Although this site was up over 25 years it now soon will be shut down due to administrative reasons.
It will be further available on my new home page www.yvesedel.de


An M4(19,3,6,4)

100*012*011*031*031*022*112*233*311*231*031*221*211*332*111*011*112*031*012
031*100*011*001*011*031*111*111*111*231*131*011*231*231*121*131*311*021*221
021*021*100*030*000*000*110*110*130*030*220*100*100*010*200*310*300*310*010
000*010*020*100*010*010*100*100*010*110*110*200*010*100*210*300*210*200*310
010*000*010*010*100*000*100*000*100*100*100*100*000*000*000*100*200*300*300
000*000*000*000*000*100*100*010*000*000*000*010*100*100*100*100*100*100*100

'*' separates the blocks.

The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.


| Some OOA | home |