Although this site was up over 25 years it now soon will be shut down due to administrative reasons.
It will be further available on my new home page www.yvesedel.de


An M4(12,5,8,6)

00000*00100*01000*01000*00100*00000*01000*01000*01000*10000*10000*10000
01000*01000*00000*00000*01000*01000*01000*10000*10000*01000*01000*11000
01100*01000*01010*01100*02000*10000*10000*00000*02000*02000*03000*11000
00300*03100*01100*02010*10000*03100*10000*01100*10000*00000*11000*02000
02310*00210*02300*10000*02000*02310*12100*02000*11100*01100*12100*11100
01011*02211*10000*01300*03110*00200*12210*01210*23110*03110*32110*03110
02112*10000*00221*02211*01121*03011*11231*02111*20121*02131*33211*13311
10000*01012*03231*00131*03212*02212*10113*01121*31323*00232*20312*23321

'*' separates the blocks.

The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.


| Some OOA | home |