Although this site was up over 25 years it now soon will be shut down due to administrative reasons.
It will be further available on my new home page www.yvesedel.de


An M4(17,7,12,8)

1000000*0000000*0000000*0000000*0000000*0000000*0000000*0000000*0000000*1000000*0000000*1000000*1000000*1000000*0000000*0100000*0000000
0000000*1000000*0010000*0010000*0010000*0010000*0010000*0100000*0100000*1000000*0100000*1000000*3000000*0100000*0100000*0000000*0100000
0000000*0000000*1000000*0100000*0000000*0100000*0100000*0010000*0010000*1000000*0100000*3000000*2100000*1000000*0110000*0200000*0110000
0100000*0100000*0100000*1000000*0100000*0000000*0200000*0000000*0100000*1100000*0010000*3100000*1100000*3000000*0100000*0210000*0200000
0000000*0010000*0000000*0000000*1000000*0100000*0200000*0100000*0100000*1110000*0200000*3200000*0100000*2300000*0300000*0310000*1000000
0010000*0100000*0100000*0000000*0320000*1000000*0210100*0011000*0220100*1010000*0020100*2110000*2110000*0210000*0230100*0300100*1300000
0121000*0030100*0110100*0120100*0131000*0220100*1000000*0121000*0231000*1300100*0011000*2220100*3310100*1010100*0011000*0011000*1320100
0132100*0121000*0011000*0231000*0310100*0301000*0131000*1000000*0022000*1301000*0131000*2011000*0221000*3311000*0012000*0131000*1031000
0123000*0232100*0331000*0331200*0221000*0221000*0201000*0230100*1000000*1021000*0112110*0112000*1322000*2131000*0331110*0231110*1111000
0110110*0231010*0122110*0303110*0223110*0021110*0122110*0331110*0111110*1231110*1000000*0133110*3202110*3132110*0002121*0213311*2202110
0212131*0322221*0101211*0222011*0222121*0111121*0113121*0302131*0321211*0331231*0202121*0021121*0133121*0122121*1000000*0103132*1322131
0302313*0203311*0212123*0132212*0011131*0312131*0122323*0333121*0032231*0211211*0322323*0131131*0331212*0221212*0333212*1000000*1212313

'*' separates the blocks.

The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.


| Some OOA | home |