Mathematisches Institut der Uni Heidelberg

Prof. Dr. R. Weissauer/ Dr. U. Weselmann

Übungen "Komplexe Mannigfaltigkeiten" WS 08/09

Blatt 1 Abgabe bis Freitag 24.10.2008 14:15

Aufgabe 1) Auf dem \mathbb{C}^n betrachten wir die Funktion

$$f(z_1,\ldots,z_n) = \log(1+z_1\overline{z_1}+\ldots z_n\overline{z_n}).$$

(a) Berechne die Differentialformen

$$\omega_1 = \partial f, \quad \omega_2 = \bar{\partial} f, \quad \omega_3 = \partial \bar{\partial} f.$$

Was sind $\partial \omega_3$ und $\bar{\partial} \omega_3$?

(b) Für $U = \{(z_i) \in \mathbb{C}^n | z_1 \neq 0\}$ sei $\phi: U \to U$ definiert durch

$$\phi(z_1,\ldots,z_n)=\left(\frac{1}{z_1},\frac{z_2}{z_1},\ldots\frac{z_n}{z_1}\right).$$

Berechne $\phi^*\omega_3$.

(5=3+2 Punkte)

Aufgabe 2) Sei $U \subset \mathbb{C}^n$ ein sternförmiges Gebiet. Zeige:

- (a) Jede differenzierbare Funktion $f: U \to \mathbb{C}$ mit $\bar{\partial}\partial f = 0$ ist in der Form f = g + h mit $\partial g = 0$ und $\bar{\partial}h = 0$ darstellbar. Die Darstellung ist bis auf eine additive Konstante eindeutig.
- (b) Jede differenzierbare Funktion $f:U\to\mathbb{R}$ mit $\bar\partial\partial f=0$ ist Realteil einer holomorphen Funktion.

(3=2+1 Punkte)