Mathematisches Institut der Universität Heidelberg

Prof. Dr. Rainer Weissauer / Dr. Uwe Weselmann

Übungen Funktionentheorie 1 WS 09/10 Blatt 7

Abgabe bis Fr 04.12.09 um 11:00 Kästen zwischen HS 2 und HS 6

Aufgabe 18) Sei $D \subset \mathbb{C}$ ein Gebiet, und $f: D \to \mathbb{C}$ eine holomorphe Funktion, die als Abbildung injektiv ist.

- (a) Zeige, dass $f'(z) \neq 0$ für alle $z \in D$ gilt.
- (b) Zeige, dass es eine holomorphe Umkehrabbildung $g: f(D) \to D$ von f gibt.

(5=2+3 Punkte)

Aufgabe 19) Sei $f: E \to E$ eine bijektive holomorphe Abbildung des Einheitskreises $E = \{z \in \mathbb{C} | |z| < 1\}$ in sich, die eine holomorphe Umkehrfunktion $g: E \to E$ besitzt.

- (a) Zeige: gilt f(0) = 0, so gibt es $\zeta \in \mathbb{C}$ mit $f(z) = \zeta \cdot z$ für alle $z \in E$, wobei $|\zeta| = 1$ ist.
- (b) Zeige, dass f auch im Fall $f(0) \neq 0$ eine Möbiustransformation ist.

(4=2+2 Punkte)

Aufgabe 20) Sei $D = \mathbb{C} - \mathbb{Z}$. (a) Zeige, dass die Reihe

$$\frac{1}{z} + \sum_{\nu=1}^{\infty} \frac{2z}{z^2 - \nu^2}$$

kompakt absolut auf D gegen eine auf D holomorphe Funktion konvergiert.

(b) Zeige: f(z+1) = f(z) für alle $z \in D$.

Hinweis: zeige zunächst, dass die Partialsummen $f_n(z)$ von der Form $\sum_{\nu=-n}^n \frac{1}{z-\nu}$ sind.

(c) Zeige, dass f(z)auf der Menge $A=\{z\in\mathbb{C}|\ |Im(z)|\geq 1\}$ eine beschränkte Funktion ist.

(4=2+1+1 Punkte)

Aufgabe 21) Bestimme die Menge D aller $z \in \mathbb{C}$, für die die Reihe

$$\sum_{n=0}^{\infty} \frac{\cos(nz)}{e^n}$$

absolut konvergiert. Zeige, dass D ein Gebiet ist und dass die Reihe auf D kompakt absolut gegen eine holomorphe Grenzfunktion konvergiert.

(3 Punkte)