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Introduction

The original aim of these notes is to prove a fundamental lemma for the stable lift
from H = Sp, to G = PGL5 over a local non archimedean field F' with residue
characteristic # 2. Here PGL; = PGL; (O) is generated by its normal subgroup
PGL;5 of index 2 and the involution © : g — J-t¢g~1..J~! where J is the antidiagonal
matrix with entries (1,—1,1,—1,1).

We will (Cor.5.10) prove that if the semisimple elements 70 € FT(EI::)(F ) and n €
Sp4(F) match (see 1.11 for a definition of matching) then the corresponding stable
orbital integrals (see 3.1) for the unit elements in the Hecke algebra match:

(i) 034 (1,PGLs) = O2(1,Sp,).

This theorem will have important applications in the theory of automorphic rep-
resentations of the group GSp, over a number field and for the [-adic Galois-
representations on the corresponding Shimura varieties [W1], [W2], [Wes].

In analyzing (i) using the Kazhdan-trick (lemma 3.5 below) we recognized that
all essential computations had already been done by Flicker in [F12], where the
corresponding fundamental lemma for the lift from GSp, ~ GSping to C/}\Iil x Gy,
has been proved. This phenomenon seems to be known to the experts [Hal2].

More generally one can discuss the fundamental lemma for the stable lift from H to a
classical split group with outer automorphism G, where H is the stable endoscopic
group for G. This fundamental lemma describes a relationship between ordinary
stable orbital integrals on the endoscopic group H and ©-twisted orbital integrals
on G. We will discuss the following lifts in detail:

H G

szn PGL2TL+1 X <g — th_lj_1>

GSping, 1 (GLan X Gy) % ((g,a) = (J'g~'J ', det g - a))
szn SO242 >~ Ogpya.

In each case we will reduce the fundamental lemma using the Kazhdan trick and a
lot of observations in linear algebra to a statement which we call the BC'-conjecture
and which seems to be proven only for n =1, 2:

Conjecture: If the reqular topologically unipotent and algebraically semisimple el-
ements u € SOy,11(OFp) and v € Sp,y,(OF) are BC-matching (see 1.12) then

(BC,,) 0:1(1,802,41) = O3 (1,Sp,,)-

Thus the (O-twisted) fundamental lemmas for the three series of endoscopy will be
reduced to a fundamental lemma like statement for ordinary (i.e. untwisted) stable
orbital integrals on the groups SOs,1 of type B, resp. Sp,,, of type C,.



1 Stable endoscopy and matching

(1.1) Notations. In this paper we will denote by F' a p-adic field with ring of
integers Op, prime ideal p and uniformizing element @w = wpg. The residue field of
characteristic p is denoted K = kp = Op/p. By F we denote an algebraic closure of
F. In the whole paper we will assume that p # 2. Only in this chapter R denotes
an arbitrary integral domain.

(1.2) Split Groups with automorphism. Let G/R be a connected reductive
split group scheme. We fix some ”splitting” i.e. a tripel (B, T,{Xs}aea) where T
denotes a maximal split-torus inside a rational Borel B, A = Ag = A(G,B,T) C
O(G,T) C X*(T) the set of simple roots inside the system of roots and the X, are
a system (nailing) of isomorphisms between the additive group scheme G, and the
unipotent root subgroups B,. Here X*(T) = Hom(T,G,,) denotes the character
module of T, while X, (T') = Hom(G,,,T) will denote the cocharacter module of T
Let © € Aut(G) be an automorphism of G which fixes the splitting, i.e. stabilizes
B and T and permutes the X,. We assume O to be of finite order . We denote by

G =G % (O)

the (nonconnected) semidirect product of G with ©. © acts on the (co)character
module via X, (T) 2 a¥ — ©oa resp. X*(T) > a— aoO!.

(1.3) The dual group. Let G = G(C) be the dual group of G. By definition G has
a tripel (B, T, {X4}) such that we have identifications X*(T) = X,(T), X,(T) =
X*(T) which identifies the (simple) roots & € X*(T) with the (simple) coroots
a' € X,(T), and the (simple) coroots &¥ € X,(T) with the (simple) roots a €
X*(T). There exists a unique automorphism © of G which stabilizes (B, T, {X4})
and induces on (X, (T), X*(T)) the same automorphism as © on (X*(T), X*(T)).

(1.4) The O-invariant subgroup in G. Let f] = (G®)° be the connected
component of the subgroup of ©-fixed elements in G. It is a reductive split group
with triple (B, T, {Xp}pea, ), where By =B°, Ty = 7° and the nailing will be

explained soon. We have the inclusion of cocharacter modules X, (Ty) = X, (T)°
X.(T) and a projection for the character module

Po : X'(I) = (X*(T)g) yree = X*(Tt),
where (X*(T)g) free denotes the maximal free quotient of the coinvariant module

X*(T)g. For a Z[O]-module X we define a map

ord;(©)—1
Se: X — X°, T Z O'(x)

=0
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where ord,(©) = min{i > 0 | ©(x) = z} is length of the (©)-orbit of .
For the roots ® and coroots ®Y of a given root datum (X*, X,, ®, &) we have to
introduce a modified map Sg by

2
(¥, 5e(a))

resp. by the formula where the roles of @ and " are exchanged. For all simple root
systems with automorphisms which are not of type A, we have (o, ©%(a)) = 0 for
i=1,...,0rd,(0©) — 1 which implies c(a) = 1 i.e. Sg(a) = Se(a). We furthermore
introduce the subset of short-middle roots and the dual concept of long-middle
coroots:

Sela) = cla)- Se(a) where cla) =

oG = {acoucl

Pola) ¢ P@@(éi»}

V(G T)m = {av ae @(é,:ﬁ)sm}

Proposition 1.5. With the above notations we have

(i) O(H,Ty) = Po(®(G,T)"™) for the roots
(ii) OV(H,Ty) = Sh(Y(G,T)™) for the coroots
A = AV(H,By,Ty) = So(A) for the simple coroots
Ay =A(H, By, Ty) = Po(Ap) for the simple roots
Proof: This follows from [St, 8.1] . O

Definition 1.6 (stable ©-endoscopic group). In the above situation a connected
reductive split group scheme H/R will be called a stable ©-endoscopic group for
(Cf, Q) resp. G if its dual group together with the splitting is isomorphic to the above
(H, By, T, {Xs}oen,)-

Remarks: Since H is unique up to isomorphism (up to unique isomorphism if we
consider H together with a splitting) we can call H the stable ©-endoscopic group
for (G, ©). For a maximal split-torus Ty C H we have:

(iii) X(Tyg) = X.(De for the cocharacter-module
XA (Ty) = X*(T)° for the character-module

(1.7) To get examples we use the following notations:
diag(ay, ..., a,) € GL, denotes the diagonal matrix (0, ; - a;);; and

antidiag(as, ..., a,) € GL, the antidiagonal matrix (0; 41—, - @;);; with a; in the
upper right corner. We introduce the following matrix

J = Jn == (5i,n+1—j(_1)i_1)1§i,j§n = antzdzag(l, —]_, ceey (_1)n—1) S GLn(R)



and its modification J, = antidiag(l,—1,1,... (=11 (=1)""1 ... 1,—1,1).
Since *J,, = (=1)""! . J, and Jj, is symmetric we can define the standard sym-
plectic resp. orthogonal groups

SPan = Sp(J2n), SO2n41 = SO(J2n+1), SOz, = SO(J3,,).

We consider the groups GL,,, SL,,, PGL,, Sp,,,, SO,, with the splittings consisting of
the diagonal torus, the Borel consisting of upper triangular matrices and the stan-

dard nailing. We remark that the following map defines an involution of GL,,, SL,
and PGL,,:

@:@n:gHJn-tg_l-Jn_l.

Example 1.8 (Ag, < C}). The pair (G,0) = (PGLg,41,09,41) has dual G =
SLo,41(C), © = O2,41 and the stable endoscopic group H = Sp,,, since H =
SO2,11(C) = G"

Example 1.9 (Ay, 1 < B,,). The group G = GLy, x G,, has the involution
©: (gaa) = (@2n(g)7det(g) : CL).

The dual © € Aut(Q) satisfies ©(g,b) = (O2,(g) - b, b), so that we get as the stable
endoscopic group H = GSpin,,_, since it has as dual H = GSp,,,(C) = G". Recall
that GSpin,, ., fits into an exact sequence

1 — Spiny,; — GSpiny, 4 = Gpn — 1,

where the derived group Spin,, , the kernel of the "multiplier” map pu, is a con-
nected, simply connected split group.

Example 1.10 (D,.; < C,). Let s € Og,12 denote the reflection which inter-
changes the standard basis vectors e, ; and e, 5 and fixes all other basis elements
e;. Then the pair (G, ©) = (SOgpo,int(s)) has dual G = SOs,12(C), © = int(3),
where § is of the same shape as s. The stable endoscopic group is H = Sp,,,, since
its dual satisfies H = SOq,11(C) = (G7)°.

(1.11) Matching elements Since each semisimple ©-conjugacy resp. conjugacy
class in G(F) resp. H(F') meets T(F') resp. Ty (F') we have canonical bijections

ic: G(F)s/O — conj ~ T(F)e/(Wg)°
ig: H(F)y/conj ~ Ty(F)/Wy

where W = Norm(T,G)/T and Wy = Norm(Ty, H)/TH denote the Weyl-groups.
We further have an isomorphism
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and observe Wy ~ (W¢)®. Therefore we may define:

Two (©-)semisimple elements 7O € G(F)O and h € H(F) are called matching if
their (©-)stable conjugacy classes in G(F') resp. H(F') correspond to each other via
the isomorphism z';ll o Nggoig.

(1.12) BC-matching: We have an isomorphism between the standard diagonal
tori:

1BC : T509m1 — TSpy, s
diag(ty, ... ty, 1t t7Y) v diag(ty, ... te t o 1Y),

We observe that 15 induces an isomorphism of Weylgroups:
VVSQ%Jrl ~ Sn X {:tl}n ~ Wsp2n

Two semisimple elements h € SOq,1(F') and b € Sp,,, (F') are called BC'-matching
if their stable conjugacy classes correspond to each other under the isomorphism

ZS_pl% o iBC O i502n+1.

Example 1.13. In example 1.8 above the norm map Ngg: T — Tg =~ Ty is given

by

(iV) o= diag(tl, to, . oy by bng1s bnto, - - ,t2n+1) eT C PGL2n+1
= h = diag(ti /toni1,t2/tons - - tn/tnva, tna/tns - - s tong1/t1) € T C Spy,.

Example 1.14. In example 1.9 above we consider additionally the projection pr,, :
GSpiny,, . ; — SOg,41 = Spiny, ., /{£1}. Then the composite map progo Nxg : T —
T,q C SOg,11 is given by
(V) Y = (diag(tl,tQ,...,tn,tn+1,...,t2n),t0) cTl C GLQn X Gm

— h = diag<tl/t2n7 s atn/tn-i-la 17 tn+1/tn7 s 7t2n/tl) € Tad C SOQn—i—l-

Furthermore we have the following relation between the multiplier map p and
matching: If (h,a) € GLy,(F) x F* and n € GSpin,,, ,;(F) match then:

ply) = det(h) - a”.

Example 1.15. In example 1.10 above the norm map Ngg : T' — Ty ~ T}y is given
by

(Vl) Y = di&g(fl, tg, C 7tn7 tn+17 ;ib e ,t;l) el C SOQn+2
— h =diag(ty,... ty,t; ", ..., 17") € Ty C Spy,.

In this section let F be a p-adic field and G/Op a (not necessarily connected)

reductive group scheme with connected component G = G) .



Definition 1.16. An element g € G(F) is called
strongly compact, if g lies in a compact subgroup of G.
topologically unipotent, if lim, .., ¢*" = 1.

residually semisimple, if g is of a finite order, which is prime to p.

For an element g it is equivalent to be topologically unipotent and to lie in a pro—
p—subgroup of G.

Lemma 1.17 (topological Jordan decomposition). Every strongly compact g €
G(F) has a unique decomposition

9 =Gu 9s = Gs  Gu ,

where g, € G(F) is topologically unipotent and g, € CNT’(F)~ is residually semisimple.
If furthermore |mo(G)| is prime to p, then we have g, € (G)°(F).

O
Lemma 1.18 (Properties of the topological Jordan decomposition).

(1) We have g, € G% and G = Cent(g,, G%).

(2) Residually semisimple elements are semisimple.

(3) Let m be prime to p and u be topologically unipotent. Then there exists a
unique topologically unipotent uy such that ui’ = u.

(4) The topological Jordan decomposition is functorial.

(5) If H is a closed subgroup of G(F) and g € H, then also g, and g, are in H.

The functoriality implies the following statements:

(1) Let p : G — G’ be a morphism of (not necessarily connected) reductive
groups, defined over a finite extension of F'. Then we have p(g)s = p(gs) and
P(9)u = p(Gu)-

(2) If g € G(Op), then the image of the topological Jordan decomposition under
the reduction map is the Jordan decomposition in G(F,).

(1.19) Our strategy to prove the fundamental lemma in the case of classical split
groups now goes as follows: By the Kazhdan lemma 3.5 the (twisted) stable orbital
integral of g8 € G(F)0 in the group G can be replaced by the ordinary stable orbital
integral of the topologically unipotent part v in the group G*?, the centralizer of
the residually semisimple part sf. Similarly the stable orbital integral of some
v € H(F), which matches with g, can be computed as the stable orbital integral of
the topologically unipotent part v in the group H?, where the residually semisimple
part o of v matches with s§. Now G* resp. H? is isogenous to a product fo x G*9
resp. H] x HY , such that Gj_e has simple factors of type B or C', Hf has factors

* )
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of the other of these two types of groups and G* is isogenous to H?. Decomposing
u = (uy,uy) and v = (v4, v,) we get that u, and v, coincide up to stable conjugation
und up to powering, so they have matching stable orbital integrals. The fundamental
lemma for gf and v will now follow if we can assume that the stable orbital integrals
of uy and vy match. After we have proved the BC-matching of which u, and v,
this follows from the BC' conjecture 3.3, stated already in the introduction.

2 Classification of ©-conjugacy classes

(2.1) If (G,0) is as in the examples 1.8 or 1.9, the problem of determining the
O-conjugacy classes of elements s© € G (F) is equivalent to determine the classes
of h = sJ under the transformations h +— ¢ - h-'g. Namely we have the following
commutative diagram:

h—hJ7lO =
-

GLQn GLQTL

h»—>g~h~th/ leg-x-g’l

GL2n - é[@n
h—hJ-10

If we decompose h = ¢+ p in its symplectic part p and its symmetric part ¢ we thus
have to consider the problem of simultaneous normal forms for a symplectic and a
symmetric bilinear form. To obtain results for orbital integrals we have to deal with
this problem also over the ring of integers Or. The problem can be attacked if we
assume sO to be semisimple (resp. residually semisimple if we work over Op).

(2.2) Notations: In the following R denotes either a field of characteristic 0 or
the ring of integers OF of a local p-adic field F', where p # 2. We denote by m the
maximal ideal of R (i.e. m = (0) if R is a field) and by k = R/m the residue field in
the case R = Op.

Let M denote a free R-module of finite rank = with basis (b;)1<i<,. A bilinear form
q: MxM — Ris called unimodularif A(q) := det(q(b;, b;)) € R*. This definition is
obviously independent of the chosen basis (b;) since A(q) is an invariant in R/(R*)?%.
For h € GL,(R) we have the following bilinear forms b, and b} on the module
M = R"™ of column vectors: by(mq,ma) = ‘my-h-mgy and b),(my, ma) = 'my -*h-ma.

An element g € GL(M) is called R-semisimple iff

e ¢ is semisimple in the case R is a field,

e g is residually semisimple (i.e. has finite order prime to char(x)) in the case
R - OF.



For h € GL,(R) we call N(h) = h-'h~! the (right) norm of h and Ny(h) ='h~'-h
the left norm of h. N(h) and N;(h) are conjugate by h in GL,(R). Then h is called
R-©-semisimple if N(h) (or equivalently N;(h)) is R-semisimple.

We remark that A is R-©-semisimple if and only if h-J~1-© is semisimple respectively
residually semisimple as an element of GL,,(R) x (©).

Lemma 2.3. If p: M x M — R is a unimodular symplectic form, then there exists
a basis (e1,...,€q, fg,..-, f1) of M, such that p has standard form with respect to

this basis, i.e. p(e;,e;) = p(fi, f;) =0 and p(e;, f;) = d;;.

Proof: The standard procedure to get a symplectic basis of M applies for unimodular
forms. O]

Lemma 2.4. Ifqg: M x M — R is a unimodular symmetric bilinear form and R =
Op, then there exists a basis (e;)1<i<, of M such that q(e;, e;) = 6;; for (i,7) # (r,r)
and q(e,, e.) is some given element in the class of A(q) in R*/(R*)%.

Proof: Consider the reductions k = R/m, M = M/mM and q§: M x M — k. Since
quadratic forms over finite fields are classified by their discriminants, the analogous
statement for ¢ holds. By lifting a basis from M to M we can therefore assume that
q(bi,b;) = 9;; mod m for (i,7) # (r,r). But now we can apply the Gram-Schmidt-
Orthogonalization procedure (observe that elements congruent to 1 modulo m are
squares since p # 2) to obtain the claim. Il

Lemma 2.5.

(a) If g € GL(M) is R-semisimple then there exists a finite étale galois extension
R'/R such that M' = M ®@p R’ decomposes into the direct sum of eigenspaces:
M' =@, M}, where g acts on M as the scalar .

(b) If g = Ni(h) for an R-©-semisimple h € GL,(R) (see 2.2) then by(M3, M) =
0 = bj,(My, M},) unless A= 1.

(c) The restrictions of the forms by, and b) to M| and M’ are unimodular. For
A # %1 also the restrictions of by, b}, by, + b, and b, — b, to the modules
Ny = M; @® M;_, are unimodular.

Proof: (a) The minimal polynomial y(X) of ¢ decomposes in pairwise different linear
factors x(X) = []._, (X —\;) over some extension ring of R. The ring R’ = R[\;]i<i<,
is finite étale and galois over R, since the \; are roots of unity of order prime to
char(k) in the case R = Op. By the same reason we have

(i) )\z — )‘j S (R,>X for ¢ #]

in both cases for R. We remark for later use that this statement remains correct
if we add +1 to the set of the A; (if they are not already among them). Therefore
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Xi(X) = [ (X =X)-(Ai=Aj) 1) € R[X]. We have > 7, xi(X) = 1 since the left
hand side is a polynomial of degree r — 1 which has the value 1 at r different places.
Therefore M’ is the sum of the subspaces M) = x;(g9)(M). Since (g — ;) - xi(9)
equals x(g) - [[,.(\i —Aj)~" = 0, the spaces M}, are eigenspaces for g and the sum
M’ =X_ My, is direct.

(b) For m € M} and n € M, we have m = A" - gm and n = - g~'n. The claims
follow immediately from the relations b,(m,n) = A~! - b}, (m,n) and

(ii) bp(m,n) = p- b, (m,n).

(¢) In view of the orthogonality relations (b) and the unimodularity of h and ‘A the
claims for the restrictions of b, and b, follow immediately. By the formula (ii) above
we have for m € My,n € My-1:

(b, £ b,)(m,n) = (1 + N)by(m,n)
(b £0,)(n,m) = (1 £ X" Hbu(n,m).

Since 1 £ A\, 1+ A1 € (R')* by the remark following (i) above, the claim follows
also for the restrictions of by, + bj,. O

Lemma 2.6. For an R-©-semisimple h € GL,(R) with decomposition h = p + q,
where p 1s skew-symmetric and q symmetric, we have a direct sum decomposition
for M = R"

M=M,& M_& My,
where My = ker p, M_ = ker q and My = (M, )20 (M_)1» is the intersection of the

orthogonal complement of M, with the symplectic orthogonal complement of M_.
The restrictions

g+ = q | My x My, p-=p|M_xM_
qo = q | Mox Mo, po=p | My x M

are unimodular.

Proof: We identify the matrices p,q € Mat,(R) with the forms b,,b,. We take an
extension R'/R as in Lemma 2.5(a) and compute

M, ={meM|'"W' h-m==xm}={meM |hm==+hm}=ker(hF"'h).

This means M| = ker(p | M’) and M, = ker(q | M’') and implies M| = M, ®@x
R',M', = M_®pgR'. Since unimodularity can be checked after the extension R'/R
and by, restricts to g, resp. p_ on M, resp. M_, we conclude from Lemma 2.5(c) that
g+ and p_ are unimodular. Then it is clear that we have the claimed decomposition
in (orthogonal and symplectic orthogonal) direct summands. By Lemma 2.5(b) we
get My®@rR' = @, 241 M. By Lemma 2.5(c) again we conclude that the restrictions
of by, + b, = 2q and b, — b}, = 2p to this module are unimodular. So py and ¢q are
unimodular. O



Lemma 2.7 (Cayley transformation). Let p € GL,(R) be a skew-symmetric matriz.
Let Symy,(R)p—ess denote the set of symmetric matrices q such that ¢+ p € GL,(R)
and Sp(p, R)ess the set of symplectic transformations b such that b — 1 € GL,(R).
Then the following holds:

(a) We have a bijection
C': Symy(R)p-ess = Sp(p, R)ess, q— (a=p)" - (a+p) = Ni(p+q).
The inverse map is C~':b—p-(b+1)-(b—1)""

(b) C induces a bijection between those elements q of Sym,(R)y—ess, for which
p+ q is R-©O-semisimple, and the R-semisimple elements of Sp(p, R)ess-

(¢) The map C satisfies C(tg-q-g) =g -C(q) - g for g € Sp(p, R).
Proof: (a) For ¢ € Sym,(R),—ess we put h =p+q and b ="h""- h. We have

-h-b = ‘'h-R'-h-'hth = h'RTR e
(iii) '-h-b = h and by transposing
(iv) thoth-b = ‘h.

Subtracting the last two equations we get 'b-p-b = p, i.e. b € Sp(p, R). Furthermore
b—1=(q—p) ' ((p+q) —(a—p)) =(¢—p)""-2p € GL,(R) by the assumptions.
The map C' is therefore defined.

Conversely we get for b € Sp(p, R)ess and ¢ =p- (b+1) - (b—1)7! the equivalences:

g="'q&p- b+1)-b-1D"="0-1)7"(b+1):(-p)
s (-1pb+1)= b+ 1)p(1 —1b)
& thpb +tbp — pb —p = —'bpb +'bp — pb+p
< 'bpb=p < b e Sp(p, R).

Furthermore gtp = p-((b+1) £ (b — 1))-(b—1)"* € GL,(R) since (b—1)"1,2b,2,p €
GL,(R). Therefore the map C~! is also well defined. An easy calculation (as in the
case of the usual Cayley transform) shows that the maps C' and C~! are inverse to
another in their domain of definition.

(b) Since C(q) = Ni(p+q) = (p+¢q)~' - N(p+ q) - (p + q) this follows from the
definition of R-O-semisimplicity.

(c) We have C('g-q-g) = (‘999 —p) *('9q9 +p) = g (¢ —p)'g" - '9(¢+p)g =
gt (g—p) - (g+p)-g=9"-C(qg) -gforge Sp(p,R). O

Lemma 2.8. If p is a unimodular symplectic form on a free R-module N and
b € Sp(p, R) is R-semisimple then there exists a b-invariant and with respect to
p orthogonal direct sum decomposition N = Ny & N, such that b acts as identity on
N1 and b|N, € Sp(ps, R)ess, where py is the restriction of p to N,.
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Proof: We argue as before: By lemma 2.5(a) we have for some finite étale ring
extension R’/ R a decomposition of N' = N ®x R’ into eigenspaces of b: N’ = @ Nj,
where b acts as the scalar A on N}. As in lemma 2.5(b) we can see, that p(Ny, N;) = 0
unless A - = 1. This implies that p is unimodular on N and therefore on Ny, thus
N is the direct sum of N; and the p-orthogonal complement N, of N;. Since b is
a symplectic transformation, it leaves IV, invariant. By the orthogonality relations
for the Ny we have N, ®r R = @, N). Since A —1 € (R)* for A # 1 the
endomorphism b — 1 of NN, induces an automorphism of N, ®r R’ and is therefore
itself an automorphism of N, Il

Lemma 2.9. Let h = p+ q € GL,(R) be R-O-semisimple. Let G"®(R) = {g €
GL.(R)|'g-h-g=h}. Then the following holds:

(a) With the notations of lemma 2.6 and of lemma 2.7 we have

G"®(R) = O(qy, R) x Sp(p—, R) x (Sp(po, R) N O(go, R))
(g4, R) x (Sp(p— @ po, R) N O(q— @ qo, R))

(¢1, R) x Cent (C(q- @ qo), Sp(p- @ po, R)) -

I

)
o)

I

(b) In the situation and with the notations of lemma 2.5 we have moreover

(Sp(po, R') N O(qo, R)) = {(@\) € H GL(M))| ¢r—1 = "¢y for all )\}

A££]

~ ] GL(Mr)

AeL

where ¢y-1 = '@y means that by(py-1my-1,0xmy) = bp(my-1,my) for all
my-1 € My_,,my € My and where L denotes a subset of the set of all A # £1,
which takes from every pair {\,\"'} exactly one member.

(c) (Sp(p— @& po) N O(g— ® qo)) = Cent (C(q- ® qov), Sp(p— ®po)) is a connected
reductive smooth group scheme /R with connected special fiber, which becomes
split over the finite étale extension R'/R.

(d) We have in the situation of 4.1
Cent(N (h), Spy,) = SpZ(n—g) x Cent (C(q- @ qo), Sp(p— @ po))
where 2g is the rank of M_ & M.

(e) To obtain the intersections of G™®(R) with SL,(R) one has only to replace
O(q+, R) by SO(q4, R) on the right hand sides of (a).
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Proof: (a) Since every g € GM®(R) stabilizes the decomposition of lemma 2.6 one
immediately gets the first two isomorphisms. The last one follows from lemma
2.7(c).

(b) Every g € G"®(R) centralizes N;(h) and therefore has to respect the decomposi-
tion of My®p R’ in eigenspaces of N;(h). The first description of Sp(po, R')NO(qo, R')
follows now from 2.5(b). Since by, is unimodular on M;_, @ M} it induces an identifi-
cation of M} _, with the dual space of M. This means that ¢, can vary through the
whole GL(M}), while ¢y-1 is then uniquely determined as the inverse of its adjoint.
We remark that the condition ¢y = ‘¢y-1 is equivalent to the condition ¢y-1 =
tp) and gives no extra restrictions. This is clear since we have by, (my, my-1) =
b,(my-1,my) = X - by(my-1,my) for my-1 € M;_,,my € M by (ii), so the two
possible identifications of M _, with the dual of M} differ by a scalar and create the
same adjoint. The last isomorphism follows.

(¢) This follows from (a) and (b).

(d) This follows from the definition of N by the remark, that an element of
Cent(b,Sp,,(R)) has to respect the decomposition of lemma 2.8.

(e) is clear, since symplectic transformations have determinant 1. ]

Lemma 2.10. Let G/R where R = OF be a connected reductive group with con-
nected special fiber G Xo, k and b € G(R) be R-semisimple.

Ift' = h;' b hp € G(R) for some hp € G(F) then there exists hg € G(R) with
V =hp'b-hpg.

Proof: This follows from [K3, Prop. 7.1.]. O

Lemma 2.11. Let R = Op and h € GL,(R) be R-O-semisimple and h' ="'gp - h -
gr € GL,(R) for some gp € GL,(F'). Then we have:

(a) If additionally det(gr) € F* there exists gr € GL,(R) with h' ="'gr - h - gg.

(b) If we only assume gr € GL,(F) and if n is odd there exist gr € GL,(R) and
e € OF such that ' =€-'gr-h - gg.

(c) We get the statement of (a) if we additionally assume that the discriminants
of ¢+ and ¢, coincide in R*/(R*)?.

(d) Under the additional conditions h,h' € SL,(OF), gr € SL,(F) and n odd we
can find gp € SL,(R) with h' ="'gr - h - gg.

Proof: We use the objects occurring in lemma 2.6 for h and denote the corresponding
objects for i’ by a’. We have rank(M,) = dim(M; ®p F) = dim(M, @ F) =
rank(M). By transforming h and h' with elements of GL,(R) we can therefore
assume (using lemma 2.3) that

(v) My=M,=R", My®dM_=MdM , p.:=pDp-=p,&p._.
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The assumption and lemma 2.7(c) (applied in the case R = F) now imply that
the elements C(0 & ¢qp) and C(0 @ ¢j) of Sp(p«, R) are conjugate by an element of
Sp(p«, F). By lemma 2.10 they are conjugate by an element g, € Sp(p., R), hence
we get from lemma 2.7(c) the equality ¢) = g, - qo - g« and therefore py + p' + ¢f, =
Lg.(po + p— + qo)gs In My @ M_. We have det(¢,) = det(h) - det(pf + p__ + qf) ' =
det(gp)? - det(h) - det(po + p— + qo) ' = det(gp)? - det(g4) (observe det g, = 1).

If case (a) we conclude using R* N (F*)? = (R*)? and lemma 2.4, that ¢, and
¢+ are transformed via an element g, € GL,(M, ), a statement which has been an
additional assumption in (c) in view of lemma 2.4. We put g, and g, together to
gr € GL,(R) which does the required job in cases (a) and (c).

We prove (b) for e = det(¢,)/det(¢+): We have b’ := e 'h/ = g - h- g} for
g = Vel gr € GL,(F). If 2r + 1 is the rank of M} we have det(¢";) =

det(q) - €t = det(gy) - €. Thus the additional assumption of (c) is fulfilled and
we get gr € GL,(R) with b7 ='gr - h - gg.

To prove (d) observe at first that we can assume the matrices transforming h and b’
into the standard form (v) being in SL,,(R) since one can modify them by elements of
GL(M,) and since rank(M,) > 1. From det(gp) = 1 we furthermore get det(q),) =
det(q;) and therefore det(gy) = £1. Since we can replace g, by —g, if necessary
and rank(M ) is odd we can achieve det(g,) = 1 and therefore det(ggr) = 1. O

3 Orbital integrals

(3.1) Orbital integrals. For elements v € G(F), f € C(G(F)) we define the
orbital integral by:

0,(£.6(F) = [ flaya)da/da”
G(F)/G(F)Y

where G(F')” denotes the centralizer of v in G(F') and where we have chosen Haar
measures dz resp. dz”? on G(F) resp. G(F')? such that
v0lgr(G(Op)) =1 and  volg~ ((G7)°(OF)) = 1.

If 1x denotes the characteristic function of a compact open subset K C G(F), we
will use the following abbreviation:

07(1,@) = Ov(lé(oFyé(F))
We further introduce stable orbital integrals

Off(f,é’(F)) = ZOW/(f,é’(F)) respectively
7'~y

01(1.G) = Y 04150, G(F)
v~y
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where 7/ runs through a set of representatives for the conjugacy classes inside the
stable conjugacy class of 7.

(3.2) Recall the construction of the quotient measure dg/dh on G/H for totally
disconnected locally compact groups H C G, where H is unimodular (e.g. H is the
set of F-valued points of a reductive group). One defines

volgy(K)
volgn(V 'Ky N H)’

vol(KyH/H) = / Liyuu(9)dg/dh =
G/H

where K C G is any open compact subgroup, and extends this by linearity to the
space of all locally constant compactly supported functions on G/H. It is well known
and easy to check that this definition does not depend the choice of K.

The crucial statement we need in the following is the following type of a fundamental
lemma:

Conjecture 3.3. If the reqular algebraically semisimple and topologically unipotent
elements w € SOy,11(F) and v € Sp,y,(F') are BC-matching (see 1.12) then

(BCTL) O'it(]'? SO?TL-‘Fl) - Oit(lv Sp2n)

The (easy) case (BCy) is proved in [F11, Stable case I in Proof of Theorem]. The
case (BCy) is essentially proved in [F12, Part I}, as will be explained in 5.9.

Warning: While (BC;) is an immediate consequence of the exceptional isogeny
iy : Spy = SLy —» PGLy = SOj and the fact, that v* and iy(y) are BC-matching
for v € SLy(F), the statement (BCy) is much deeper, since the exceptional isogeny
14 1 Sp, — SO5 does not satisfy the analogous matching property.

Remark 3.4. It follows immediately from the construction in 1.12 that we have a
bijection between F-rational conjugacy classes in SOq,,1(F') and in Sp,, (F). By the
theorem of Steinberg each F-rational conjugacy class in Sp,,,(F) contains a rational
element, since Sp,, is quasisplit and simply connected. But the same statement

holds for F-rational topologically unipotent conjugacy classes in SOs, 1 (F') as well:

If u € SOy,41(F) is topologically unipotent and represents an F-rational conjugacy
class, consider its two preimages v, and vy = —v; in Spin,, ;. Since p # 2 we have
lim,, oo vg" = —lim,, o v} n, so that exactly one of the elements vy, v is topologically
unipotent, say v;. Since the Galois group respects the property to be topologically
unipotent, the conjugacy class of vy is F-rational and therefore contains an F-
rational element v’ by the theorem of Steinberg. The image of v/ in SOs, 1 (F) is
the desired F-rational representative of the conjugacy class of w.

Thus to every topologically unipotent element in v € Sp,, (F') is associated at least
one BC-matching u € SOs,41(F') and vice versa.
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Lemma 3.5 (Kazhdan-Lemma).
(a) For G =G % (©) as in 1.2 let us assume that the following statement holds:

(x) If 10 and $90 for s1,s2 € G(OF) are residually semisimple and conju-
gate by an element of G(F) then they are also conjugate by an element
of G(Op).

Ifv0 = u-sO© = sO-u is a topological Jordan decomposition, where v € G(Op),
u s topologically unipotent and sO residually semisimple, we have
~ 1

O,\/@(l,G) = [GSG(OF) : (GS@)O(OF)] . Ou(l,GSQ)

(b) Let H/Op be connected reductive with connected special fiber. For h € H(Op)
with topological Jordan decomposition h =v-b=0b-v, where v is topologically
unipotent and b residually semisimple, we have

Oh(LH) = [Hb<OF) . tHb)O«?F)] ) Ov(lva)

Proof: (a) We first prove:

(**) We have gy©g~ ! € G(Or)O if and only if g is of the form g = k - x where
k € G(Op) and x € G*®(F) satisfies ruz~t € G*©(O).

The direction ”<=" is easy: Under the hypothesis we have gy0¢~! = kxusOz k! =
k(zuz=1)(s©)k™' € G(OF). For the converse direction "= let us assume that
9799~ € G(OF)O. The topological Jordan decomposition is gyOg~! = (gug™') -
(gs©g1). Since (G(OF), O) is a closed subgroup of G(F) we conclude from 1.18(4)
that gs©g~! € G(OF)O and gug™' € G(OF). By the first inclusion and assumption
(x) we get an element k € G(Op) such that g(s0)g~' = k(sO)k™!, which implies
v =k g e G*®(F), where G*° is the centralizer of sO in G. Using g = kx the
inclusion gug~! € G(OF) is now equivalent to zuz~! € G(OF), which proves (k).

The end of the proof is now a straightforward application of (**), the definition of
the quotient measure and the formula

9 -G(Or)-gNG®(F) =g~ - G*°(Op) - g N G"°(F)
for g € G*®(F), which follows from G*®(F) N G(OFr) = G*®(Op).
(b) is the special case G = G, © = 1, the assumption (*) being satisfied by 2.10. [J

The following lemmas will be useful in later chapters.
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Lemma 3.6. If N € N is prime to p then we have for a reductive group G/Op and
v €G(F)
O,~(1,G) = 0,4(1,G).
For the proof notice that g-~-¢~! lies in the closure of (g-7"-g~HZif N € Z,. O
Lemma 3.7. If G/OF is of the form G = Gy x Z with a reductive group G1 and a
finite group Z ~ Z(Op) then we have for v € G1(F) C G(F) the following identity
of orbital integrals:
0,(1,G) = 0,(1,Gy).
O
Lemma 3.8. Let 1 - T — G — H — 1 be an exact sequence of algebraic groups
over Op where T is a split torus. Then we have for v € G(F') with imagen € H(F):
O:;t(l, G) = Of]t(l, H).
Proof: We use the fact that the image of (G7)° in H is (H")°. By Hilbert 90
we get exact sequences 1 — T(F) — G(F) — H(F) — 1land 1 — T(F) —
(G")°(F) — (H")°(F) — 1, so that we have an isomorphism G(F)/(G7)°(F) ~
H(F)/(H")°(F). Since (H")° has finite index in H"” we can compute O, (1, H) as
H(EY) (H) (F) Lpop (hnh™)dh/dh". Similarly

0,(1,G) = / lgom (979~ )dg/dg".
G(F)/(GY)°(F)

Now the quotient measures on G(F')/(G")°(F') and H(F)/(H")°(F) coincide since
G(Op) - H(Op) and (G")°(Op) — (H")°(Op), and we conclude O,(1,G) =
O,(1, H).

It remains to check that the set St of conjugacy classes inside the stable conjugacy
class of v maps bijectively to the corresponding set St, associated to 7. But in the
following commutative diagram of abelian groups with exact rows and columns the
map ¢ must be an isomorphism, since H'(F,T) = 1:

HYF,T) —— HYF,T)

I — St’Y - H;b(Fv Gry) - H;b(F>G)

|

I — Stﬂ - H;b(FvH’Y) - H;b(FﬂH)

H2(F,T) —— H*(F,T).
Here H!,(F,.) denotes the abelianized cohomology of [Boro| which coincides for
nonarchimedean F' as a pointed set with the usual cohomology. O]
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4 Comparison between PGLy,; and Sp,,

Recall (see 2.2) that R is either a field of characteristic 0 or the ring of integers Op
of a local non archimedean field F' with residue characteristic # 2.

(4.1) The explicit norm map N. Our final goal being the comparison of ©-
twisted stable orbital integrals on PGLy, 1 with stable orbital integrals on Sp,,,, we
will represent elements of PGLy,, 11 by elements of the groups GLg, 11 resp. SLo, 1.
Let GL,(R)gess/traf resp. SL,(R)gess/traf be the set of transformation classes
of R-O-semisimple (see 2.2) elements of h € GL,(R) resp. h € SL,(R) under
the transformations h +— 'ghg for ¢ € GL,(R) resp g € SL,(R). Similarly let
Spag(R) rss/conj be the set of conjugacy classes of R-semisimple elements in Spay(R).
We define a norm map

N : GLgpt1(R)pess/traf — Spy,(R)rss/conj

as follows: If h = p + ¢ € GLog,1(R) represents a class of the left hand side, we
decompose M = R**tl = M, ® M_ @ M, as in lemma 2.6. We consider M, as
the degenerate part of M with respect to p and denote the non degenerate part by
M, == M_ & M,. Since p, = p_ @ po is a unimodular form on M, we can find
a basis (er,...,ey, fg,..., f1) of M, such that p, has standard form with respect
to this basis by lemma 2.3. Let P, resp. (. be the matrix describing the (skew-)
symmetric bilinear form p, resp. ¢_ @ qo with respect to this basis (¢_ is the zero
form). Thus P, = Jo, and Sp(P.) = Spy,. Now N (h) or more precisely the image
of the class of h under the norm map N is defined to be the Sp,,(R)-conjugacy
class of 1y(n—g) X C(Qs) € Spy_g)(R) X Spyy(R) C Spy,(R), where we use the
Cayley-transform-map C' from lemma 2.7.

Remark 4.2. In the situation where the decomposition M = R*"*! = M, ® M, is of
the form M = R*"=9+1@ R?I the matrix h splits into the blocks h, € GLa(n—g)+1(R)
and h, € GLy,(R) so that Ny(h.) = 'h;' - h, is a symplectic transformation with
respect to the alternating part p. of h.. Then C(Q.) € Spy,(R) is the conjugate of
Ni(hy) by a matrix, which transforms p, into the standard form Jy,.

Proposition 4.3. Let R be as above. Then the following statements hold:

(a) The map N : GLopi1(R)ress/traf — Spy,(R)gss/conj is well defined and
surjective. In the case R = Op its fibers are of order 2 = #(R*/(R*)?) and
describe the two different classes of unimodular quadratic forms on M.

(b) The restriction Nsi of N to SLan1(R)ress/traf is surjective as well. It is
bijective if R is an algebraically closed field or if R = Op.

(c) If h represents a class in GLa,,1(R)ress/traf then the image of h- J71O in
PGLyyp+1(R) % (©) matches with N'(h) in the sense of ©-endoscopy.
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Proof: (a) and (b) The choices made in constructing N'(h) only allow @, to be
replaced by some ‘g - Q. - g for ¢ € Sp(P,, R). By lemma 2.7(c) this does not
change the conjugacy class of N'(h). Therefore the map A is well defined. To prove
surjectivity first observe that each class in Sp,,(R)gss/conj has a representative of
the form (1a(,—g),b) with b € Sp,,(R)ess by lemma 2.8 with a unique g < n. The
Spy, (RR)-conjugacy-class of b is unique. The bijectivity of the Cayley-transform
map and property 2.7(c) then imply that there is a Q. € Symg,(R), which is
unique up to transformations with elements of Spy,(R) = Sp(P, R), such that
b = C(Q.). Now we consider the unimodular bilinear form h, = P, + @, on R%»
and some unimodular symmetric bilinear form ¢, on R*™~9+1 The form ¢, @ h,
on R?"*! is then unimodular and R-O-semisimple. Since we can choose ¢, in such
a way that det(qy @ h.) = 1 we get the surjectivity statements of (a) and (b).
Since the transformation class of A/ is unique by the considerations above and since
h = q4 @ h, we conclude that the fibers of N/ correspond to the transformation
classes of unimodular quadratic forms on M, . The remaining statements of (a) and
(b) now follow from lemma 2.4.

(¢) By the definition of matching (1.11) we can work over R = F and therefore may
assume that v = h - J;,"; has diagonal form v = diag(t1, . .., tan41). After applying
a permutation in Wso,,,, we may assume

(i) ti # topgo—; for i < gand t; =to49 for g+1<i<2n+1—g.
We have:
h = antidiag(ty, —to, t3, ..., tans1)
h+'h = antidiag(t, £ toni1, —ts F ton, ts £ ton_1, ..., o1 £ 1)
th_l . h = diag(t2n+1/t1,t2n/t2,...,tn+2/tn,1,tn/tn+2,...,t1/t2n+1)

This means that M, ~ R>™ 9+l ig spanned by the standard basis elements
€gils-- s Eami1—g Of R and M, = M_ @& My by €1,...,€4, €119 gy, €2041.
Since h — 'h is an antidiagonal matrix, its non degenerate part can be transformed
by a diagonal matrix d into the standard form Jy,. Now we use remark 4.2 to get the
following representative for AV'(h), observing that conjugation by d does not change
a diagonal matrix:

diag(tons1/t1, ton/ta, . .. ,tn+2/tn, to/tnto, - t1/tons1),

which may be conjugated by an element of the Weylgroup into the form
diag(ti/tans1,t2/ton;s - s ta/tnra, tara/tn, - - tans1 /).

The claim now follows from example 1.13. O]

Corollary 4.4. For every semisimple ¥O € ﬁ\Gj)gnH(F) there exists a semisimple
n € Spy,(F) matching with n in the sense of 1.11 and vice versa.
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Proof: If v € GLy,4+1(F) represents a given 7 one applies part (c) of the proposition
to h =~ - Jouy1. If n is given one applies (b) and (c). O

Proposition 4.5. Let Z = Cent(GLayt1) ~ G, denote the center of GLayy1. Let
¥ € PGLypi1(F) be represented by v € GLopi1(F). Since 2n + 1 is odd we can
achieve that det(vy) has even valuation. Then

(i) Os6(1, PGLyns1) = 2 Os0(1, GLoysn).

If moreover vO s strongly compact with topological Jordan decomposition 7O =
u- (sO) = (sO) - u we have u € SLop1(F') and get

(i) Os6(1, PGLons1) = Ou(1,8L59.,)

Proof: The relation g-70 - g~ ! € Péi;+1(0p) means ¢ -y - O(g)~! = ¢ - k with
¢ € Z(F) ~ F* and k € GlLg,11(OF). Since det(0(g)) = det(g)~! the relation
implies taking determinants

(iv) det(g)? - det(v) - > € O3

This implies that ¢ has even valuation 2m for m € Z, since the valuation of det(7)
was assumed to be even. If we replace g by ¢ = (o - w™ - g for (p € O} we
get ¢ -7 -O(¢")7' € GLy,;1(OF). Conversely the equation (iv) implies that every
g € g- Z(F) with this property must be of the stated form.

Next observe that the condition § € PGLI® +1(F) means that we have for some repre-
sentative g € GLog,,1(F) of g and some ¢ € Z(F) ~ F* the relation gyO(g)~! = (7.
This implies the determinant equation: det(g)? = ¢*"*!. Putting p = det(g)/¢" €
Z(F) this implies ¢ = p? and det(g) = p*"™'. If we replace g by p~' - g we get
g79(g)~! = v and det(g) = 1 . The only other element in g - Z(F) having the first
property is —g, but det(—¢g) = —1. This means that we have isomorphisms

~

GLoni1(F)® == SLguy1(F)® x {1} and
SLons1(F)® == PGLy(F).

Since the normalized Haar measure on PGLa, 1 (F) is the quotient of the normal-
ized Haar measure on GLg,1(F) by the normalized Haar measure on Z(F) (i.e.
vol(Z(Or)) = 1) and since the normalized measure on GLa, 1 (F)?© restricts to the
normalized Haar measure on PGL]® 1 (F) ~ SLJ® +1(F'), the above considerations
imply the relation (ii).

If vO© is strongly compact we can assume that v € GLg,41(OF) and apply lemma
3.5 to get

O;/@(l, ﬁgn_u) - Ou(17 GL;S+1)

observing that [GL3Y. ,(OF) : (GL32.)°(Or)] = 2. But since GLy,41(F)*® =~
SLoni1(F)*© x {#1} we can apply lemma 3.7 to conclude (iii). O
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Lemma 4.6. Let h = sJ € GLyp11(OF) be R-O-semisimple and b = (13,—g), bs) €
Spe,(OF) a representing element of N'(h) with b, € Spyy(OF)ess. Since My is of odd
rank 2(n — g) + 1 we can identify (M, q.) with (Olzp(n_g)ﬂ, €qsp) for some e € OF
and the standard splitform qs,. Assume that we have BC-matching algebraically
semasimple and topologically unipotent elements

uq € SO2(n—g)+1(F) = SO(q+) and vy € SpQ(n—g) (F) = ker(b_ 1)(F) N SpZn(F)
and an additional algebraically semisimple and topologically unipotent element

Uy € SO(q.)(F) N Sp(ps)(F) ~ Cent(b., Spy,(F)).

Then the elements ¥© = O - (uy,uy) = (Ug,us) - O € PGLyyp i1 (F)O and n =
(v2,u?)-b="b-(vi,u?) € Spy,(F) match.

Proof: As in the proof of lemma 4.1(c) we work in the case F' = F and assume that
~ resp. n lie in the diagonal tori. The same holds for the residually semisimple parts
s resp. b and the topologically unipotent parts u = (uy,u.) and v = (v2,u?). As
the matching of s© and b is already proved in 4.1(c) we only have to examine the
topologically unipotent elements. We can make the assumption (i) and write

uy = diag(wgyr, ..., wy, Lw b ,ngil) € SOsg(n—g)+1(F)
u, = diag(wy, ... wgw, ", ... wy") € Cent(by,Spy,(F))

By the definition of BC-matching we can assume

vy = diag(wgyr,. .., we,w, ... ,wg_il) € sz(n_g)(ﬁ)
Now we get from the description of M, and M, in the proof of lemma 4.1(c) taking
everything together:

B 1 1 (2 2 -2 —2
u = (wy,...,wy, Liw, ... ,w") resp. v = (Wi,...,w,, W, ..., w;")

and the claim follows again from example 1.13. O

The statement of the following theorem is the fund:irggntal lemma for semisimple
elements in the stable endoscopic situation (Sps,,, PGLa,+1). Recall that the fun-
damental lemma also predicts the vanishing of orbital integrals for those rational
elements, which match with no rational elements on the other side. But in view of
corollary 4.4 this case does not occur.

Theorem 4.7. If the semisimple elements 7O € fafzgn_i_l(F) and 1 € Spy, (F)
match in the sense of 1.11 and if conjecture (BC,,) is true for all m < n then we
have

(v) O%%(1, PGLons1) = O3 (1, Spay).
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Proof: Step 1 (Reductions): In the first step we will prove that the nonvanishing
of one side of (v) implies the nonvanishing of the other side and that we can reduce
to the situation where:

7 € GL2n+1(OF), 1 € Spy, (Or)
and the topological Jordan decompositions are of the form

YO = (up,u.) - sO and n= (vi,v?) b such that

b lies in N (h) where h = s - Jo, 11,
uy and vy are BC-matching,

u, can be identified with v, under an isomorphism Cent(b., Spy,(OF)) =~ Aut(h.)

So let us assume that the right hand side of (v) does not vanish. Then there exists
n' € Sp,,(F) stably conjugate to n which has a nonvanishing orbital integral, i.e.
can be conjugated into Sp,, (Op). We can assume that ' € Sp,,(Op) and that
its topological Jordan decomposition satisfies ' = b’ - v' = v’ - b with residually
semisimple b = (1a(,—g), bx) € SPa(,—g)(OF) X Spy, (OF) and topologically unipotent
v'. We write v in the form v = ((v/})?, (u})?) with v, € Spy,_,(Or) and ), €

Cent (b, Spy,(OF)) using 1.18(3) and the general assumption p # 2. Thus we have
nonvanishing Oy (1, Sp,,,) and get from the Kazhdan-lemma 3.5 and lemma 3.6:

(vi) O,y(1,Spy,) = Oy(1,Cent(V',Sp,,))
= O(vﬂr)2 (L Sp2(nfg)) ’ O(u;)2 (17 Cent(b*a SpQg))
= Oy, (1,8Ps(1—g)) - Ou (1, Cent(bs, Spyy)).

Hence the stable orbital integral Of}i(l,sz(nfg)) (being the sum of integrals of

nonnegative functions) is strictly positive.

By remark 3.4 there exists a BC-matching between v/, and some v/, € SO, g)11(F).
Then the equation (BC,_,) implies that there exists u; € SOg(,—g)+1(F) with
strictly positive orbital integral and BC-matching with v/, i.e. we can assume
Us € SOQ(n_g)+1(OF>.

Let h = sJ € GLa,11(OF)gess be a residually semisimple element with N'(h) = ¥/
and define the element YO = (u4,u),) - s© = sO - (uy,u)) € GfL;Il(OF). Here
we identify the Cent(sO,Gla,y; ~ GM® ~ O(qy, R) x Cent (C(q.),Sp(p.)) =~
SOs(n—gy+1 X Cent(bs,Spy,, so that (uy,u)) can be viewed as an element of the
left hand side. The element v/© € PGLa,1(Or) matches with 1’ (and therefore
also with ) by lemma 4.6 and therefore lies in the stable conjugacy class of 0.

If the left hand side of (v) does not vanish, it is immediate that there exists 7O €

GL2,11(OF) in the stable conjugacy class of vO. By reversing the above arguments
we see that there exists 7' € Sp,, (OF) in the stable class of 1. So excluding the
tautological case that (v) means 0 = 0 we may assume without loss of generality
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that v € GLg,+1(Or) and 1 € Sp,,,(Or). We may furthermore assume that 7O =
(uy,uy) - sO© and n = (vi,u?) - b are the topological Jordan decompositions with
BC-matching u, and v, and matching residually semisimple s© and b.

Step 2 (Calculation of the symplectic orbital integral): If ' € Sp,,(F) is
stable conjugate to n then the residually semisimple parts &’ and b are stable conju-
gate as well. If 7 has nonvanishing orbital integral then 1" and therefore also O’ can
be conjugated into Sp,,,(OF), i.e. we can assume b’ € Sp,, (Op). By the Kottwitz
lemma 2.10 ¥ and b are conjugate over Sp,, (Op) i.e. we can assume b’ = b. This
means that we obtain all relevant conjugacy classes in the stable conjugacy class of 7
if we let v/_ vary through a set of representatives for the conjugacy classes inside the
stable conjugacy class of v, in SpQ(n,g)(F ) and u/, through a set of representatives
for the conjugacy classes inside the stable conjugacy class of u, in Cent(b., Spy,).
Then the corresponding 1" are of the form

' =b-((v})* (1))

We get using (vi) and lemma 3.6:

(Vii) Ozt(la Sp2n) = Z O(vjr)2 (17 Sp2(nfg)) ’ Z O(u;)2 (L C67’Lt(b*, Sp2g))

vl ~ug wl ~Us

= Y Ou (L,SPau_g) = Y Oull,Cent(b.,Sp,,)).

v oy ul, ~ouy

Step 3 (Calculation of the ©-twisted orbital integral): We can repeat this ar-
gument in the ©-twisted situation, since by lemma 2.11(b) the class of the residually
semisimple part sO© of 70 is the only PGLy, ;1 (F)-conjugacy class inside the stable
class of 50, which meets PGLg,11(Op). If we denote by «/, a set of representatives
for the SOy, g)11(F')-conjugacy classes in the stable class of uy € SOg(,—g)41(OF)
we therefore get using proposition 4.5

(viii)  02%5(1,PGLyps1) = > Owuy(1,SL5)

()~ ()

= Y 0y (1,SOsmgs1) - Y Oul(L,Cent(b,,Sp,,)).

uly g w, ~Us

Step 4 (End of the proof): Since v, and u, are BC-matching it only remains to
apply (BC,,_,) in order to identify

D 04 (1,SPo_g)  With > Ou, (1,S050—g)41)-

vl vy uly ~vuy

Thus the right hand sides of (vii) and (viii) coincide, and the proof of the theorem
is finished.
[l
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5 Comparison between GLj, x GL; and GSpin,,

Lemma 5.1 (Cayley transformation again). For a symmetric matriz ¢ € GL,(R)
the following holds:

(a) We have a bijection

é : Altn(R)q—ess - O(Qv R)ess» b= (p - Q)_l ' (C] +p) = _Nl(p + Q)

between the set Alt,(R)g—ess 0f skew-symmetric matrices p such that p £+ q €
GLn(R) and the set O(q, R)css of orthogonal transformations b such that b—1 €
GL,(R). The inverse map is C™':bw—q-(b+1)-(b—1)"".

(b) C induces a bijection between those elements q of Alt,(R)y—ess, for which p+q
is R-O-semisimple, and the R-semisimple elements of O(q, R)ess-

(¢) The map C satisfies C('g-p-g) =g+ -C(p) - g for g € O(q, R).
(d) We have det(b) = (—1)" for b € O(q, R)ess-

Proof: (a) For p € Alt,(R)y—ess we put h = p+qand b= (p—q)~'-(¢+p) = —*h 1A
Adding the formulas (iii) and (iv) in the proof of lemma 2.7 we get (—'b)-q-(—b) = ¢,
ie. b e O(q, R).

Furthermore b —1= (p—q)~" - ((p+¢) — (p—q)) = (p —¢) " - 2¢ € GL,(R) by the
assumptions. The map C' is therefore defined.

Conversely we get for b € O(g, R)ess and p=¢q- (b+ 1) - (b — 1)~ the equivalences:

p==peq O+ 0= ="0-17""(b+1)-(=q)
S ('—1)qgb+1)=("b+1)q(1 —b)
& thgb 4+ 'bg — qgb — g = —'bgb + 'bg — qb + ¢
S'hgb=q < be O0(q, R).
Furthermore p+q = ¢-((b+ 1) = (b —1))-(b—1)"! € GL,(R) since (b—1)"1,2b,2,q €

CLy(R). Therefore the map C~! is also well defined. An easy calculation using the
relation (b+1)- (b—1)"' = (b—1)""- (b+ 1) shows that the maps C and C~ ! are
inverse to another in their domain of definition.

(b) and (c) follow as in the proof of lemma 2.7.

(d) is clear since every b € O,(R) with det(b) = (—1)""! has 1 as an eigenvalue.
(Alternatively we can use (a) and the computation det(—'hA~"' - h) = (—=1)".) O

Lemma 5.2. If q is a unimodular symmetric bilinear form on a free R-module
N and b € O(q,R) is R-semisimple then there exists a b-invariant q-orthogonal
direct sum decomposition N = Ny & N, such that b acts as identity on Ny and
b|N. € O(gs, R)ess, where q. is the restriction of q to N,.
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Proof: The proof of lemma 2.8 can be adapted with obvious modifications. ]

(5.3) The explicit norm map N. Let (GLy,(R) X R*)ress/traf be the set of
transformation classes of R-O-semisimple elements (h,a) € GLy,(R) x R* under
the transformations (h,a) — (‘ghg,det g~' - a) for g € GLs,(R),a € R*. Similarly
let SOsq,11(R)Rgss/conj be the set of conjugacy classes of R-semisimple elements in
SO2,41(R). We define a norm map

N : (GLg,u(R) X R )ress/traf — SOgpy1(R)gss/conj

as follows: If (h,a) € GLa,(R) X R* represents a class of the left hand side and if
h = p+q is the decomposition in the symmetric part ¢ and the skew-symmetric part
p, we decompose M = R* = M, @& M_® M, as in lemma 2.6. The form ¢, = ¢, ®qo
on M, = M, & M, is unimodular. Since the ranks of M and M_ are even we have
M, ~ R?" for some r € Ny. Let p/, and ¢ be the 2r x 2r-matrices which describe p,
and ¢, with respect to the standard basis ob R*". Let ¢_ be a symmetric bilinear
form on M_ := R¥"")+1 such that A(q.) - A(G-) € (R*)%. By lemma 2.4 we have
an isomorphism of quadratic spaces

i : (M*7 q*) EB (M,, (7*) — (R2n+1a J2n+1)

(observe det(Jo,11) = 1) which induces an injection
j:O(M.g) x O G ) = O(M.&M, &G ) = O,

This injection is canonical (i.e. independent of the chosen isomorphism ¢) on the set
of conjugacy classes.

Now N (h), the image of the class of h under N, is defined to be the Osg,y1(R)-

conjugacy class of j(C(p.), lan—r)+1) € O2pt1(R), where we use the Cayley-trans-
form-map C with respect to ¢/ from lemma 5.1. We observe that det(C(p,)) =
1 by lemma 5.1(d) and therefore A/(Rh) lies in SO, 1(R). Since the centralizer
of j(é(p;), Logn—ry41) in Ogny1(R) contains {ls,} X Ogpry41(R) ie. elements of
determinant —1, the Og, 1(R)-conjugacy class is in fact a SOsg,1(R)-conjugacy
class.

Lemma 5.4. In the notations of 5.3 the spinor norm of N'(h) is the class of det(h)
mod (R*)2.
Proof: It is sufficient to consider the case R = F', since we have an injection

05 /(0F)* — F*/(F*)%. 1If o denotes the spinor norm of AV(h) we have by a
theorem of Zassenhaus (comp. [Zas]) in the version of [Mas]

o = det (z’d — C‘(pfk)) -A(q)) mod (R*)?.

But id—é(pfk) = (¢.—p.)7'-2-¢. so that we get 0 = det(¢. —p.)~'-2?" = det(¢. —p.)
mod (R*)2. Furthermore det(q. — p.,) = det’(¢. — p,) = det(p, + ¢.). Since the
discriminant of p_ is a square we finally get o = det(p, + ¢.) - det(p_) = det(h)
mod (R*)2. O
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Proposition 5.5.

(a) The map N : (GLa,(R) X R*)ress/traf — SOsyi1(R)gss/conj is well defined
and surjective. Two classes lie in the same fiber iff they have representatives

of the form (h,ay) and (h,as).

(b) If (h,a) represents a class in (GLay(R) X R*)gess/traf then (h-J71 a)O €
(GLay(R) X R*) x (©) matches in the sense of ©-endoscopy with some ele-
ment n € GSpin,, (R), which maps to N(h) under the projection preq :
GSping, 1 — SOonq1.

Proof: (a) If we replace p/, by some ‘g - p. - g for g € O(¢., R), this does not change
the conjugacy class of A(h) by lemma 5.1(c). Since the effect of the other choices
has already been considered, the map N is well defined.

To prove surjectivity first observe that each class b € SOs,11(R)gss/conj can be
represented after some transformation of Jy,4; in the form (0, 15(,—r)41) with 0" €
SO(q., R)ess by lemma 5.2 with a unique r < n and some symmetric ¢, € GLa,.(R).
One should think of (0, 15(,—r)4+1) as a block-matrix

Bu- 0 Be\ g B,
0 12(n—r)+1 0 with b= B B
Bgl 0 BQ2 21 22

Since the class of A(g,) in R*/(R*)? is the inverse of the class of A(Jay4 1| ker(b—1)),
the transformation class of ¢, is unique by lemma 2.4. Up to this the SO(¢,, R)-
conjugacy-class of b’ is unique. The bijectivity of the Cayley-transform map and
property 5.1(c) then imply that there is a p’ € Alts,.(R), which is unique up to
transformations with elements of SO(¢’, R), such that b = C(p'). Now we consider
the unimodular bilinear form /' = p’ 4+ ¢’ on R?", which is unique up to transfor-
mations with elements of GLs,(R), and some unimodular skew symmetric form p_
on R*™=") The form p_ @ I’ on R?" is then unimodular and R-O-semisimple i.e.
corresponds to a R-O-semisimple transformation class h. For every R-semisimple
a € R* we get N(h,a) = b. Since the transformation class of i’ is unique by the
above considerations and by lemma 2.3 we conclude that the fibers of N/ correspond
to the different choices for the R-semisimple element a € R*.

(b) In the case that R = F is an algebraically closed field the claim can be obtained
by an explicit calculation with diagonal and antidiagonal elements, where we finally
use example 1.14.

In the case that R is arbitrary we consider the commutative diagram with exact
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rows and columns, which follows from the snake lemma:

1 —— Spiny,,;(R) =——= Spin,,,;(R) —— 1

X —— GSpiny,.;(R) —% SOg,11(R) —— 1

1 — R

Q Spinnorm

2

1 —— {£1} — R* 7 R* — RY/(R*)? —— 1

1 1 1

It follows from this diagram and lemma 5.4 that a matrix 7 in the class N(h)
has a preimage 1 € GSpin,, ;(R) such that u(n) = det(h) - a* and that the set
{z € GSpiny,.1(F)|pre(z) = no, u(x) = det(h) - a*} just consists of +n. On the
other hand by example 1.14 an element 1 € GSpiny,,;(F) matching with (h,a)
satisfies pu(n') = det(h) - a®. From the validity of the proposition over F' now follows
that either n or —n matches with (h,a). This element has all desired properties. [

Corollary 5.6. For each semisimple n € GSpiny, ((F) there exists an F-O-
semisimple (h - J71,a)0 € (GLy,(F) x F*) x (©) matching with n.

Proof: By 5.5(a) for R = F there exists (h,a;) € GLa,(F) x F* with pr.a(n) € N(h)
and by (b) there exists 7; € GSpin,, ;(F) matching with (h - J~' a;)© such that
Praa(m) = praqa(n). It follows n =1, - b for some b € F'* ~ Center(GSpin,,, ,(F)).
Then (h-J~! a; - b)© matches with . O

Lemma 5.7. For G = GLa, x G, let v1,72 € G(OF),gr € G(F) be such that
%90 = gr - 110 - gz' with © as in example 1.9. Then there exists gr € G(OF) with
%20 = gr 1O - g5

Proof: Write v; = (h; - J5,!,a;), gr = (hp,@). Then the assumption means: hy =
hp - hy - thp and ag = @ - a; - det(hp)™' - @' which implies det(hr) € OF. By
lemma 2.11(a) there exists hp € GLg,(OF) with hy = hg - hy - *hg. This implies
det(hp)? = det(hp)?. 1If det(hg) = —det(hr) then hy' - hp € O(hy)(F) where
O(hy) = {h € GLa, | *h-h1-h = h1} = O(q4.1) X (Sp(p—1 ® po1) N O(g—1 @ go1)) has
determinant —1. This implies M, ; # 0 so that we get an element h, € O(hy)(OF)
of determinant —1. Replacing hr by hg - he we can now assume det(hg) = det(hp).
With gr = (hg, 1) we now have 1,0 = gr - 110 - g5'. O

Lemma 5.8. Let (h,a) = (sJ,a) € GLy,(OF) x O be Op-O-semisimple and
b = (Lagn—r)+1,b4) € SO241(Op) a representing element of N'(h). With p.,q.,p—
as in 5.3 assume that we have matching topologically unipotent elements u_ &

SPyn—r (F) = Sp(p-) and v_ € SOsp—ry1(F) = (ker(b — 1)(F) N SO 41 (F))
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and an additional topologically unipotent element u, € SO(q.)(F) N Sp(ps)(F) =~
Cent(bs, SO(q.)(F)).

Then the element vO = (5,a)0-(u_, uy) = (u_, uy)-(s,a)O € (GLay(F) X F*)x (O
matches with some element n € GSpiny,, ., (F), which projects to §:= (vi,u?) - b=
b (v2,u?) € SOg1(F).

Proof: It is easy to prove the existence of n € GSpin,, ,(F) with the desired
properties by calculations with diagonal elements as in the proof of lemma 4.3(c).

To get n as an element of GSpin,,,;(F) we observe that the determinant of v.J;,'
equals the spinor norm of 3 as an element of F*/(F*)?: This is already clear by
5.4 for the residually semisimple parts, but both topologically unipotent parts lead
to the neutral element in F*/(F*)?, since 2 # p by assumption. Now one argues as
in the proof of 5.5(b) to get n as an F-rational element. O

Theorem 5.9. (BCy) is true.

Proof: We observe that every pair of BC-matching (topologically unipotent) ele-
ments 7 € SO5(F) and 7, € Sp,(F') can be obtained from a pair of (topologically
unipotent) elements 7 € GSp,(F) ~ GSping(F) and n© = On € (éﬂ; x GLy)(F)
such that 4 = preq(y) and n = (m1,a) € (GLy x GL1)®(F) ~ (Sp, x GL;)(F) and
such that 2 matches with 7© in the sense of 1.11. This follows immediately from
the definition of BC-matching 1.12 and example 1.14.

If we apply lemma 3.8 in the case G = GSpin; ~ GSp,, T' = G,,,, H = SO5 and
lemma 3.6 we get

024(1,GSp,) = 02(1,505)

Since we have O;(1,Sp, x GL;) = O;' (1, Sp,) by lemma 3.8 the statement of (BCy)
is equivalent to the identity

0:1(1,GSp,) = O:(1,Sp, x GLy)

for matching topologically unipotent v € GSp,(F) and 70 = O € (GLy x GL )(F).
In the case that 7 is strongly ©-regular this has been proved in [F12, ch. II]. The
general case follows by the germ expansion principle as in [Hal2], [Rog]. O

Corollary 5.10 (Fundamental lemma for Sp, < Ig(\}/Lg,) If v© € Féjzg,(F) and
h € Spy(F) are matching semisimple elements then we have

So(1, PGLs) = O}/(1, Sp,).
Proof: This follows from theorem 5.9, (BC;) (compare 3.3) and theorem 4.7. O

Theorem 5.11. Let G = GLy, X G,,. If v© € G(F) and n € GSpiny, ,(F) are
matching semisimple elements and if conjecture (BC,,) is true for all m < n then
we have

(i) 0:6(1,G) = O:/(1, GSpiny,, ).
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Proof: Let h = prya(n) € SOg,41(F). In view of lemma 3.8 we have to prove
(ii) 0%(1,G) = O05/(1,802,41).

The proof is now similar to the proof of Theorem 4.7, so that we leave the details
to the reader:

In step Step 1 one has to prove that the nonvanishing of one side of (i) im-
plies the nonvanishing of the other side and that we can reduce to the situation
where v € G(Or), h € SOs,11(OF) and the topological Jordan decompositions
are of the form v© = (u_,u,) - s© and h = (v*,u?) - b where the residually
semisimple s© matches with the residually semisimple part ny of 7, such that b =
Praa(ns), with BC-matching u_ € Sp2(n,r)((9p) and v_ € SOz(m—r)11(OF), and with
u, € Cent (b,,50(q.,Op)). Here we write b = (lam—r)+1,0+) € SOg3—r)41(OF) X
SO(Gs, OF)ess, where g, denotes the restriction of J, 1 to the orthogonal comple-
ment of ker(b— 1) ~ QX" byt can be identified with the form ¢, on the module
M, attached to h = s - Jy, in 5.3.

Step 2: As in the proof of theorem 4.7 we get from lemma 2.10 the fact that we
obtain all relevant conjugacy classes in the stable conjugacy class of h if we let
v” vary through a set of representatives of the stable conjugacy class of v_ in
SOs(n—r)+1(F) and w, through a set of representatives of the stable conjugacy class
of u, in Cent(b,,S0(g.)) and then consider all A’ =b- ((v/,)?, (v.)?). In view of the

identity
C@Tlt(b, SOQn+1) ~ SO2(n—r)+1 X Cent(b*, SO(q*)) X {:I:l}

we can compute the orbital integral using the Kazhdan-lemma 3.5, lemma 3.7 and
lemma 3.6 for N = 2:

(il)) 03(1,802011) = > Ou (1,8050r)11) - Y Ou (L, Cent(b,,S0(g.))).

vl ~ug w, ~Uy

Step 3: We can repeat this argument in the ©-twisted situation, since by lemma
5.7 the class of the residually semisimple part (s,a)® of v© is the only G(F)-
conjugacy class inside the stable class of (s,a)©, which meets G(Op) and since the
Kazhdan-Lemma 3.5 holds for G by the same lemma. We remark that G&®© ~
SPa(n_r X Cent (b, SO(q.)) X Gy, by the definition of © and lemma 2.9(e), so G*®
is connected and we can use lemma 3.8 to get rid of the G,, factors in the following
orbital integrals. If we denote by u’ a set of representatives for the Spy,_,)(F)-
conjugacy classes in the stable class of u_ € Spy,_,)(Or) we get

(V) 0%(1G) = 3 0w (LSpyp) 3 Oull,Cent(b.,SO(.).

Step 4: Since v_ and u_ are BC-matching, the theorem follows from (BC,,_,), (iii)
and (iv).
O
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6 Comparison between SOy, ,» and Sp,,

Let R be as in 2.2.
Lemma 6.1. Let N be a free R-module.

(a) If p is a unimodular symplectic form on N and if 5 € Sp(p, R) is R-semisimple
then there exists a [-invariant orthogonal (with respect to p) direct sum de-
composition N = N, @& N_ & N, such that (3 acts as identity on N, as —id
on N_ and 3. = B|N. € Sp(p.) satisfies 3. — 3.1 € GL(N,), where p, is the
restriction of p to N,.

(b) If q is a unimodular symmetric bilinear form on N and b € O(q, R) is R-
semisimple then there exists a b-invariant orthogonal (with respect to q) direct
sum decomposition N = Ny & N_ & N, such that b acts as identity on Ny, as
—id on N_ and b, = b|N, € O(q.) satisfies b, —b;' € GL(N,), where q. is the
restriction of q to N,.

Proof: The proof of lemma 2.8 can be adapted with obvious modifications: We
have b —b~! = b1 - (b —1) - (b + 1), so that b — b~' € GL(N,) is equivalent to
b—1,b+1 € GL(N,). O

Lemma 6.2. Let b € GL,(R) satisfy b—b~' € GL,(R). Then the following holds:
(a) If ¢ € GL,(R) is symmetric and b € O(q, R) then the matrizrp =q - (b—b"")

is unimodular skew-symmetric and we have b € Sp(p, R).

(b) If p € GL,(R) is skew-symmetric and b € Sp(p, R) then the matriz ¢ =
p- (b—0b"Y)"1 is unimodular symmetric and we have b € SO(q, R).

(¢) Under the conditions of (a) and (b) we have:
Cent(b, O(q)) = Cent(b, Sp(p)) = Cent(b, SO(q)).

(d) The above statements and formulas are invariant under the substitutions b —
9~'bg.q = 'gqg,p — ‘gpg for g € GLy(R).

The elementary proof is left to the reader as an exercise. Il

(6.3) The explicit norm map N. If s € Oy, o with det(s) = —1 denotes a
reflection, we can identify the semidirect product SOg, 2 X (©) where © = int(s)
with the orthogonal group Og,, 2.

Let Ogpt2(R)gse/conj be the set of SO, 9(R)-conjugacy classes of R-semisimple
(=R-O-semisimple) elements of h € Osg,yo(R) with det(h) = —1. Recall that
Spon(R)Rrss/conj is the set of conjugacy classes of R-semisimple elements in Spy, (R).
We define a norm map

N 027‘&+2(R)1_%58/00nj - Sp?n(R)RSS/Conj
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as follows: If b € Og,2(R) represents a class of the left hand side, we decompose
N = R*™? = N, @ N_® N, as in lemma 6.1(b). Let by = idyn,,b_ = —idy_
and b, = b|N.. Let ¢, be the restriction of the form Jy, s to N,. We may think
of ¢, as a symmetric matrix after introducing a basis of N,. Since b, € Sp(p,) for
Pe = G - (b — b7 1) by lemma 6.2(a) we have det(b,) = 1. Therefore —1 = det(b) =
det(by) - det(b_) - det(b,) = 1- (—=1)r**N- .1 ie. rank(N_) is odd = 1+ 2r_. Since
rank(N,) is even by lemma 6.2 we have rank(N,) = 1+ 2r, for some r; € Ny.
Now we equip the R-module M = M, & M_ & N, where M, ~ R*+ M_ ~ R?-
with the alternating form p = Jy., @ Jy,_ @ p, and the linear automorphism § =
idy, X —idy X by € Sp(p). Identifying the symplectic space (M, p) ~ (R?", Jay,)
we can think of § as an element of Sp,, (R). The conjugacy class of 5 in Sp,, (R)
does not depend on the choices we made (apply lemma 6.2(d) ) and is the desired
N (b). Tt is clear that N/ (b) is R-semisimple.

Proposition 6.4. Let R be as in 2.2.

(a) The map N : Ogpia(R) pys/conj — Spoy,(R) gss/conyj is well defined. Eachb
Oan2(R) pes/cong matches with N'(b) in the sense of ©-endoscopy (compare
examples 1.10, 1.15).

(b) The map N is surjective, if R = Op. Its fibers are of order 2 = #(R* /(R*)?)
and describe the two different pairs (q4,q-) of classes of unimodular quadratic

forms on (M, M_) such that A(qy) - A(g-) = det(q.)™" mod (R*)2.

Proof: (a)That N is well defined is already clear. By the definition of matching we
can work over R = F, so that we may assume that v = b-s~! € SOy,,2(R) has
diagonal form v = diag(ty,. .., tps1, i1, t1 "), where s is the reflection defined
in 1.10. With the standard basis (e;)1<ij<an+2 of R*"*? we can compute:

My = (e eomqs—i | ti=1,1<i<n) ® (tug1 - €ng1 + €nga)
M_ = (e,emisi|ti=—1,1<i<n)® (tps1- €nt1 — Eny2)
M, = <€7La €on+3—i ’ 2 7£ il? 1<:i< n)

The corresponding description of N = N, & N_ & N, can be arranged such that:

N:t = <6;76,2n+3_i | tz - Il:l, 1 S Z S TL>
N, - <6;L7€/2n+37i | t; 7é Zl:l, 1< < ’n>

where € = (=1)"- (t; —t; ') e; if t; # £1 and 1 < i < n and €} = ¢; else. With
respect to this new basis of M, the symplectic form given by p. = q. - (by — b, 1)
has standard form Jp,, so that the symplectic form p on R?" can be assumed to
be of standard form .J,, with respect to the basis e},... e/, e 5,... €5, 5. The
symplectic transformation § = idy, X (—idy_) % b, in N () has the diagonal form
diag(ty, ... t,, 1, ... ;") with respect to this basis. The claim now follows from
example 1.15.
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(b) Let 3 € Spy,(R)rss- We decompose N = R?*" = N, @ N_ @ N, as in lemma
6.1(a). Since this decomposition is Jy,-orthogonal the restrictions p,,p_, p. of the
symplectic form Jy, to Ny, N_ and N, are unimodular, so these spaces have even
rank: N, ~ R* N_ ~ R?>- N, ~ R*». If we view p, as skew symmetric matrix
and [, € Sp(ps) C SLy, we can form the symmetric matrix (bilinear form) ¢, =
pe (B — 3717 and get B, € SO(q.). For ex € R*/(R*)? we consider the symmetric
bilinear forms ¢ = €;-Ji49,, on My = R™?"+ and ¢ = e_-Jy 4o, on M_ = R'*?~.
By lemma 2.4 there are two different choices of pairs (e, e_) such that the quadratic
space (M,q) = (My,qy) ® (M_,q_) & (N, q.) is isomorphic to the standard space
(R**2 J5 5). For these two choices the element b = idy, x (—idy ) X 3. €
O(g, R)™ can be viewed as an element of Oy, 42(R)5,,, which maps to 5 under N. It
is clear from the constructions that the two classes just obtained are all SOq,,2(R)-
conjugacy classes in Ogy,12(R) g, mapping to 3 under N.

m

Lemma 6.5. Let v € Og,12(Op)~ be R-O-semisimple.

(a) If vo = 9;1 Y1+ gr € Oopio(Op)~ for gr € SOy io(F) there exists gr €
502n+2(OF) ’(Ulth Yo = glgl Y1 9R-

(b) There is a unique SOsyi2(OF)-conjugacy class {7;} in SO 2(OF) different
from {1} such that for every gr € SOgnio(F) with 75 = gz’ -7 - gr €
Ooni2(Op)~ there either exists gr € SOs2,12(Op) with o = g]_%1 Y1+ gR or
9r € SOsn12(OF) with 72 = (95) ™" 71 - g&

Proof: (a) Let M = O3 = M, ® M_; ® M,, for i = 1,2 be the orthogonal
decompositions with respect to v; as in lemma 6.1(b) and let ¢4 ;, ¢.; denote the
restrictions of the standard form .J3, . , to these subspaces. Since M. ; are eigenspaces
of 7; the relation v := gz' - 1 - gp implies gp(Myo ®o, F) = My ®o, F.
The relation gr € SOg,,2(F) implies the corresponding result for the orthogonal
complements and implies that we have isomorphisms of quadratic spaces:

(Mys®o0, Fiqr2) — (Mi1®o, F,qe1) and
9Fx - (M*’Q ®OF F, q*72) - (M*,l ®(’)F Fa q*,l) :

Since the quadratic spaces are defined over O and become isomorphic over F' and
since the forms are unimodular, the spaces are isomorphic over O by lemma 2.4,
i.e. there exists gi € SOg,42(OF) inducing isomorphisms

(Mi,27 %,2) = (Mi,la %,1) and 9337* : (M*,z, q*,z) - (M*,b Q*,l) .
If 7., denotes the restriction of 7; to M, ; we get 7,2 = 9;,1 "Y1 grw and Vi g 1=

GreVe2 (9r) " € SO(gu1, Or). Wehave grs := gp(9r.) " € SO(¢s1, F). Now it
follows from . 3 = g;é)-%?l -gr3 and lemma 2.10 that there exists g, € SO(M, 1, q«1)
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satisfying g. - 7s3 - g5 = V«1. Then gg := (idar, , X idp_; X gi) - 9r € SO2n42(OF)
satisfies gr - 2 - gr' = M1

(b) Let us assume that gr € SOgn+2(F) satisfies vy 1= g;l Y1 - gF € Ogy12(0Op) ™.
We only know that the quadratic spaces become isomorphic over £, but we have
the additional discriminant conditions A(q4 1) - A(g—1) - A(ge1) = Ag42) - Ag-2) -
A(ges) and A(ge1) = A(pen) - det(en — 751) = 1 det(gra(vep — Yi2)gps) =
A(p.2)-det(1:2—713) = Alge2) in OF/(OF)?, where we use the fact that the p.; :=
Qe (Ve = Vs 1) are unimodular skew symmetric by lemma 6.2 and thus have square
determinants. The isomorphy-type of the quadratic spaces (M 1,q+1), (M1, qs1)
being fixed this means that there are two choices for the equivalence class of g4 o
but the isomorphy-type of the other quadratic spaces (M_5,q_2) and (M, 2, g.2)
are then uniquely determined. To construct 7] we change the quadratic forms g, ;
on My ; and ¢_; on M_; to the other isomorphy-typ but make no change for M, 1,
consider an isomorphism of quadratic spaces ¢ : R*""? = M, ;& M_; @ M.,
with respect to these modified forms on M, ;, M, ; and the standard form J;,,, on
R**2 and put finally +; = 7! o~y ot. The statement of (b) now follows as in part
(a). O

Lemma 6.6. In the notations of 6.3 let b € O, 12(OFp)~ be residually semisimple
and f = 1oy, X (—1s_) X b, € Sp,,(OF) a representing element of N (b) with
b, — b, € GLyy(OF).

Assume we have BC-matching topologically unipotent elements uy € SOop, 41(F)
and vy € Spy, (F) resp. u_ € SOy_y1(F) and v € Spy. (F) and an additional
topologically unipotent element u, € Cent(by, SO(qs, F')) ~ Cent (b, Sp(ps«, F)). We
form the topologically unipotent elements u = uy X u_ X u, € Cent(b, SOqpia(F))
and v = vy X v_ X u, € Cent(8, Spy,(F)).

Then the elements g := bu = ub € Oq, i o(F)™ and v := Pv = v € Spy,(F) match.

Proof: As in the proof of lemma 4.6 we work in the case F' = F and assume that
g resp. ~ lie in the diagonal tori. The same holds for the residually semisimple
parts b resp. 3 and the topologically unipotent parts v and v. As the matching of b
and [ is already proved in 6.4 we only have to examine the topologically unipotent
elements. We can arrange the diagonal matrices ux € SO(qy, F') such that their
middle entries 1 correspond to the eigenvectors t,.1 - €,11 £ €,10 € M, which
get lost by the construction of Ny. Then the claim follows immediately from the
definition of BC-matching 1.12, example 1.15 and the constructions in the proof of
proposition 6.4. O]

Remark 6.7. The surjectivity statement of Proposition 6.4(b) is not true if R is a
field, for example a p-adic field F: Let A € F* denote a non square and

A+ A 2.\
a; — A%—i—A’ bz = m fOI' some )\Z GF*, Z:]_,2
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If we consider the matrix

aq b1
. (05} bQ
5 - bQA ay S Sp4(F)
blA ay
then we have N, = N and 3, = 3 for N = F'* and can compute
¢ = pa-(Be—p YT = Jy-antidiag(2by, 20y, 2Aby, 2Ab;) !
) 1 -1 1 —1 —1 ) bi b
= d — e T = -d -AA— ——1].
g (261’ 2by" 20by’ 2Ab1> onD, Y ( S by )

Thus the quadratic form ¢, on N is anisotropic if b; - b,' is not a norm of the
extension Fv/A/F. In this case (N,q,) cannot be obtained as direct summand of
the six dimensional quadratic split space (F°,J}). The considerations of 6.3 and
6.4(b) then show that the conjugacy class of 3 is not in the image of N.

The following theorem is again the fundamental lemma for a stable endoscopic lift
modulo the BC-conjecture. But the non surjectivity of A in the case of local fields
forces us to include the vanishing statement for orbital integrals of elements, that
do not match.

Theorem 6.8. Assume that conjecture (BC,y,) is true for all m < n.

(a) Ifg € SNOQMQ(F) = Ogpi2(F) with det(g) = —1 andy € Sp,, (F') are matching
semisimple elements then we have

(i) 031(1,805042) = OX(1,5py,).

(b) If the semisimple v € Sp,,(F) matches with no element of S’EQHQ(F), then
we have O3 (1, Spy,) = 0.

Proof: Since the proof of (a) is similar to the proofs of theorems 4.7 and 5.11 we will
omit the details. We remark that (b) is an immediate corollary of the considerations
in Step 1: If the right hand side of (i) does not vanish one can construct an element

g e SAégn_A'_Q(F) matching with ~ using proposition 6.4 and lemma 6.6.

We just remark that by lemma 6.5(b) we have to deal with two representatives of
residually semisimple elements s and s’ in step 3 when we compute O;t(l, Osgpi2).

But observe that the centralizers SO3, , and SO;. 4o can be identified, since the
two equivalence classes of symmetric unimodular forms on a free Op-module of
odd rank have representatives which are scalar multiples of each other. Therefore
we can use the same collections of topologically unipotent elements for s as for s'.
The appearance of s’ thus introduces just an additional factor 2 in the computation.
But since the centralizers SO3,,  , and SO3, 4o have two connected components, there
appears an additional factor % when we apply the Kazhdan-lemma 3.5, which cancels
the factor 2.

O
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