20000*00000*10000*30000*30000*21000*10000*21000*21000*21000*21000
00000*00000*10000*00000*00000*00000*01000*01000*01000*01000*10000*00000*10000*20000*30000*01000*11000*30000*20000*01000*20000*11000*30000*00000*10000*20000
00000*00000*00000*10000*01000*01000*01000*01000*00000*03000*01000*11000*21000*30000*01000*20000*30000*21000*01000*30000*10000*22000*21000*10000*12000*12000
00100*00100*01000*01000*10000*02000*01000*02000*02100*01000*10000*23000*30000*01000*30000*10000*22000*02000*21000*00000*10000*20000*30000*11000*20000*33000
01000*01000*00100*01000*03000*10000*01100*01100*02000*01100*21000*32000*02000*33010*20100*32000*03000*20000*00000*33000*01000*11000*03000*10000*31000*10000
02000*01000*03100*02100*03100*01100*10000*03210*01210*03310*33100*02100*33100*20100*13000*03100*20100*02100*23100*12100*03100*02100*11100*12100*32100*23100
01110*01110*03010*00110*02310*01210*02210*10000*03121*01321*00110*30210*21110*11100*01110*30210*01210*23110*30110*23310*02310*01110*12210*21210*32210*32210
02131*03121*03211*01231*01111*02311*03111*01311*10000*00112*31121*20221*10211*03111*13131*02111*22111*33311*12211*03211*02111*01311*02221*00231*12311*30311
03121*02323*01212*01211*01323*01331*01121*03112*03222*10000*02323*02312*03123*02112*02313*03121*02232*02132*03312*03332*12131*11321*11231*21113*11112*22223

'*' separates the blocks.

The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.


| Some OOA | home |