Mathematisches Institut der Universität Heidelberg Prof. Dr. R. Weissauer/Dr. U. Weselmann http://www.mathi.uni-heidelberg.de/~weselman.Uebungen.html

Übungen zur Analysis II SS 2006

Lösungshinweise Blatt 4

Aufgabe 13) Lösungsskizze a) Für x = 0 gilt $f_n(0) = 0$ für alle $n \ge 1$, so dass die Behauptung $\lim_{n\to\infty} f_n(0) = 0$ trivial ist.

Für x > 0 gilt $y := e^{-x} < 1$ und $f_n(x) = x \cdot n^2 \cdot y^n$. Es reicht zu zeigen: $\lim_{n \to \infty} n^2 \cdot y^n = 0$ für $0 \le y < 1$. Mit $b_n = n^2 \cdot y^n$ gilt:

$$\frac{b_{n+1}}{b_n} = \left(1 + \frac{2}{n} + \frac{1}{n^2}\right) \cdot y.$$

Daraus folgt $\lim_{n\to\infty}\frac{b_{n+1}}{b_n}=y<1$, so dass $|b_{n+1}|\leq |b_n|\cdot q$ für alle hinreichend großen $n\geq n_0$ gilt, sofern y< q<1 ist. Dann folgt aber wegen $|b_n|\leq |b_{n_0}|\cdot q^{n-n_0}$ für $n\geq n_0$ die Behauptung $\lim_{n\to\infty}b_n=0$ aus der Konvergenz der geometrischen Folge.

b) Es ist (partielle Integration):

$$a_n = \int_0^1 n^2 x e^{-nx} dx = -nx e^{-nx} \Big|_0^1 + \int_0^1 n e^{-nx} dx$$
$$= -n \cdot e^{-n} + (-e^{-nx}) \Big|_0^1 = -ne^{-n} - e^{-n} + 1 = 1 - (n+1)e^{-n}.$$

Ähnlich wie in Teil a) folgt: $\lim_{n\to\infty} ne^{-n} = 0 = \lim_{n\to\infty} e^{-n}$, so dass sich ingesamt $\lim_{n\to\infty} a_n = 1$ ergibt.

c) Die Funktion f_n ist differenzierbar mit

$$f'_n(x) = n^2 \cdot e^{-nx} - n^2 \cdot x \cdot ne^{-nx} = (\frac{1}{n} - x) \cdot n^3 \cdot e^{-nx}.$$

Wegen $n^3 > 0$, $e^{-nx} > 0$ folgt daraus: $f'_n(x) > 0$ für $0 \le x < \frac{1}{n}$ und $f'_n(x) < 0$ für $x > \frac{1}{n}$. Dann ist f_n im Intervall $[0, \frac{1}{n}]$ monoton steigend und im Intervall $[\frac{1}{n}, \infty)$ monoton fallend. Deshalb hat f_n sein Maximum bei $x = \frac{1}{n}$, d.h. es ist $||f_n|| = f_n(\frac{1}{n}) = n^2 \cdot \frac{1}{n} \cdot e^{-1} = n \cdot e^{-1}$. Daraus ergibt sich,

dass die Folge der Normen unbeschränkt wächst. Die Folge f_n konvergiert deshalb nicht gleichmäßig gegen die Nullfunktion.

Das ist übrigens schon klar nach a) und b): Wäre die Konvergenz gleichmäßig, so würde sich aus der Vertauschungsregel für Integration und Grenzwert von Funktionenfolgen der Widerspruch ergeben

$$1 = \lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 \left(\lim_{n \to \infty} f_n(x) \right) dx = \int_0^1 0 \ dx = 0.$$

Aufgabe 14) Lösungsskizze: Es ist:

$$Jf(x,y) = \begin{pmatrix} 3x^2 - 3y^2 & 6xy \\ -6xy & 3x^2 - 3y^2 \end{pmatrix}$$

Die Determinante der Jacobimatrix ist

$$\det Jf(X,y) = (3x^2 - 3y^2)^2 - (-6xy) \cdot 6xy$$
$$= 9x^4 - 18x^2y^2 + 9y^4 + 36x^2y^2 = 9(x^2 + y^2)^2.$$

Die Determinante ist = 0 für (x, y) = (0, 0) und > 0 für $(x, y) \neq (0, 0)$. Für alle Werte $P = (x, y) \neq (0, 0)$ gibt es nach dem Umkehrsatz eine Umgebung von P, die durch f bijektiv auf eine Umgebung von f(P) abgebildet wird. \square

Aufgabe 15) Lösung:

a) Wir benutzen das ϵ - δ -Kriterium, um die Stetigkeit von f in einem beliebigen Punkt $y \in Y$ zu zeigen:

Sei $\epsilon > 0$ vorgegeben. Nach Aufgabe 10)a) sind die offenen Kugeln $A = K_{\epsilon}(f(y))$ in X offen. Nach Voraussetzung ist dann $B = f^{-1}(A)$ in Y offen. Wegen $f(y) \in A$ gilt $y \in B$. Dann gibt es aber $\delta > 0$, so dass die offene Kugel $K_{\delta}(y)$ in B enthalten ist. Das bedeutet aber: Aus $d(\eta, y) < \delta$ folgt $\eta \in K_{\delta}(y) \subset B$ und daraus $f(\eta) \in A$, also $d(f(\eta), f(y)) < \epsilon$.

- b) Sei $x \in A = \bigcup_{i \in I} A_i$. Dann gibt es $i_0 \in I$ mit $x \in A_{i_0}$. Da A_{i_0} in X offen ist, gibt es $\epsilon > 0$ mit $K_{\epsilon}(x) \subset A_{i_0}$. Dann folgt aber $K_{\epsilon}(x) \subset A = \bigcup_{i \in I} A_i$. Also ist A offen.
- c) Es gebe eine offene Menge $B \subset X$, so dass $A = B \cap Y$ gilt. Sei $y \in A$. Dann ist auch $y \in B$, und da B in X offen ist, gibt es $\epsilon > 0$, so dass aus $\xi \in X$ und $d_X(y,\xi) < \epsilon$ folgt, dass $\xi \in B$ gilt. Für $\xi \in Y$ mit $d_X(y,\xi) < \epsilon$ gilt dann

aber $\xi \in B \cap Y = A$. D.h. die offene Kugel $K_{\epsilon,Y}(y) = \{ \eta \in Y | d_Y(\eta, y) < \epsilon \}$ in Y um y mit Radius ϵ ist in A enthalten. Damit ist A eine in Y offene Menge.

Sei nun A eine offene Teilmenge in Y. Für jeden Punkt $y \in A$ wählen wir ein $\epsilon_y > 0$, so dass $K_{\epsilon_y,Y}(y) \subset A$ gilt. Sei

$$B = \bigcup_{y \in A} K_{\epsilon_y, X}(y) \subset X.$$

Als Vereinigung von in X offenen Kugeln ist B eine in X offene Menge (Aufgaben 10)a) und 15)b)). Wegen $y \in K_{\epsilon_y,X}(y)$ für alle $y \in A$ gilt $A \subset B$. Also ist $A \subset B \cap Y$.

Wir zeigen jetzt $B \cap Y \subset A$: Sei $b \in B \cap Y$. Dann ist $b \in Y$ und nach Definition von B gibt es $y \in A$ mit $b \in K_{\epsilon_y,X}(y)$. Wegen $b \in Y$ gilt aber sogar $b \in K_{\epsilon_y,Y}(y)$, und diese Kugel ist nach Konstruktion von ϵ_y in A enthalten. Also folgt $b \in A$. Damit ist $B \cap Y \subset A$ gezeigt.

Aufgabe 16) Lösungsskizze: a) Sei $I = A_1 \cup A_2$ mit offenen Mengen $A_1 \neq \emptyset \neq A_2$ und $A_1 \cap A_2 = \emptyset$. Wir führen diese Annahme zu einem Widerspruch. Dabei benutzen wir die Charakterisierung offener Mengen durch die Eigenschaft, dass sie mit jedem Punkt x auch immer eine offene Kugel um x enthalten.

O.B.d.A sei $1 \in A_1$. Da $A_2 \subset I$ durch 1 nach oben beschränkt und nicht leer ist, existiert das Supremum $M = \sup(A_2)$.

(Bemerkung: Hier geht die Vollständigkeit der reellen Zahlen ein.)

Da A_1 offen ist und 1 enthält, enthält A_1 auch eine offene Kugel

$$K_{\epsilon}(1) = \{x \in I | |x - 1| < \epsilon\} = (1 - \epsilon, 1].$$

Wegen $A_1 \cap A_2 = \emptyset$ gilt dann $A_2 \cap (1 - \epsilon, 1] = \emptyset$, woraus $A_2 \subset [0, 1 - \epsilon]$ und damit $M \leq 1 - \epsilon < 1$ folgt.

Es gilt $M \in A_1$, denn ansonsten wäre $M \in A_2$. Da A_2 offen ist, würde dann aber auch $[M, M + \delta) \subset A_2$ gelten für geeignetes $\delta \leq 1 - M$. Dann wäre aber M keine obere Schranke von A_1 .

Weiterhin ist M > 0. Denn im Fall M = 0 würde A_2 kein Element > 0 enthalten. Da aber $M = 0 \in A_1$ und damit $0 \notin A_2$ gilt, wäre A_2 dann die leere Menge im Widerspruch zur Annahme.

Wegen $0 < M \in A_1$ enthält die offene Menge A_1 noch ein offenes Intervall der Form $(M - \delta', M + \delta'')$ für geeignete $\delta', \delta'' > 0$. Wegen $A_2 \cap (M - \delta', M] = \emptyset$ wäre dann aber auch $M - \delta'$ eine obere Schranke von A_2 , so dass M nicht das Supremum von A_2 sein kann. Damit ist die Annahme, dass I nicht zusammenhängend ist, endgültig zu einem Widerspruch geführt worden. \square

b) Wir nehmen an, dass V nicht zusammenhängend ist: $V = A_1 \cup A_2$ mit nichtleeren offenen Mengen A_1, A_2 und $A_1 \cap A_2 = \emptyset$. Sei etwa $x \in A_1$ und $y \in A_2$. Wir betrachten die stetige Abbildung

$$\phi: I \to V, \quad t \mapsto x + t \cdot (y - x).$$

Diese Abbildung ist affin linear und damit stetig (20.4.1 und 20.4.3). Deshalb sind die Urbildmengen $B_1 = \phi^{-1}(A_1)$ und $B_2 = \phi^{-1}(A_2)$ offene Teilmengen von I. Aus $V = A_1 \cup A_2$ folgt $I = B_1 \cup B_2$, und aus $A_1 \cap A_2 = \emptyset$ folgt $B_1 \cap B_2 = \emptyset$. Wegen $\phi(0) = x \in A_1$ und $\phi(1) = y \in A_2$ gilt $0 \in B_1$ und $1 \in B_2$, so dass beide Mengen nicht leer sind. Dann wäre aber das Intervall I nicht zusammenhängend im Widerspruch zu a).

c) Sei $X = A_1 \cup A_2$ mit offenen Mengen A_1 und A_2 sowie $A_1 \cap A_2 = \emptyset$. O.B.d.A. gelte $(0, -1) \in A_1$. Wir wollen zeigen, dass $X = A_1$ und $A_2 = \emptyset$ gilt: Zunächst betrachten wir die stetige Abbildung

$$\phi_1: I \to X, t \mapsto (0, -1 + 2t) \in X.$$

Dann ist (wie in b) $I = \phi_1^{-1}(A_1) \cup \phi_1^{-1}(A_2)$ eine Zerlegung in offene disjunkte Mengen. Da I zusammenhängend ist, folgt $I = \phi_1^{-1}(A_1)$ und damit $\phi_1(I) = \{(0,y)|y \in [-1,1]\} \subset A_1$.

Wir betrachten jetzt die Folge

$$P_n = \left(\frac{1}{\pi n}, \sin(\pi n)\right) = \left(\frac{1}{\pi n}, \sin(\pi n)\right) \in X,$$

welche gegen $(0,0) \in A_1$ konvergiert. Da A_1 offen ist, muss $P_n \in A_1$ für ein $n \in \mathbb{N}$ gelten, denn sonst wäre mit $P_n \notin A_1$ für alle n auch $(0,0) = \lim P_n \notin A_1$.

Ist nun $P = (x, \sin(\frac{1}{x})) \in X$ ein beliebiger Punkt in $X \setminus \phi_1(I)$, so betrachten wir die stetige Abbildung

$$\phi_2: I \to X, \quad t \mapsto \left((1-t) \cdot \frac{1}{\pi n} + t \cdot x, \sin\left(\frac{1}{(1-t) \cdot \frac{1}{\pi n} + t \cdot x}\right) \right).$$

Es gilt $\phi_2(0) = P_n$ und $\phi_2(1) = P$, und wie in b) folgern wir aus $P_n \in A_1$, dass $P \in A_1$ gilt. Damit ist dann aber $X = A_1$ gezeigt, so dass $A_2 = \emptyset$ folgt. Also ist X zusammenhängend.