Mathematisches Institut der Universität Heidelberg

Prof. Dr. Rainer Weissauer / Dr. Uwe Weselmann

Übungen Funktionentheorie 1 WS 09/10 Blatt 13

Abgabe bis Fr 29.01.10 um 11:00 Kästen zwischen HS 2 und HS 6

Aufgabe *) Lösen Sie die Aufgaben 39) und 40) von Blatt 12, sofern noch nicht geschehen!

Aufgabe 42) Sei $\mathbf{E} = \{z \in \mathbb{C} | |z| < 1\}$ und $f : \mathbf{E} \to \mathbf{E}$ holomoph und bijektiv. Zeige:

- (a) Es gibt eine Möbiustransformation M, die **E** bijektiv auf sich abbildet und für die f(0) = M(0) ist. (Hinweis: Blatt1, Aufgabe 3)
- (b) Gilt f(0) = 0, so gibt es $c \in S^1$ mit f(z) = cz für alle $z \in \mathbf{E}$.
- (c) f ist eine Möbiustransformation.
- (d) Zeige: Ist $g: \mathbf{H} \to \mathbf{H}$ bijektiv und holomorph, so ist g eine Möbiustransformation (und kann dementsprechend durch eine Matrix in $SL_2(\mathbb{R})$ beschrieben werden).

(6=2+1+1+2 Punkte)

Aufgabe 43) Für $\omega \in \mathbf{H}$ sei $\Lambda = \{m + n\omega | m, n \in \mathbb{Z}\} \subset \mathbb{C}$.

(a) Zeige, dass die folgenden Summen bzw. Produkte für $z \in D = \mathbb{C} - \Lambda$ absolut konvergieren und in D holomophe Funktionen darstellen:

$$\wp(z) = \frac{1}{z^2} + \sum_{\lambda \in \Lambda, \lambda \neq 0} \left(\frac{1}{(z - \lambda)^2} - \frac{1}{\lambda^2} \right);$$

$$\zeta(z) = \frac{1}{z} + \sum_{\lambda \in \Lambda, \lambda \neq 0} \left(\frac{1}{z - \lambda} + \frac{1}{\lambda} + \frac{z}{\lambda^2} \right);$$

$$\sigma(z) = z \cdot \prod_{\lambda \in \Lambda, \lambda \neq 0} \left(\left(1 - \frac{z}{\lambda} \right) \cdot \exp\left(\frac{z}{\lambda} + \frac{1}{2} \left(\frac{z}{\lambda} \right)^2 \right) \right).$$

(b) Zeige:

$$\frac{\sigma'(z)}{\sigma(z)} = \zeta(z)$$
 und $\zeta'(z) = -\wp(z)$ für alle $z \in D$.

- (c) Zeige: $\wp(z + \lambda) = \wp(z)$ für alle $z \in D$ und $\lambda \in \Lambda$.
- (d) Zeige: Es gibt η_1, η_2 in $\mathbb C$ mit

$$\zeta(z+m+n\omega)=\zeta(z)+m\eta_1+n\eta_2$$
 für alle $m,n\in\mathbb{Z},z\in D.$

- (e) Zeige: Es gilt: $\eta_1 \cdot \omega \eta_2 = 2\pi i$.
- (f) Zeige: σ kann zu einer auf ganz $\mathbb C$ holomorphen Funktion fortgesetzt werden, die in den Punkten von Λ einfache Nullstellen hat.
- (g) Zeige: Für $\lambda = m + n\omega \in \Lambda$ gibt es $b_{\lambda} \in \mathbb{C}$ mit

$$\sigma(z+\lambda) = \sigma(z) \cdot \exp((m\eta_1 + n\eta_2)z + b_\lambda)$$
 für alle $z \in \mathbb{C}, m, n \in \mathbb{Z}$.

$$(11=2+1+2+1+2+1+2 \text{ Punkte})$$