Mathematisches Institut der Universität Heidelberg

Prof. Dr. R. Weissauer/Dr. U. Weselmann

Übungen zur Algebraischen Zahlentheorie SS 2007

Blatt 10 Abgabe bis Donnerstag 28.06.2007 um 14:00 Uhr

Aufgabe 35) Sei F/\mathbb{Q}_p eine Erweiterung vom Grad $n \geq 2$. Die Menge

$$P_n = \left\{ X^n + \sum_{i=0}^{n-1} a_i X^i \middle| a_i \in \mathbb{Q}_p \right\} \subset \mathbb{Q}_p[X]$$

werde vermöge ihres Isomorphismus mit \mathbb{Q}_p^n zu einem topologischen Raum. Sei

$$\chi: F \to P_n, \quad a \mapsto \det(X \cdot id_F - a),$$

wobei a als Endomorphismus $x \mapsto ax$ des \mathbb{Q}_p -Vektorraums F aufgefasst wird.

- (a) Sei $U = \{a \in F \mid F = \mathbb{Q}_p(a)\}$. Zeige, dass U in F offen ist.
- (b) Zeige, dass $\chi(U)$ eine offene Teilmenge von P_n ist.

Tipp: Wende für $a \in U$ auf die Abbildung

$$\mathbb{Q}_p^n \to P_n, \quad (b_i)_{0 \le i \le n-1} \mapsto \chi \left(a + \sum_{i=0}^{n-1} b_i \cdot a^i \right)$$

den Satz über die Umkehrfunktion an.

(c) Zeige, dass $Irr_n = \{ f \in P_n \mid f \text{ irreduzibel } \}$ in P_n offen ist.

Tipp: Reduziere auf die analoge Behauptung für die Menge $P'_n = P_n \cap \mathbb{Z}_p[X]$ und zeige die Kompaktheit des Komplements von $Irr_n \cap P'_n$ in P'_n mit Hilfe des Gaußschen Lemmas.

(d) Zeige, dass es einen Zahlkörper E/\mathbb{Q} vom Grad n und ein über p liegendes Primideal \mathfrak{p} in E gibt, so dass $F \cong E_{\mathfrak{p}}$ ist.

$$(8=1+3+2+2 \text{ Punkte})$$

Aufgabe 36) Wir betrachten die Untergruppe $A_3 = \{(1), (123), (132)\}$ der S_3 . Sei der Homomorphismus $\chi : A_3 \to \mathbb{C}^*$ festgelegt durch $\chi((123)) = \exp(\frac{2\pi i}{3})$. Weiterhin bezeichne 1_G den konstanten Homomorphismus auf einer Gruppe G, der alles auf 1 abbildet.

(a) Mit $Ind = Ind_{A_3}^{S_3}$ bezeichnen wir die Induktion von A_3 nach S_3 . Zeige $Ind(\chi) \cong Ind(\chi^{-1})$ sowie $Ind(1_{A_3}) \cong 1_{S_3} \oplus sign$.

(b) Zeige
$$Ind_{fid}^{S_3}1\cong 1_{S_3}\oplus sign\oplus Ind_{A_3}^{S_3}(\chi)\oplus Ind_{A_3}^{S_3}(\chi^{-1}).$$

(4=2+2 Punkte)

Aufgabe 37) Wie in Aufgabe 32) sei $L = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3)$ mit

$$X^{3} - X + 1 = (X - \alpha_{1}) \cdot (X - \alpha_{2}) \cdot (X - \alpha_{3})$$

und $K = \mathbb{Q}(\sqrt{-23}) \subset L$.

(a) Zeige, dass aus der Identität aus 32)a) die Gleichung

$$\sqrt{-23} = (\alpha_1 - \alpha_2) \cdot (\alpha_1 - \alpha_3) \cdot (\alpha_2 - \alpha_3)$$

folgt.

- (b) Wie wirkt für das Primideal $\mathfrak{a}=(2,\frac{1+\sqrt{-23}}{2})$ der geometrische Frobenius $F_{\mathfrak{a}}\in Gal(L/K)$ auf die Elemente $\alpha_1,\alpha_2,\alpha_3$?
- (c) Wie verhält sich das Primideal (23) $\subset \mathbb{Z}$ in der Körpererweiterung L/\mathbb{Q} ? Bestimme für alle über (23) liegenden Primideale \mathfrak{p} die Verzweigungsgruppen $I_{\mathfrak{p}} \subset Gal(L/\mathbb{Q})$.

(5=1+2+2 Punkte)