Although this site was up over 25 years it now soon will be shut down due to administrative reasons.
It will be further available on my new home page www.yvesedel.de


An M4(16,4,7,5)

1000*0231*0221*0231*0223*0012*0131*1021*2131*3212*3021*2331*0221*2031*0121*3321
0311*1000*0131*0111*0311*0211*0021*1111*2221*0111*2111*1311*3031*0011*2111*1131
0121*0311*1000*0010*0210*0010*0310*1210*1110*2110*0110*2010*3110*0310*2210*1010
0110*0300*0300*1000*0100*0300*0000*1200*0100*1200*2100*0200*1200*2300*2000*0100
0200*0010*0210*0200*1000*0100*0100*0000*1100*1300*2100*0100*0100*1300*3300*3300
0100*0100*0000*0100*0000*1000*0100*0100*0100*0100*0100*1100*1000*1100*1100*2100
0000*0000*0100*0000*0000*0100*1000*1000*1000*1000*1000*1000*1000*1000*1000*1000

'*' separates the blocks.

The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.


| Some OOA | home |