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1 Introduction

(1.1) The base rings. We denote by F a p-adic field with ring of integers OF ,
prime ideal p and uniformizing element $ = $F . Let val : F → Z ∪ {∞} be
the normalized (i.e. val($) = 1) valuation. The residue field of characteristic p is
denoted κ = κF = OF /p. By F̄ we denote an algebraic closure of F . In the following
we will assume that p 6= 2. Let G denote a connected reductive group scheme over
OF .

(1.2) It has been observed by M. Schröder in his thesis [Schr] that one can compute
orbital integrals using a decomposition G(F ) =

⋃
i∈I H(F )giG(OF ), where H ⊂ G is

some maximal reductive subgroup of G. In his case G = GSP4 and H = {(g1, g2) ∈
GL2 × GL2| det(g1) = det(g2)}. This method has been used in [W1] and [Fl] to
compute the orbital integrals for the unit element in the Hecke-algebra for GSP4

and for GL4 with an outer automorphism. Meanwhile Weissauer has obtained the
generalization of the decomposition to all unramified classical groups [W2] [W3].

(1.3) To get the decomposition one can look for a representation (ρ, V ) of G such
that H becomes the stabilizer of one vector e0 ∈ V . Then the map g 7→ ρ(g−1)x0

induces an isomorphism H(F )\G(F )/G(OF ) ' G(OF )\G(F )e0 and it remains to
determine the G(OF )-orbits inside the G(F )-orbit of e0.

(1.4) If B ⊂ G denotes a Borel and if we assume that G(OF ) is a hyperspe-
cial maximal compact, then it follows from the Iwasawa decomposition that each
G(OF )-orbit inside G(F )e0 meets B(F )e0. If we consider weight vectors in V , which
generate an OF -stable lattice L, we furthermore get elements v in each G(OF )-orbit,
such that the coefficient of the highest weight vector in the decomposition of v has
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2 2. G2 as simple algebraic group

minimal valuation among all coefficients. Then the action of OF -valued points in
the opposite Borel B− enables us to kill the coefficients of all weight vectors, which
differ from the highest weight vector by a negative root.

We carry out this program for the algebraic group G2 of type G2 and the two maximal
reductive subgroups H1 ' SL3, H2 ' SO4. It happens that we arrive in a subset of
G(F )e0, which lies in just one orbit of T (F̄ ), where T = B ∩B− is a maximal torus.
To be more precise, if TS ⊂ T denotes the stabilizer of this T -action, then we arrive
in one orbit of (T/TS)(F ). The exact sequence T (F ) → (T/TS)(F ) → H1(F, TS)
then shows, that we arrive in a finite set of T (F )-orbits (Propositions 3.3 and 5.9).

In the case of the group H2 ' SO4 this finite set can be described as the the set
of those pairs (α, β) ∈ F ∗/(F ∗)2 × F ∗/(F ∗)2, for which the Hilbert symbol (α, β)H

equals 1.

2 G2 as simple algebraic group

(2.1) In this section we denote by R an arbitrary integral domain, by F its field of
fractions.

Let V = V7 = R7 be the standard free R-module of rank 7 with standard basis
e3, e2, e1, e0, e−1, e−2, e−3. Let the dual basis of V ∗ be x3, x2, x1, x0, x−1, x−2, x−3.
(Sometimes we will take the xi be the coordinates of an element v ∈ V7: i.e. we
abbreviate xi for xi(v).)

If G2 denotes the simple split algebraic group of type G2 over R, then it is well
known [Asch], that G2 can be realized as the group of those automorphisms of V7

which simultaneously respect the symmetric bilinear form

Q = −x2
0 + x1x−1 + x2x−2 + x3x−3 ∈ Sym2(V ∗)

and the alternating trilinear form

f = x0 ∧ (x1 ∧ x−1 + x2 ∧ x−2 + x3 ∧ x−3) + x1 ∧ x2 ∧ x3 + x−1 ∧ x−2 ∧ x−3

∈ Λ3(V ∗)

(2.2) We let the group SL3 act on V via

σ(A)




x3

x2

x1

x0

x−1

x−2

x−3




=




A 0 0

0 1 0

0 0 Θ(A)







x3

x2

x1

x0

x−1

x−2

x−3



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where A ∈ SL3(R) and Θ(A) = W3 · tA−1 ·W3 with

W3 =




0 0 1
0 1 0
1 0 0


 .

(2.3) SL2 subgroups. From now on we use the ordering e−2, e3, e1, e0, e−1, e−3, e2

of our basis and introduce three actions α∨i of the group H = SL2 on V :

α∨1

((
a b
c d

))




x−2

x3

x1

x0

x−1

x−3

x2




=




a −b
−c d

a2 2ab b2

ac ad + bc bd
c2 2cd d2

a b
c d







x−2

x3

x1

x0

x−1

x−3

x2




(i)

α∨2 (B) = σ(Wτ )α
∨
1 (B′)σ(Wτ )

−1 α∨3 (B) = σ(Wτ )
−1α∨1 (B)σ(Wτ )(ii)

with Wτ =




0 0 1
1 0 0
0 1 0


 and B′ =

(
0 1
1 0

)
·B ·

(
0 1
1 0

)

It is well known [Asch] that:

G2 = 〈σ(SL3), α
∨
1 (SL2)〉.(iii)

In fact a straightforward computation shows that the forms f and Q are invariant
under the action of α∨1 (SL2) and under the σ-action of SL3. Thus G2 contains
α∨i (SL2) for all i = 1, 2, 3.

We furthermore introduce the following embeddings β∨i of SL2 in G2:

β∨1

(
a b
c d

)
= σ




a b
c d

1


 β∨2

(
a b
c d

)
= σ




a b
1

c d




β∨3

(
a b
c d

)
= σ




1
d c
b a


 .

For β∨2 we rewrite this in terms of 7×7-matrices with respect to the unusual ordering
of the basis:

β∨2

(
x y
z w

)
=




1
x y
z w

1
x −y
−z w

1




(iv)
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(2.4) The root system. The torus T = {t = (t−1
2 , t3, t1, 1, t

−1
1 , t−1

3 , t2) | t1t2t3 = 1},
which is the image of the diagonal torus in SL3, is a maximal split torus in G2.

As Borel subgroup P12 of G2 we can take all elements in G2 which act via upper
triangular matrices on V with respect to the ordered basis (e−2, e3, e1, e0, e−1, e−3, e2).

We remark that the maps

t 7→ γ∨
(

t 0
0 t−1

)
for γ ∈ {αi, βi|i = 1, 2, 3}

are just the positive coroots of G2 with respect to (P12, T ) and that the images of
the upper triangular unipotent matrices in SL2 under the above defined γ∨ are the
unipotent subgroups of G2 belonging to the positive roots γ. The simple roots are
α = α1, β = β2. The other roots satisfy α3 = β + α, α2 = β + 2α, β3 = β + 3α, β1 =
2β + 3α. We have α(t) = 1/t1 and β(t) = t1/t3.

(2.5) Parabolic and Levi subgroups. There exist two maximal parabolic sub-
groups including P12:

• P1 = β∨2 (SL2) · P12 is the stabilizer of the line R · e2,

• P2 = α∨1 (SL2) · P12 is the stabilizer of the plane 〈e2, e−3〉.
Similarly we introduce the Borel subgroup P−

12 of elements acting by lower triangular
matrices on the ordered basis of V and the parabolic subgroups P−

1 = β∨2 (SL2) ·P−
12

respectively P−
2 = α∨1 (SL2) · P−

12.

Thus P−
1 leaves invariant the line R · e−2 and therefore also the line spanned by the

alternating bilinear form f(., ., e−2) obtained by contracting f with e−2. This form
can be written as −x0 ∧ x2 − x−1 ∧ x−3. Its kernel is P−

1 -invariant and spanned by
e1, e3, e−2.

(2.6) Furthermore we consider the following maximal reductive subgroups,
which are not Levi subgroups of a parabolic:

• H1 = σ(SL3)

• H2 = β∨1 (SL2) · α∨1 (SL2) ' SL2 × SL2/{±12}, where {±12} is diagonally em-
bedded. We remark that 〈x3, x2, x−2, x−3〉 is isomorphic to the tensor product
of two twodimensional representations of the two SL2 factors, i.e. the actions
β∨1 (SL2) and α∨1 (SL2) commute.

Lemma 2.7. The subgroup H1 is the stabilizer of e0 ∈ V7.

Proof: This is essentially [RS, lemma 2].

Lemma 2.8. H2 is the stabilizer of s0 = x1x−1 − x2
0 ∈ Sym2(V ∗

7 ).
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Proof: The inclusion H2 ⊂ StabG2(s0) follows immediately from the definition of
α∨1 and β∨1 . Thus let g ∈ StabG2(s0)(F ). The space W4 = 〈e3, e2, e−2, e−3〉, being
the kernel of the quadratic form s0, is invariant under g, and so is the orthogonal
complement with respect to Q, namely the space W3 = 〈e1, e0, e−1〉. Thus we get
g ∈ O(W3, s0) × O(W4, Q − s0). Since the action of H2 on W4 exhausts the group
SO(W4, Q− s0) we can modify g by an element of H2(F ) such that the new g acts
either as identity on W4 or as the reflection which interchanges e2 and e−2 and fixes
e3, e−3. In the latter case we would get as summand of g.f a term of the form
(gx1) ∧ x−2 ∧ x3 + (gx−1) ∧ x2 ∧ x−3, but this cannot occur as summand in f . So g
acts as identity on W4. Now it follows immediately from g.f = f that g fixes x1, x−1

and x0, i.e. g = id7 ∈ H2(F ).

(2.9) Representations of G2. For m,n ∈ N0 we denote by χm,n : T → Gm the
character m · α2 + n · β1. We denote by Vm,n the irreducible representation with
highest weight χm,n. We list the multiplicities of weights in some low dimensional
representations:

ρ χ0,0 χ1,0 χ0,1 χ2,0 χ1,1 χ3,0 χ0,2 χ2,1 χ4,0 dim(ρ)
Sym2(V7) 4 2 1 1 28
Λ3(V7) 5 3 1 1 35
Sym2(V2,0) 24 18 12 11 5 3 2 1 1 378

(v)

By comparing these multiplicities of weights with [Hum, 22.4, table 2] for the irre-
ducibles we follow:

Sym2(V7) = V0,0 ⊕ V2,0,

Λ3(V7) = V0,0 ⊕ V7 ⊕ V2,0,

Sym2(V2,0) = V4,0 ⊕ V0,2 ⊕ V1,1 ⊕ 2 · V2,0 ⊕ V0,0.(vi)

3 Schröder decomposition for H1

(3.1) To carry out the program of the introduction for G = G2, H = H1 we take the
vector e0 ∈ V7, the 7-dimensional representation of G2, and we have to determine
the G2(OF )-orbits in V7 = F 7. There exist two invariants of an element x ∈ V7:
B(x) is a G2(F ) invariant, and since G2(OF ) stabilizes the lattice L = O7

F we have
the numerical invariant dep(x) := max{n ∈ Z|$−n ·x ∈ L} (especially dep(0) = ∞).
Since val(B(x)) ≥ 0 for x ∈ L we have 2 · dep(x) ≤ val(B(x)).

Conversely if we have a ∈ F and d ∈ Z ∪ {∞} such that 2d ≤ val(a), we can
form the element x = x(a, d) = (xi)3≥i≥−3 := (0, 0, $d, 0, a ·$−d, 0, 0) which satisfies
B(x) = a and dep(x) = d. In the case d = ∞, a = 0 we simply put x = 0.
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Lemma 3.2. With the above notations every x ∈ F 7 lies in the G2(OF )-orbit of
x(a, d) where a = B(x), d = dep(x).

Proof: Let x = (x3, x2, x1, x0, x−1, x−2, x−3) ∈ F 7. The case x = 0 being trivial we
can assume that d = dep(x) = min3≥i≥−3val(xi) ∈ Z. We will apply elements of
α∨i (SL2(OF )) or σ(SL3(OF )) ⊂ G2(OF ) to x until we have x = x(a, d):

If val(xi) > d for i 6= 0 we can apply α∨1 (A) for some unipotent upper triangular
matrix A ∈ SL2(OF ) to get val(x1) = d (observe 2 ∈ O∗

F ). If min3≥i≥1 val(xi) > d =
min−1≥i≥−3 val(xi) we can apply α∨1 (W2) ∈ G2(OF ) to achieve min3≥i≥1 val(xi) = d.
Then we can use a suitable σ(A) for A ∈ SL3(OF ) to get d = val(x1).

Now we apply α∨1 (A), where A ∈ SL2(OF ) has entries a = d = 1, b = 0, c = −x0

x1
, to

get an element with x0 = 0 but unchanged x1. Applying once more some σ(A) for
A ∈ SL3(OF ) we can then achieve x3 = x2 = 0, x1 = $d and still x0 = 0. Applying
some β∨1 (A) for A ∈ SL2(OF ) we can furthermore achieve that additionally the
condition x−3 = 0 is satisfied.

Now we can finish in applying α∨3 (A), where A ∈ SL2(OF ) has entries a = d = 1, c =
0, b = −x−2

x1
, to get the further condition x−2 = 0. Thus we have xi = 0 for i 6= ±1

and x1 = $d. Since a = B(x) = x1x−1 we must have x−1 = a ·$−d, i.e. by changing
x in its G2(OF )-orbit we have achieved x = x(a, d).

Proposition 3.3. With H1 ' SL3 ⊂ G2 we have a disjoint decomposition:

G2(F ) =
.⋃

n∈N0

H1(F ) · α∨1 (gn) ·G2(OF ) where gn =

(
1 $−n

0 1

)
.(vii)

Proof: First notice that α∨1 (g−1
n )(e0) = (0, 0,−2$−n, 1, 0, 0, 0) lies in the G2(OF )-

orbit of x(−1,−n). For g ∈ G2(F ) we can write the element g−1e0 by lemma 3.2
in the form k′ · x(−1,−n) for suitable n ∈ N0 and k′ ∈ G2(OF ) since B(e0) = −1.
This implies g−1e0 = k · α∨1 (g−1

n )(e0) i.e. h := g · k · α∨1 (g−1
n ) ∈ StabG2(e0) for some

k ∈ G2(OF ). So we get g = h · α∨1 (gn) · k−1, where h ∈ H1(F ) by lemma 2.7.

Corollary 3.4. We have

G2(F ) = H1(F ) · α∨1
(

1 1
0 1

)
· T (F ) ·G2(OF )

Proof: In the notations of proposition 3.3 we have α∨1 (gn) = tn · α∨1 (g0) · t−1
n where

tn ∈ T (F ) satisfies α(tn) = $−n, e.g. tn = α∨($−n) · β∨($−n). (here α∨ is the long
and β∨ the short coroot).

4 The open parabolic orbit

The case G = G2, H = H2 is more difficult than the case H = H1, since the group
H2 is smaller and we have to work in the bigger representation V2,0. To prepare the
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double coset decomposition for H2 we analyze the open P−
1 -orbit inside the G2-orbit

of s0:

(4.1) We recall that H2 is the stabilizer of s0 = x1x−1 − x2
0 ∈ Sym2(V7).

The bilinear form B induces an isomorphism of G2 modules V ∗ ' V . In the following
we furthermore identify Sym2(V ∗

7 ) ' Sym2(V7) with the space Sym7 of symmetric
7×7-matrices. If we denote the elementary matrices by Ekl = (δikδjl)i,j, the elements
Fkl = Ekl + Elk, k ≤ l form a basis of Sym7 (thus Fkk = 2Ekk), which is identified
with the basis xk ·xl of Sym2(V ∗). The entries of a matrix are arranged such that the
indices k, l ∈ {−3,−2, . . . , 3} have the order −2 < 3 < 1 < 0 < −1 < −3 < 2. The
induced right action on Sym2(V ∗) corresponds to the right action S 7→ tgSg =: S.g
of g ∈ G2 ⊂ GL7 on Sym7. The element s0 = x1x−1 − x2

0 ∈ Sym2(V7) corresponds
to S0 := F1,−1 − F0,0 ∈ Sym7.

Since the trivial subrepresentation V0,0 ⊂ Sym7 is spanned by S ′ = F1,−1 + F3,−3 +
F−2,2 − F0,0, we can realize H2 as the stabilizer of

S ′0 := 2 · (F1,−1 − F0,0)− S ′ = −F−2,2 − F3,−3 + F1,−1 − F0,0.

(4.2) The action of β∨2 (SL2) × α∨2 (SL2) on S ′0. For φ, ψ ∈ F ∗ we consider the
elements

S ′1 = S ′0 . β∨2

(
1 φ
− 1

2φ
1
2

)
= −F−2,2 − 1

φ
F3,−1 − φ · F1,−3 − F0,0 and

S ′2 := S ′1 . α∨2

(
1
2

φψ
2

− 1
φψ

1

)
= S(ψ, φ2),

where we use the following notation for ρ, ψ ∈ F̄ ∗:

S(ψ, ρ) :=




− 1
ρψ2 0 0 0 0 0 0

0 1
ρψ

0 0 0 0 0

0 0 − 1
ψ

0 0 0 0

0 0 0 2 0 0 0
0 0 0 0 −ψ 0 0
0 0 0 0 0 ρψ 0
0 0 0 0 0 0 −ρψ2




=(viii)

F0,0+
1

2
·
(
−ψF−1,−1 + ψρF−3,−3 − ψ2ρF2,2 − 1

ψ
F1,1 +

1

ψρ
F3,3 − 1

ψ2ρ
F−2,−2

)

Lemma 4.3. Let x = (xi,j)−3≤i,j≤3 denote an element of the orbit O := G2(F̄ )S ′0.
Then we have:
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(a)

det




x−1,−1 x−1,−3 x−1,2

x−3,−1 x−3,−3 x−3,2

x2,−1 x2,−3 x2,2


 = (x2,2)

2.(ix)

(b) x lies in the P−
1 (F̄ ) orbit of S(1, 1) if and only if x2,2 6= 0.

(c) If x2,2 6= 0, xi,2 = x2,i = 0 for all i 6= 2,−2 and if additionally x−1,−3 =
x−3,−1 = 0, then (xi,j) is of the form S(ψ, ρ) for suitable ψ, ρ ∈ F̄ ∗.

(d) If we only assume x2,2 6= 0 and xi,2 = x2,i = 0 for all i 6= 2,−2 then x is of
the form

x =




1
det(A)

A′

2
A

det(A)




,

where A denotes a matrix in GL2(F̄ ) and

A′ =
1

det(A)
·
(

1 0
0 −1

)
· A ·

(
1 0
0 −1

)
.

Proof: The formula (a) is clear for (xi,j) of the form S(ψ, ρ). The set of all S(ψ, ρ)
for ψ, ρ ∈ F̄ is just the T (F̄ )-orbit of S(1, 1). The formula remains true under the
action of the unipotent subgroups of P−

1 , since P−
1 leaves invariant the line F̄ ·e2 and

the space generated by e−1, e−3, e2, so that the unipotent elements do not change
either side of (ix). But the stabilizer of S(1, 1) inside the 9-dimensional group P−

1 is
a 1-dimensional group of type SO2. The orbit P−

1 · S(1, 1) is of dimension 8, which
is the dimension (= 14− 6) of the total orbit O ' G2/H2. It is thus open inside O
and its closure has to be O, since O is irreducible. Since (ix) is true on the open
dense orbit P−

1 · S(1, 1), it is thus true on all of O, i.e. (a) is proved.

The ”only if” part of (b) being clear, let (xi,j) be an element of O satisfying x2,2 6=
0. By transforming it with unipotent elements inside P−

1 we can achieve that the
assumptions of (c) are satisfied. Thus it remains to prove (c):

For an element x of O satisfying the assumptions of (c) we conclude from (a) and
x2,2 6= 0 that x−1,−1 6= 0 6= x−3,−3. It follows that the stabilizer of x inside P−

1 is
of dimension ≤ 1, so that the P−

1 -orbit of x is of dimension at least 8 and thus has
to be open inside O. From the irreducibility of O we conclude that x lies in the
P−

1 -orbit of S(1, 1). Then it is easy to see that x is of the form S(ψ, ρ).

(d) follows from (c) by considering the action of β∨2 (SL2) on elements of the form
S(ψ, ρ).
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Lemma 4.4. Let Γ = Gal(F̄ /F ) denote the Galois group of some perfect field F .

(a) The element S(ψ, ρ) lies in the rational orbit G2(F )S ′0 if and only if the 2-
cocycle c = c−ψρ,ρ : Γ× Γ → µ2 = {±1}

c(σ, τ) =

{
−1 if σ(

√−ρψ) = −√−ρψ and τ(
√

ρ) = −√ρ

1 else.

represents the trivial class in H2(Γ, µ2).

(b) If F is a p-adic field, then S(ψ, ρ) lies in the rational orbit G2(F )S ′0 if and
only if the Hilbert symbol satisfies (ψ, ρ)H = 1.

Proof: (a) An F -rational element in the orbit G2(F̄ )S ′0 can be written in the form
s ∈ (G2/H2)(F ). It lies in the rational orbit G2(F )S ′0 if and only if the class δ(s) ∈
H1(Γ, H2) vanishes. Here δ(s) denotes the class of the 1-cocycle σ 7→ (s′)−1σ(s′), if
s is represented by s′ ∈ G2(F̄ ). From the long exact cohomology sequence attached
to the short exact sequence 1 → µ2 → SL2×SL2 → H2 → 1 one concludes that this
is the case if and only if the coboundary δ2(δ(s)) vanishes in H2(Γ, µ2). From the
relations

S(ψ, ρ) = S ′0 . β∨2

(
1

√
ρ

− 1
2
√

ρ
1
2

)
. α∨2

(
1
2

√
ρψ

2

− 1√
ρψ

1

)
and

(
1

√
ρ

− 1
2
√

ρ
1
2

)−1

·
(

1 −√ρ
1

2
√

ρ
1
2

)
=

(
0 −√ρ
1√
ρ

0

)

one concludes that the 1-cocycle δ(s) satisfies

σ 7→





β∨2

(
0 −√ρ
1√
ρ

0

)
· α∨2

(
0 −√ρψ
1√
ρψ

0

)
if σ(

√
ρ) = −√ρ

1 if σ(
√

ρ) =
√

ρ.

Now an easy calculation shows

β∨2

(
0 −√ρ
1√
ρ

0

)
· α∨2

(
0

√
ρψ

− 1√
ρψ

0

)
= α∨1

(
0

√−ψ
− 1√−ψ

0

)
· β∨1

(
0 −ζ
1
ζ

0

)
,

where ζ = ρ
√−ψ

3
, since both sides equal the antidiagonal matrix with entries

ρψ2,−ρψ,−ψ,−1,− 1
ψ
,− 1

ρψ
, 1

ρψ2 . Thus we can lift the 1-cocycle δ(s) : Γ → H2(F̄ )
to the 1-cochain

γ : Γ → SL2 × SL2

σ 7→
{

A if σ(
√

ρ) = −√ρ

1 if σ(
√

ρ) =
√

ρ, where

A =

((
0

√−ψ
− 1√−ψ

0

)
,

(
0 −ρ

√−ψ
3

ρ−1(
√−ψ)−3 0

))
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and the calculation of the coboundary c = δ2(δ(s)) of γ gives:

c(σ, τ) = γ(σ)−1 · γ(στ) · σγ(τ)−1

=





1 if τ(
√

ρ) =
√

ρ

A · σA−1 if τ(
√

ρ) = −√ρ and σ(
√

ρ) =
√

ρ

A−1 · σA−1 if τ(
√

ρ) = −√ρ and σ(
√

ρ) = −√ρ.

The relations A−1 = −A and σA = ±A if σ(
√−ψ) = ±√−ψ now imply c = c−ψρ,ρ.

(b) From (a) and the well known relation between the Hilbert symbol and the
cohomology group H2(F, µ2) it follows that S(ψ, ρ) ∈ G2(F )S ′0 if and only if
(−ψρ, ρ)H = 1. The claim now follows from the bilinearity of the Hilbert sym-
bol and the relation (−ρ, ρ)H = 1.

5 Schröder decomposition for H2

(5.1) By the Iwasawa-decomposition G2(F ) = P12(F ) · G2(OF ) = T (F ) · U12(F ) ·
G2(OF ), where U12 denotes the unipotent radical of the Borel P12, every G2(OF )-
orbit in G2(F )S0 meets U12(F )S0. We introduce the elements

S1 = F−1,2, S2 = F−1,−3 + 2F0,2, S3 = F1,2 + 2F0,−3, S4 = F1,−3,

S5 = F2,2, S6 = F−3,2, S7 = F−3,−3.

In the next table we describe the right action of the unipotent subgroups correspond-
ing to the positive (with respect to P12) roots α2, α3, β2, β3 on the Si. Their action
on S5, S6, S7 is trivial. Also the action of the unipotent subgroup corresponding to
β1 is trivial on Si for 0 ≤ i ≤ 8.

β∨2

(
1−e
0 1

)
α∨3

(
1 e
0 1

)
α∨2

(
1 e
0 1

)
β∨3

(
1 e
0 1

)

S0 = F1,−1 − F0,0 − S ′ S0 + eS4 S0 − eS3 − e2S7 S0 − eS2 − e2S5 S0 + eS1

S1 = F2,−1 S1 + eS6 S1 − eS5 S1 S1

S2 = F−1,−3 + 2F0,2 S2 + eS7 S2 + eS6 S2 + 2eS5 S2

S3 = F1,2 + 2F0,−3 S3 S3 + 2eS7 S3 + eS6 S3 + eS5

S4 = F1,−3 S4 S4 S4 − eS7 S4 + eS6

Now an easy calculation shows:

S0.β
∨
3

(
1 a
0 1

)
.α∨2

(
1 −b
0 1

)
.α∨3

(
1 −c
0 1

)
.β∨2

(
1 −d
0 1

)

= S0 + aS1 + bS2 + cS3 + dS4 + (ac− b2)S5 + (ad− bc)S6 + (bd− c2)S7(x)
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The orbit U12(F )s0 is thus described as a subset of the 7-dimensional affine space
A7 = S0+〈Si〉1≤i≤7. By applying α∨2 , α∨3 , β∨2 , β∨3 of some integral unimodular matrices
we can achieve

min(val(ac− b2), val(ad− bc), val(bd− c2)) ≤ min(val(a), val(b), val(c), val(d))

(5.2) We still have an action of α∨1 (SL2(OF )) on R4 = 〈S1, S2, S3, S4〉 and on
R3 := 〈S5, S6, S7〉, which respects the orbit structure, i.e. acts on U12(F )S0. As
right representation of α∨1 (SL2) we can identify the space R4 with the homogeneous
polynomials of degree 3 in X, Y and the space R3 with the symmetric 2×2-matrices.
It is easy to see that we have a correspondence:

S1 S2 S3 S4 S5 S6 S7

Y 3 3Y 2X 3Y X2 X3

(
2 0
0 0

) (
0 1
1 0

) (
0 0
0 2

)

Here an element g ∈ SL2 with entries a, b, c, d acts via X 7→ aX + bY, Y 7→ cX + dY
on the homogeneous polynomials and via S 7→ tg · S · g =: S.g on the symmetric
matrices S.

Using this action of α∨1 (SL2(OF )) we can now achieve that ad − bc = 0 and that
val(ac − b2) ≤ val(bd − c2). We introduce the notations ∆ = ac − b2 and δ =
−(bd− c2)/∆. This implies c = aδ, d = bδ, i.e. we have to consider elements of the
form

S = S0 + aS1 + bS2 + aδS3 + bδS4 + ∆S5 − δ∆S7, where(xi)

a, b,∆ ∈ F, δ ∈ OF , ∆ = a2δ − b2, val(∆) ≤ val(a), val(b).

(5.3) We rewrite (xi) in matrix form

S =




0 0 0 0 0 0 −1
2

0 0 0 0 0 −1
2

0
0 0 0 0 1

2
bδ aδ

0 0 0 −1 0 2aδ 2b
0 0 1

2
0 0 b a

0 −1
2

bδ 2aδ b −2δ∆ 0
−1

2
0 aδ 2b a 0 2∆




Now we apply elements in the opposite unipotent radical U−
12(OF ) to get a repre-

sentative of each G2(OF )-orbit in some standard form (compare [W2],[W3]): It is
straightforward to get zeros in the last row (and the last column) apart from the
lower right entry 2∆. All entries of the final result can be obtained by a laborious
brute force computation, but the result is already clear from lemma 4.3(d):
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S13 : = S.α∨3

(
1 0
a

2∆
1

)
.α∨2

(
1 0
−b
2∆

1

)
.β∨3

(
1 0

− aδ
2∆

1

)
.β∨1

(
1 0

− ab
2∆2 1

)

=




1
8∆

0 0 0 0 0 0

0 − a2

8∆2 − b
4∆

0 0 0 0
0 − b

4∆
− δ

2
0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 − a2

2∆
b 0

0 0 0 0 b −2δ∆ 0
0 0 0 0 0 0 2∆




(5.4) To transform S13 with elements of β∨2 (SL2(OF )) into the final diagonal form
we have to distinguish three cases.

Case 1: val(δ∆) ≤ val(b), val(δ∆) ≤ val(a2

∆
). In this case we get:

S14 := S13.β
∨
2

(
1 0

− b
2∆δ

1

)
= S(δ−1,−4δ2 ·∆),

using 2.3(iv) and the notation introduced in (viii).

Case 2: val(a2

∆
) < val(δ∆), val(a2

∆
) ≤ val(b). We get:

S14 : = S13.β
∨
2

(
1 −2b∆

a2

0 1

)
= S(a2/∆,−4∆3/a4).

Case 3: val(b) < val(δ∆), val(b) < val(a2

∆
)

In this case we have val(b2) < val(δ∆) + val(a2

∆
) = val(δa2) which implies that

−∆ = b2 − a2δ is a square. We can furthermore choose µ ∈ O∗
F such that µ2 · b =

b + 2δ∆ + a2

8∆
and define ν = −1− a2

4∆b
∈ OF . We get

S14 : = S13.β
∨
2

(
1 1/2
0 1

)
.β∨2

(
µ 0
0 µ−1

)
.β∨2

(
1 0
ν 1

)

= S(2∆/b,−b2/∆).

In all three cases S14 is of the form S(α, β). Since val(∆) = val(α2β) ≤ val(αβ)
and val(∆) ≤ val(α) by (xi), we have val(α) ≤ 0 and val(αβ) ≤ 0. Since
S(α, β).β∨2 (W2) = S(−αβ, β−1) we can achieve furthermore val(β) ≤ 0.

By inspection of all three cases we observe that the Hilbert symbol satisfies (α, β)H =
1, as predicted in lemma 4.4(b). We still have an action of T (OF ) at our disposal:
S(α, β).(ti) = S(α · t−2

1 , β · t21t−2
3 ). Thus α and β can be changed by squares of units.
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We finally remark that we can modify β by non-square units in the case val(α) = 0
using the action of α∨1 (SL2(OF )) and α by non-square units in the case val(β) = 0
using the action of β∨2 (SL2(OF )).

(5.5) Notation: Let ε ∈ O∗
F\(O∗

F )2 be a fixed non-square unit. We define

R =
{
(α, β) | α = ε1$

−m, β = ε2$
−n, m, n ≥ 0, ε1, ε2 ∈ {1, ε}

}
(xii)

Proposition 5.6. Under the assumptions of 1.1 a set of representatives for the
G2(OF )-orbits inside G2(F )S0 is

{S(α, β) | (α, β) ∈ R, (α, β)H = 1, ε1 = 1 if n = 0, ε2 = 1 if m = 0}

using the notations introduced in (viii),(xii).

Proof: By our above considerations every G2(OF )-orbit has a representative of the
stated form. It follows already from lemma 4.4 that every S(α, β) as in the proposi-
tion lies in G2(F )S0, but we still have to prove that different S(α, β) lie in different
G2(OF )-orbits, i.e. that each S(α, β) as in the proposition is determined by its
G2(OF )-orbit.

Write α = ε1 · $−m, β = ε2 · $−n as in (xii). For x ∈ Sym7(F ) the quantity
dep2,0(x) := maxn∈Z$−n ·x ∈ Sym7(OF ) is invariant under the action of G2(OF ) ⊂
GL7(OF ). We have dep2,0(S(α, β)) = val(α2β) = 2m + n. If m > 0 we have
furthermore $2m+nS(α, β) ∼= −1

2
ε2
1ε2 · F2,2 mod $ · Sym7(OF ). Under the action

of g ∈ G2(OF ) ⊂ GL7(OF ) the coefficient of F2,2 is modified by multiplication with
g2
2,2 mod $. This implies that the class of ε2 in O∗

F /(O∗
F )2 is determined by the

G2(OF )-orbit of S(α, β).

Now we consider Q = S(α, β) · S(α, β) ∈ Sym2(Sym7(F )) ' Sym2(Sym2(V ∗
7 )) =:

W . Here we consider Sym2(V ) always as a quotient of the tensor product V ⊗V and
may thus write Fi,j ·Fk,l ∈ Sym2(Sym7(F )) resp. (xixj)·(xkxl) ∈ Sym2(Sym2(V ∗

7 )).
We remark that this expression is commutative by definition, i.e. invariant under
substitutions xi ↔ xj, xk ↔ xl, (xi, xj) ↔ (xk, xl), but not associative. In fact we
have a G2(F )-equivariant idempotent projection

P1 : W → W, (xixj) · (xkxl) 7→ 1

3
((xixj) · (xkxl) + (xixk) · (xjxl) + (xixl) · (xjxk)) ,

such that we can identify the image P1(W ) with Sym4(V ∗
7 ). Now ker(P1) is the

image of W under the idempotent P2 = id− P1. From 2.9(vi) we deduce

Sym2(Sym7) = Sym2(V2,0)⊕ V2,0 ⊕ V0,0 = V4,0 ⊕ V0,2 ⊕ V1,1 ⊕ 3 · V2,0 ⊕ 2 · V0,0
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and by a weight analysis we conclude

Sym4(V ∗
7 ) = V4,0 ⊕ V2,0 ⊕ V0,0 and

ker(P1) = V0,2 ⊕ V1,1 ⊕ 2 · V2,0 ⊕ V0,0.

We get

P2(Q) = −1

3

(
α3β2 (F2,2 · F−3,−3 − F2,−3 · F2,−3)− α3β(F2,2 · F−1,−1 − F2,−1 · F2,−1)

+α2β(F−1,−1 · F−3,−3 − F−1,−3 · F−1,−3 + 2F2,2 · F0,0 − 2F2,0 · F2,0)

−αβ(F1,1 · F2,2 − F1,2 · F1,2 + 2F−3,−3 · F0,0 − 2F−3,0 · F−3,0)

+α(F2,2 · F3,3 − F2,3 · F2,3 + 2F−1,−1 · F0,0 − 2F−1,0 · F−1,0)

+β(F1,1 · F−3,−3 − F1,−3 · F1,−3)− (F1,1 · F−1,−1 − F1,−1 · F1,−1)

−(F2,2 · F−2,−2 − F2,−2 · F2,−2)− (F3,3 · F−3,−3 − F3,−3 · F3,−3)

+ analogous terms with negative exponents of α, β )

Since val(α), val(β) ≤ 0 we get that dep0,2(P2(Q)) := maxn∈Z$−n · P2(Q) ∈
Sym2(Sym2(O7

F )) ∩ ker P1, which is an invariant of the G2(OF )-orbit of Q, equals
3m + 2n + val(3). Furthermore if n = −val(β) > 0 we get that the coefficient of
F2 = F2,2 · F−3,−3 − F2,−3 · F2,−3 is multiplied with (xw − yz)2 mod $ under the
action of g ∈ G2(OF ), where x2.g = x · x2 + y · x−3 + ... and x−3.g = z · x2 + w · x−3.
Thus the class of ε1 in O∗

F /(O∗
F )2 is an invariant of the G2(OF )-orbit of S(α, β) in

the case n > 0.

Summarizing 2m + n and 3m + 2n are determined by the G2(OF )-orbit of S(α, β),
as are ε1 if m > 0 and ε2 if n > 0. The claim follows.

(5.7) To get a concrete set of representatives for the double cosets we make some
explicit computations: We observe that for every pair (α, β) ∈ R with (α, β)H = 1
at least one of the following four conditions is satisfied:

Condition 1: β = (2γ)2. We put in the notations of (xi): a = 0, b = αγ, δ = α−1 ∈
OF . Thus ∆ = −b2 = −α2γ2 = −α2β

4
, val(γ) ≤ 0, val(∆) ≤ val(b), val(a), so

that we can start the procedure 5.3. We have −2δ∆ = αβ/2, so that val(δ∆) =
val(α) + val(β) = val(α) + 2val(γ) ≤ val(α) + val(γ) = val(b) and we are in case 1
above arriving at the desired S(δ−1,−4δ2 ·∆) = S(α, β).

Condition 2: α = γ2. We put in the notations of (xi): a = 1
4
αγ(β − 1), b = 1

4
α(β +

1), δ = α−1 ∈ OF . Thus ∆ = δa2−b2 = 1
16

α2((β−1)2− (β +1)2) = −α2β
4

, val(α) ≤
val(γ) ≤ 0, val(∆) ≤ val(b), val(a) so that we can start the procedure 5.3. We have
−2δ∆ = αβ/2, so that val(δ∆) = val(α) + val(β) ≤ val(γ) + val(β + 1) = val(b)
and we are in case 1 above arriving again at the desired S(δ−1,−4δ2 ·∆) = S(α, β).

Condition 3: β is −α up to square, say β = − (2γ)2

α
. We put in the notations of

(xi): a = γα, b = 0, δ = α−1 ∈ OF . Thus ∆ = δ(γα)2 = γ2α = −α2β
4

, val(γ) =
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1
2
(val(α) + val(β)) ≤ 0, val(∆) ≤ val(a), val(b) so that we can start the procedure

5.3. We have −2δ∆ = αβ/2, − a2

2∆
= −α

2
, so that S13 is already the desired S(α, β).

Condition 4: α = εγ2
1 , β = εγ2

2 and −1 is not a square in F . Then −1 is a norm
of the unramified extension F (

√
ε)/F , i.e. −1 = a2

0 − εb2
0 with a0, b0 ∈ OF . We

put in the notations of (xi): a = 1
2
γ3

1γ2ε
2a0, b = 1

2
γ2

1γ2ε
2b0, δ = α−1 ∈ OF . Thus

∆ = δa2 − b2 = 1
4
γ4

1γ
2
2ε

3(a2
0 − εb2

0) = −1
4
γ4

1γ
2
2ε

3 = −α2β
4

, val(∆) ≤ val(b), val(a) so
that we can start the procedure 5.3. We have −2δ∆ = αβ/2, so that val(δ∆) =
val(α) + val(β) = 2val(γ1) + 2val(γ2) ≤ 2val(γ1) + val(γ2) = val(b) and we are
again in case 1 above arriving once more at the desired S(δ−1,−4δ2 ·∆) = S(α, β).

(5.8) For a, b ∈ F, δ ∈ OF we introduce the notation

µ(a, b, δ) = β∨3

(
1 a
0 1

)
· α∨2

(
1 −b
0 1

)
· α∨3

(
1 −aδ
0 1

)
· β∨2

(
1 −bδ
0 1

)

and the following sets corresponding to the four conditions in the proof of 5.6:

I1 =

{
(0, $−n−mε1, $

mε−1
1 )

∣∣∣∣
n,m ≥ 0, ε1 ∈ {1, ε},

ε1 = ε if m even, ε1 = 1 if n = 0

}

I2 =

{(
$−3n

4
· (ε1$

−m − 1),
$−2n

4
· (ε1$

−m + 1), $2n

) ∣∣∣∣
n,m ≥ 0, ε1 ∈ {1, ε}

ε1 = 1 if n = 0

}

I3 =

{
($−n−mε1, 0, $

mε−1
1 )

∣∣∣∣
n,m ≥ 0, ε1 ∈ {1, ε}, m odd if − 1 ∈ (F ∗)2

ε1 = ε if m even, ε1 = 1 if n = 0

}

I4 = {($−3n−m · a0, $
−2n−m · b0, ε

−1$2n) | n,m > 0, −1 /∈ (F ∗)2}
I = I1 ∪ I2 ∪ I3 ∪ I4

Here a0, b0 ∈ OF are fixed satisfying the condition −1 = a2
0 − ε · b2

0.

Corollary 5.9. We have a disjoint decomposition

G2(F ) =
.⋃

(α,β,δ)∈I

H2(F ) · µ(α, β, δ) ·G2(OF )

Corollary 5.10. There exist finitely many gi such that we have a decomposition

G2(F ) =
.⋃

i∈I

H2(F ) · gi · T (F ) ·G2(OF )

In fact T (F ) acts on the set of all S(α, β) such that the orbits have representatives
with 0 ≤ m,n ≤ 1.
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