Mathematisches Institut der Universität Heidelberg Prof. Dr. R. Weissauer/Dr. U. Weselmann http://www.mathi.uni-heidelberg.de/~weselman.Uebungen.html

Übungen zur Analysis II SS 2006

Lösungshinweise Wiederholungsblatt

Es werden im folgenden nur Hinweise für einige Aufgaben gegeben, die nicht unproblematisch waren:

Aufgabe 49) Lösungsskizze Die linke Seite ist $\log(1 - (a + b - ab)) = \log((1-a)(1-b))$, die rechte $\log(1-a) + \log(1-b)$. Die Identität folgt also aus der Funktionalgleichung des Logarithmus.

Aufgabe 50) Die Menge $M = \{(x,y)|g(x,y)=0\}$ mit $g(x,y)=2x^2+y^2-3$ erfüllt die Voraussetzungen des Satzes über die Lagrangeschen Multiplikatoren in jedem Punkt, da die beiden partiellen Ableitungen $g_x = 4x$ und $g_y = 2y$ in keinem Punkt von M simultan verschwinden.

Mögliche lokale Extremstellen gibt es deshalb nur in Punkten (x, y), für die es $\lambda \in \mathbb{R}$ gibt mit

$$f_x = 2x = \lambda \cdot 4x$$
 $f_y = -1 = \lambda \cdot 2y$.

Die erste Gleichung hat die Lösungen $\lambda = \frac{1}{2}$ und x = 0. Mit Hilfe der zweiten Gleichung und der Definitionsgleichung g(x,y) = 0 findet man dann vier Punkte, auf denen mögliche Extremwerte liegen können:

$$P_1 = (1, -1)$$
 $f(P_1) = 2$
 $P_2 = (-1, -1)$ $f(P_2) = 2$
 $P_3 = (0, \sqrt{3})$ $f(P_3) = -\sqrt{3}$
 $P_4 = (0, -\sqrt{3})$ $f(P_3) = \sqrt{3}$

Da f als stetige Funktion auf der kompakten (abgeschlossenen und beschränkten) Menge M sein globales Maximum und sein globales Minimum annimmt, müssen P_1 und P_2 globale Maxima und P_3 ein globales Minimum sein.

Auf der kompakten Teilmenge $M' = \{(x,y) \in M | y \leq -1\}$ nimmt f aber auch ein globales Minimum an. Da in den Randpunkten P_1 und P_2 von

M' aber ein globales Maximum vorliegt, kann das globale Minimum nur in dem Bereich $M' - P_1 - P_2$ angenommen werden, wo der Satz über die Lagrangeschen Multiplikatoren angewandt werden kann.

Deshalb ist P_4 das globale Minimum für die Menge M' und gleichzeitig ein lokales Minimum für die Menge M.

Alternativlösung: Die Funktion $f(x,y) = x^2 - y$ kann auf der Menge $M = \{(x,y)|x^2 = \frac{3-y^2}{2}\}$ auch so beschrieben werden:

$$f(x,y) = \frac{3-y^2}{2} - y = \frac{4-(y-1)^2}{2} = 2 - \frac{(y-1)^2}{2}.$$

Da y die Werte im Intervall $[-\sqrt{3},\sqrt{3}]$ durchläuft, wenn (x,y) die Menge M durchläuft, kann man aus dieser Parabelgleichung leicht die lokalen und globalen Maxima und Minima ablesen.

Aufgabe 56) Antwort: NEIN. Ist z.B. M eine nichtmessbare Teilmenge einer messbaren Menge X, so ist die charakteristische Funktion χ_M per Definition nicht integrierbar. Da die integrierbaren Funktionen einen Vektorraum bilden, folgt die Nicht-Integrierbarkeit der Funktion $f = 2\chi_M - 1$. Diese nimmt aber auf M den Wert +1, auf X - M den Wert -1 an, so dass |f| = 1 eine integrierbare Funktion ist.

Aufgabe 57) JA für offene, NEIN für kompakte Mengen

Aufgabe 58) JA.

Im Sprachgebrauch des Skriptes sollte die Aussage allerdings ohne "total" formuliert werden. Sie lautet dann:

Jede differenzierbare Abbildung $f: \mathbb{R}^n \to \mathbb{R}$ ist partiell differenzierbar.

Aufgabe 59) NEIN: man z.B. für jedes kompakte Intervall Überdeckungen finden, die aus unendlich vielen offenen Mengen bestehen.

Aufgabe 60) JA