Übungen "Geometrie von Modulkurven" SS 2008

Blatt 9 Abgabe bis Donnerstag 12.06.2008 11:15

Aufgabe 25) Für einen algebraisch abgeschlossenen Körper k betrachten wir die folgenden Untergruppen der multiplikativen Gruppe des Funktionenkörpers $K = K(\mathbb{P}^1_k)$ bzw. der Divisorengruppe $Div^0(\mathbb{P}^1_k)$

$$U = \{ f \in K(\mathbb{P}^1_k)^* \mid v_0(f) = v_\infty(f) = 0, f(0) = f(\infty) \}$$

$$\widetilde{Div}^{0} = \left\{ \sum_{P \in \mathbb{P}^{1}(k)} n_{P}P \in Div^{0}(\mathbb{P}^{1}_{k}) \middle| n_{0} = n_{\infty} = 0 \right\}$$

Zeige, dass die Quotientengruppe $\widetilde{Pic}^0 = \widetilde{Div}^0/\{div(f)|f\in U\}$ zur multiplikativen Gruppe k^* isomorph ist.

(3 Punkte)

Aufgabe 26) (a) Sei k ein Körper der Charakteristik $\neq 3$. Zeige: für $\mu^3 \neq 1$ ist $E = Proj(k[X, Y, Z]/(X^3 + Y^3 + Z^3 - 3\mu XYZ)$ eine reguläre Kurve.

(b) k enthalte die Menge aller dritten Einheitswurzeln $M = \{1, \zeta, \zeta^2\}$. Im Fall $\mu \in M$ zerlege man E jeweils in irreduzible Komponenten.

(4 Punkte)

Aufgabe 27) In den Bezeichnungen von Aufgabe 21) zeige man:

Es gilt genau dann $\sigma(P,P)=P$ (solche P heißen Wendepunkte), wenn $3\cdot P=\sigma(O,O)$ gilt. (Mit $3\cdot P$ ist natürlich $\mu(P,\mu(P,P))$ gemeint.)

(3 Punkte)