Übungen "Geometrie von Modulkurven" SS 2008

Blatt 4 Abgabe bis Donnerstag 08.05.2008 11:15

Aufgabe 10) Berechne das Faserprodukt $X_1 \times_X X_2$ für $X_1 = Spec(\mathbb{Z}/12\mathbb{Z})$, $X = Spec(\mathbb{Z})$ und $X_2 = Spec(\mathbb{Z}/21\mathbb{Z})$.

(2 Punkte)

Aufgabe 11) Leite aus den Definitionen von Lokalisierung und Tensorprodukt her, dass für Elemente f, g eines Ringes R die Ringe

$$R_{f \cdot q}$$
 und $R_f \otimes_R R_q$

isomorph sind.

(3 Punkte)

Aufgabe 12) Zeige: für die Ringe $R_1 = \mathbb{Z}[X_1, Y_1]$ und $R_2 = \mathbb{Z}[X_2, Y_2]$ wird durch

$$\phi: X_1 \mapsto X_2 Y_2, \quad Y_1 \mapsto \frac{1}{X_2}$$

ein Isomorphismus zwischen den Lokalisierungen $(R_1)_{Y_1} \sim (R_2)_{X_2}$ gegeben.

Das Schema S entstehe durch Verklebung von $Spec(R_1)$ mit $Spec(R_2)$ entlang der offenen Teilmengen $D(Y_1)$ und $D(X_2)$. Zeige, dass es genau einen Morphismus von Schemata $\pi: S \to Spec(R)$ mit $R = \mathbb{Z}[X,Y]$ gibt, dessen Einschränkung auf $Spec(R_1)$ von dem Ringhomomorphismus

$$\psi: R \to R_1, \quad \text{mit} \quad X \mapsto X_1, \quad Y \mapsto X_1 Y_1$$

induziert wird. Versuche π geometrisch zu beschreiben.

(4 Punkte)